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PREFACE il

In the past few years there has been an astonishing upsurge of interest
in the science dealing with the interaction of deformable conducting
materials (particularly conducting fluids) and the electromagnetic field.
This science has been variously called plasma dynamics, magnetohydro-
dynamics, hydromagnetics, magnetoaerodynamics, and Hg-dynamics.
All fall short of expressing its proper scope. But however called, the
science has an assured fascination for those now working in it and the
promise of an exciting future for those who will enter it in years to come.

Almost certainly, the secret of success in controlling the fusion reaction
of the light elements lies in mastering the use of electromagnetic fields to
control the 100 odd million degree plasmas in which such fusion will take
place. When such mastery is achieved, the deuterium in the sea will pro-
vide power in quantities to satisfy our wildest dreams. Missile and space
éngineers see in magnetoaerodynamics the possibilities of achieving
greatly increased specific thrusts of rockets which will change space
vehicles from flying fuel tanks to machines with respectable payloads.
They also see the possibility of magnetic shields and magnetic wings for
re-entry into the earth’s atmosphere. More and more, astrophysicists are
recognizing that magnetic fields are a powerful agent in the dynamics of
our universe. Our own earth, sun, planetary system, stars, and the material
between them are all profoundly influenced by magnetic fields. As
engineers develop new magnetrons, klystrons, and traveling wave tubes,
they too find that they must master the difficult art of understanding
the interaction of beams of charged particles with electromagnetic fields.

Even now, our goals for producing high temperatures, high frequencies,
high forees, and high velocities by electromagnetic fields exceed by many
powers of ten thosé limits which we accepted complacently only a decade
or s0 ago. Our everyday chemistry, thermodynamics, strength of mate-
rials, and so on deal with. individual particle energies of the order of a few
electron volts or less. To the man in the street, this level determines the
nature of the physical world around him. Yet, now that we are achieving
control of nuclear interactions, the level of interaction is being stepped up
by a factor of over a million, and a whole new kind of daily reality lies in
store for us. The intermediary for the control of this vastly increased
level of activity will almost certainly be the electromagnetic field. In the
absence of control, this vast difference in interaction levels manifests itself

" in the explosive violence of the nuclear bomb. But as we learn to bridge

the gap in gentler fashion, such mastery will surely have a profound

- effect on the concepts we now take for granted at the lower end of the scale.
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iv PREFACE

In the Fall of 1957, the Air Force Office of Scientific Research, recogniz-
ing the mounting scientific interest in the whole field of plasma dynamics,
asked the National Academy of Sciences to prganize an international
symposium which would bring together top-ranking scientists working on
the many different aspects of the subject. The National Academy ap-
pointed a committee consisting of Professor William Allis, Professor

. Johannes Burgers, Professor Walter Elsasser, Doctor John Pierce, and
Professor Francis Clauser, chairman, to organize such a symposium. The
committee decided to invite men from the fields of astrophysics, fluid
mechanics, thermonuclear physics, gaseous discharges, electron beam
dynamics, statistical mechanics, and aerodynamics. The list of partici-
.pants is given on the following page. ' ‘

The symposium was held at Woods Hole, Massachusetts during the

- week of June 9 to June 13, 1958. Sessions were held during mornings and

evenings, with afternoons free for recreation and discussion. Only a

single session took place at any given time and everyone participated in
that session. No formal papers were presented. Each session had a chair-

man, an introductory speaker to present the subject for discussion in a

provocative manner, and an editor to put the material that was presented
during the discussion in suitable form for inelusion in the present volume.

A transcript of the discussion was taken for the benefit of the editors.

After the first day or so, the participants were on a first-name basis and the

discussion became both animated and penetrating. The consensus seemed
to be that it was a healthy experience to be forced to defend those con-

cepts which you and your colleagues ‘take for. granted before a group -

having widely different concepts to which they will cling with a tenacity
-equaling your own. It is probably not too presumptuous to say that the
resulting record of the symposium which is contained in this volume gives

as broad a picture of the field of plasma dynamics as has yet been presented.

On behalf of the members of the organizing committee as well as the
participants in the symposium, I should like to extend our grateful thanks
to Mr. John Coleman and the National Academy of Sciences and to
Colonel Pharo Gagge, Dr. William Otting, and the Air Force Office of
Scientific Research for the great effort they put into making the sym-
posium profitable and in providing the support which made it a success.
I should also like to thank Mr. Joseph Byrne of the Addison-Wesley Pub-
lishing Company, who was present during the symposium and who played
the role of executive editor in arranging the many details connected with
publishing the present volume.

: Francts H. CLAUSER
Baltimore Chagrman, Sympostum Commitiee
April 22, 1959 _ General Editor, Symposium Proceedings
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118 - THE DYNAMICS OF ELECTRON BEAMS [crap. '4

of magnitpde less than wy, and this may be of considerable use in studying
hlgh-depsﬂ;y plasmas. The phase characteristic of Fig. 4-23 for no static
magnetic field has the asymptotic low-frequency characteristic

log b/a :
w=4- 2gK{ wpa, o <KLwp, w/fKe, (4-36)

where a is the plasma radius, b the radius of the surrounding metallic'

cylinder, and K, is the relative dielectric constant of the medium between
a an.d b. An analysis of a nonuniform plasma in which the density variation
is given by Eq. (4-34) shows that the low-frequency asymptotic phase
velocity is proportional to the dverage plasma frequency [81]. Hence when
(4-36) is applied to calculate electron density, it yields average density.

CHAPTER 5
' STATISTICAL PLASMA MECHANICS

The Bridge between Particle M echanics and Continuum Mechanics
. JoraNnNEs M. BureErs, Editor
5-1 Introduction. Many speakers at this Symposium have made use

of the continuum equations to describe the flow of an ionized gas or of its
constituents from the hydrodynamic point of view. Sometimes the equa-

‘tions have been applied in a rather detailed form; in other cases simplified

forms have been preferred. The importance of the continuum equations is
fully recognized and they serve as a useful tool in many problems. How-
ever, the information they offer is not always sufficient, and we must then
have recourse to distribution functions for the particle velocities and
introduce the Boltzmann equation. « C
It will be appropriate therefore to present a summary of the continuum
equations and to review a number of their applications. This will bring
us to several cases where the particle point of view must be called upon
to help. It will also lead to a discussion of some basic concepts implied in
the Boltzmann equation. It is hoped that the following account of the
material considered in the session devoted to this subject will provide a
background for comparison of questions treated by speakers in other
sessions. In arranging the subject matter the author has taken the liberty
of deviating from the order in which points of view were brought forward
in the discussion, and also has interpolated a few references to existing
literature where this appeared tobe helpful. He also records with gratitude

- the help received from the speakers who supplied additional information
© concerning their contributions after the first draft of this chapter had been

completed.

Since the continuum equations have been treated by many authors, it
is not necessary to go deeply into the mathematical aspects of their deduc-
tion. The classical treatise by Chapman and Cowling, The M athematical
Theory of Non-Uniform Gases [1], is well known. The participants in the
Symposium were very fortunate to have Professor Chapman in their
midst. A different method of treatment is that in which one works with the
moments of the Boltzmann equation. This is the method that was used by
Maxwell. Grad, in a paper “On the Kinetic Theory of Rarefied Gases” [2],

1. 8. Caapman and T. G. Cowring, The M athematical Theory of Non-Uniform
Gases, Cambridge University Press, 1939, with notes added in 1951.

2. H. Grap, On the kinetic theory of rarefied gases, Comm. on Pure and
Applied Math. 2, 331-407 (1949). .
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120 STATISTICAL PLASMA MECHANICS - [crap. 5

has developed this method very fully, in such a way that it can be applied
to obtain a third-order approximation. The specific problems connected
with this approximation, however, were not considered at the Symposium,
nor were the points of view investigated in great detail by Ikenberry and
Truesdell in their paper “On the Pressures and the Flux of Energy in a
Gas according to Maxwell’s Kinetic Theory,” I and II [3].

The present author has treated the deduction of the continuum equations
by means of the method of moments in a series of lectures given at the
Institute for Fluid Dynamics and Applied Mathematics of the University
of Maryland, in which various features connected with the application of
the equations have been analyzed [4]. The deduction is based upon the
approximation of the distribution function by means of a convenient
expression containing’ (for each species of molecules) thirteen adjustable
coefficients, squares and products of which are neglected. The main
equations of this report will be briefly recapitulated in Sections 5-2 through
5-6; for details of the deductions the reader is referred to the lecture notes
themselves.

Reference must be made to a paper by Kolodner, “Moment Description
of Gas Mixtures” [5], which in a number of respects runs parallel to the
treatment given in the lecture notes.

A recent paper reviewing what can be deduced more directly from
Boltzmann’s equation was published by Gross, “Dynamics of Eleetron
Beams and Plasmas” [6]. ‘

3. E. IxenBERRY and C. TrUesDELL, On'the pressures and the flux of energy
in a gas according to. Maxwell’s kinetic theory I, J. Rational Mechanics and
Analysis 5, 1-54 (1956); C. TRUESDELL, idem I, ibid., 55-128.

4. J. M. Burcers, The application of transfer equations to the caleulation

of diffusion, heat conduction, viscosity and electric conduetivity, parts I and 1T,

Inst. for Fluid Dynamics and Applied Mathematics, U. of Maryland, Tech-
nical Note BN-124a/b (May 1958). '

5. I. 1. KoLopNER, Moment description of gas mixtures I, Inst. of Math.
Sel., NYU, NYO-7980 (September 1957). Grad mentioned in a letter that
Kolodner in his thesis (NYU, 1950), which unfortunately was never published
in full, derived the complete set of moment equations for an arbitrary mixture
of gases, and calculated the relevant collision  integrals for general force laws.
The report of 1957 extends the results to include magnetic fields, and specializes
the collision integrals to coulomb forces. A complete set of collision integrals has
been evaluated, including matrix heat conductivity and viscosity coefficients for
the individual gases, as well as all the conventional coefficients, such as Spitzer’s
and Landshoff’s parallel and perpendicular resistivity. The teraperature differ-
ences between the gases can be taken arbitrarily large in this approximation
method. ' C

6. E. P. Gross, Dynamics of electron beams and plasmas, Electronic Wave

Guides, Symposium Series Vol. 8, Microwave Research Institute, Polytechnic
Institute of Brooklyn, 1958.

5-2] ' THE BOLTZMANN EQUATION 121

5-2 The Boltzmann equation. Plasma dynamies, as a part of kinetic

' gas theory, starts from Boltzmann’s equation for the behavior of the

functions F, describing the velocity distributions of the various types of
particles present in a gas mixture. This equation has the form

oF, , . -oFs _ fun OFs _ (.@".) . 5-1)
St B Ty 58— \ i Jean (

" Subseripts s, t, . . .‘ refer to the different kinds of particles present in the

gas; the £y are the velocity components of a particle ?f tyl?e s, having a
mass m, and possibly an electric charge es (electrostatic units); and F is
the distribution function for the . The fo are the components of th.e
force acting upon a particle of type s; in calculating the .fs;,, attention is
given only to so-called field forces (electric and magnetic fields, and in
some cases gravity). '

The forces coming into play in collisions between particles are not
included in fes, but are treated separately. They are accountfed for m;the
expression (dF/dt)con appearing on the right side of t'he equation. Va:rlous
forms are given for this right-hand member. Since it refers to the‘ inter-
action between at least two particles (and sometimes between more tl%an
two), a proper treatment necessitates the introduction of dlstnl?u’mon
functions referring to the simultaneous position and staj;e of n.aotlon of
more than one particle. We shall come to this subject in Sections 5-18
and 5-19. For the present we follow the customary method of treatment,
introducing only functions F for single particles. )

There are cases where collisions are of such slight importance m com-
parison with the effects of electric and magnetic ﬁelc! forces that the right
side can be replaced by zero. In other cases collismng may be of some
importance, but it is sufficient to take account of therq in an approximate
way. ‘According to a method proposed by Krook‘[?], this can be donfa .by
introducing & mean collision frequency and assuming that each collision
redistributes the velocity components in a random manner. A reﬁ{lement
of this method is possible, in which mean collision frequencies are different -
for different combinations of collision partners, and inA which the random
velocity distributions resulting from the collisions are based on mean flow

" velocities and mean temperatures, which also can be different for different

combinations of collision partners. It is even possible to introduce ean.
collision frequencies which are dependent upon the velocity .of the partmles
s to which the distribution function F, refers, the averaging being done
only with respect to the various velocities of the collision partner.

7. M. Kroox, Dynamics of rarefied gases, Phys. Rev. 99, 1§96—1897 (1955);
. P. Gross and M. Kroor, Model for collision processes in gases: small-
amplitude oscillations of charged two-component systems, Phys. Rev. 102, 593—
604 (1956).



122 STATISTICAL PLASMA MECHANICS . [crar. 5

In tl.lose cases where collisions are of great importance the standard
expression introduced on the right side of Eq. (5-1) is that for binary
collisions, in which account is taken of the geometry of the collision and of
the nfature of the forces acting between the colliding particles (considered
as point centers of force without rotation or internal vibration):

(dF
i

The s_ummation with respect to the subscript ¢ is extended over all possible
collisa.on partners, including the case ¢ = s. F/ and F are distribution
functions having as arguments the velocities of the particles s and ¢
respectively, after the collision. The relative velocity g is defined by ’

coll

) = Z; / / dg(F4Fy — FoFy). g bdb de. (5-2)

gn = & — Eshe

The parameters b and € specify the geometry of the collision, b being the
distance of the particle s from the original line of motion of the particle ¢
(before the collision started) and e representing an angle of position. The
element b db de [to which the second integral sign on the right side of
Eq. (5-2) refers, the first integral referring to d&] is an element of the
collisional cross section. The velocity components £, £, of the particles
after the collision are influenced by the relative velocity g, by the mag-
nitude of b, and by the force field coming into play in the collision process.
In calculating the velocities after the collisidn, attention usually is
given only to conservative collisions, in which the particles suffer no in-
trinsic change. There can be, however, collisions in which enei'gy is
exchanged with interior degrees of freedom, in such a way that the rota~
tional, vibrational, or electronic state of one or both of the partners is
altered; or the collision can lead to dissociation, ionization, recombination
a chemical reaction, or exchange of energy with a radiation field. Ai;
sufﬁcient_ly high temperatures, where quantum effects can be neglected
it is possible to take account of exchange of energy with rotational motior,l
and with vibrations in an approximate but on the whole satisfactory way.
When change of electronic state or a chemical reaction can oceur, a de-
tailed treatment becomes very difficult. Quantum mechanics is im’folved
and the presence of another particle besides the direct collision partne;
may be f)f importance. So far the only practical way of treating phe-
nomensa involving such reactions within the compass of plasma dynamics
would be to introduce mean collision frequencies (or, alternatively, mean
collision cross sections) for each phenomenon to be considered, and to
~assume that the particles resulting from the reaction will have a’ random
distribution of their velocity components around some mean flow velocity

5-3] EQUATIONS OF TRANSFER- 123

and corresponding to some mean temperature, depending -upon the type of
reaction investigated. Here these problems will be left aside. ,

There are cases where the assumption of discrete binary collisions
appears to be inappropriate, and where the almost simultaneous effect of
a great number of weak collisions must be considered. The form then
given to the right side of Eq. (5-1) is the Fokker-Planck expression for the

average resultant effect of a large number of small interactions, which will

"be considered in Sections 5-18, 5-20, 5-21, and 5-22.-

5-3 Equations of transfer (moments of the Boltzmann equation). The
equations of motion for the gas are deduced by taking the moments of both
sides of the Boltzmann equation, with reference to factors which are
functions of the velocity components. The equations obtained in this way
are called “equations of transfer,” since the integral of the right side gives
information concerning the transfer of momentum, energy, or some
other quantity in the collisions. ,

The left side of the Boltzmann equation is linear in the distribution
function F, and its moments can be obtained by a straightforward inte-
gration. It should be observed that when the multiplying factor is of
degree n in the velocity components, there always appear spatial deriva-
tives of moments of degree n + 1, in consequence of the presence of the
factor &y before 8Fs/0zy in Eq. (5-1). )

The treatment of the right side of Boltzmann’s equation brings greater
problems. Apart from the trivial case in which the right side is absent,
the integration is simple only in those cases where the right side can be
expressed with the aid of Krook’s approximate formulas. It is also rela-
tively simple when a Fokker-Planck expression is used on the right side,

- since this expression again is linear in the distribution function.

With the form (5-2) of the right side, which is the one that has received
most attention, it is in general not possible to evaluate the necessary
integrals, unless series developments are introduced for the distribution
functions Fs, F;, F’, F. The only exception is the special case of molecules
repelling each other with a force inversely proportional to the fifth power
of the distance (so-called Maxwellian molecules). The introduction of series
leads to problems concerning the most appropriate method of solution of
the equations and concerning the convergence of the solutions so con-
structed. The circumstance that the left side of the integrated equations
always contains certain moments of a degree higher than those appearing
in the main terms complicates the problem of convergence. These ques-
tions are considered in references [1], [2], [3], and in other papers. For-
tunately, in plasma dynamics, the problems of higher approximations and
of convergence thus far have not forced their way into the analysis. In
the following sections they will be left aside.
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5-4 Expansion: of the distribution function. In the “ficst-order” treat-

¥nent of the right side of the Boltzmann equation, the distribution function
is assumed to-be of the'form . '

Fo=Fol+e), - (59

where ¢, is a small quantity whose squares and products can be neglected.
The functions Fy, ¢, are given below in Egs. (5-13) and (5-14).

We write N, for the number density per unit volume of the particles of
type s. The mass density is given by p; = N.m, and the charge density by
Pes = Nses for each type separately. For the gas as a whole we have

N = Z;Ns; p= dopsi. pe= Zb‘es-l
. s s

Tor each species of particles we define mean flow velocity components ug,
as the mean value of the particle velocities: ' '

uen = Eon | (5-4)

A mean flow velocity for the gas.as a whole is defined by

PUL = D pstish. (5-5)
8

We then write

%

Wsh = Ush — Up, . (5—6)

and call f;he Wai, the components of the diffusion velocity of the pérticles of
type s with respect to the mean mass flow. We also write

Coh = Esn — Up, with a’:. = Wsh. . (5_7)

It is convenient to introduce the following qﬁanti‘oies referring to the
mean mass fow: ’

Oup _ Ouy aé)}; 2

FEAR Rl v + 3o, 3 O (5-8)

and ‘
‘D 9 9

Di = ot T W

The electric current strength is given by

T = pewar,  With Jh= S Ja  (5-9)
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The temperature Ts of the particles of type s (with reference to the

- mass flow velocity) is defined by .

BT, = Imyc?, S (5-10)

where « is Boltzmann’s constant. The mean temperature of the gas as a
whole follows from o

NT = ) N.T.. (5-11)
. s ' . :
It is corivenient to write
| 2L  (-12)
as = P . y

Here a, is defined with the aid of the mean temperature T of the gas (a
different definition will be used temporarily in Section 5-15).
For Fso we now assume .

: N (—e? B
Feo = wB/;a§ exp ( aZs) ' (5-13)

Evidently Fso can be expressed as a function of the £; it then has as
parameters the number density N;, the mean mass flow velocity u, and
the mean temperature T'.

The following expression is used for the function ¢,:

$o = Aucar + Bo(¢} — 302) + Ban(carcr — % omed) +
+ Csh(cszcsh - 'g‘afcsh)- (5-14)

The coefficients A4, ete., are functions of the coordinates and the time, to
be found from the equations which will be developed. In working out the
integral of the right side of the Boltzmann equation, products and squares
of these coefficients are neglected. When the development is limited to
the terms occurring in (5-14), it is not necessary to introduce Hermite or
Sonine polynomials. The degree of approximation reached in the results
is the same as that given by Chapman and Cowling in the treatment of a
mixture of gases as presented in Chapter 9 of reference [1].

By calculating the mean values of the ¢g; and of powers and.products of
these quantities on the basis of the distribution function (5-3) in conjunc-
tion with (5~12) through (5-14) it is possible to express the coefficients
A, ete., with the aid of the diffusion velocities wsp, the temperature
differences T, — T, the deviation components of the pressure tensor
(Ps)nr [defined in equations (5-16) below], and the components of the
heat flow, gs». This makes it possible to bring the resulting equations into
a form directly related to physical quantities.
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The following multiplicative factors will be used:
. . 1 2, . 1 2
Ms; MsCsh; SMsCs'; MsCshCsk; 2MsCs Cshy-

In all, thirteen equations afe obtained for each constituent of the gas
mixture, ’

5-5 Additional definitions. Mean values indicated by a bar over a
quantity refer to averaging over all velocity components of the particles
of the type considered, making use of the distribution function Fg for
these particles, as defined by (5-3) in combination with (6-12) through
(5-14).

Quantities characterizing field forces are:
Acceleration of gravity: Gy :
Electric field strength:  Ej, (electrostatic units)

Magnetic flux: B}, (magnetic units; the magnetic permeability
of space is taken equal to unity and effects
of magnetic' polarization are left out of
account). ’

We write _
Bt = B+ 23X B (5-15)
Components of the pressure tensor:
Peln = NomMoZorton,
Ds = $(Ps)nn = %Nsmsc_s2~ = NkT,, .
(Ps)nr = (Ds)ne — OhDss | (5-16)
Prr = ; ®)nky  Prp = }; (P, .p = ; po= NkT.

- Moments of the third degree and heat flow components:

(ps)hkl = N, smsf’shcskcsl; (5"17)
@st = 3@ = N mqcZcs.

Residual heat flow vector:

@ = qon — $PsWoh = qon — SN Tswen; (5-18a) -
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reduced residual heat flow vector:

* 1 2 ’
_ _Qoh _ 3MCsCon D 5-18h
Tsh = NSKT - KT 2 wsh . ( )

[with neglect of a second order term $(T's/T — 1)wsz].
For the treatment of binary collisions between particles s and ¢ (where ¢
may be the same as s) we need

Mg = Mg+ Mi, T = M/Mg, Y= Ms/Mmg, p= MM/ Mo,
a = 2«T/ms [see Eq. (5-12)], o? = 2%T/n.
Collision cross section for a given relative velocity g:

8D = 8P = or [ (1 — cos'x)bdb; (5-19a)

average collision cross section for all possible relative velocities:
0

. . .
] j 4 .2 —9 1)
'Zgltj) = Z(tgj) = 7[_—1/—2-&—2]—_'_2 /0 dg g2'7+3 exp (—3—> Sst . (5"19b)

2%

For coulomb interactions between charged particles (both for attraction and
repulsion) we introduce the Debye shielding distance:

_ kT )1/2. ' 5-20)
> = (47rzste§ (
We also write
=, (5-21)
Then [8]:
ese 0sCe\ 2 . .
8P = 4ar (;72‘)2 InA; 82 = 8r (‘:7;) InA;  (5-22a)
740 = 74P = 7., Z84Y = z23P = 27,  (5-22b)
with

Ze = VT (%‘,)2 In A. (5-22¢)

8. More refined expressions are given by Cmapman and Cowrine (Ref. 1,
p. 179; the notation is different from that used in the text). Their exgressiops
make the ratio S@/SD slightly less than 2. But even these expressions are
based upon assumptions concerning the best way of cutting off divergent
integrals.
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It should be kept in mind that these expressions do not hold for charged
particles still carrying an electronic system (e.g., singly charged ions of an
element other than H); in that case the electronic system will exert forces
of another type when the particles approach each other closely and the
cross sections S and Z have additional terms which may not vanish for
infinite relative speed or infinite temperature (compare Section 5-15, last
paragraph). ,
Derived quantities (all symmetric in s and ¢):

2 Z3® ’ 4 Z5®
zst=1—5Z—(tﬁ;; 2sz=1—§gzétm5
$
29 _ (5-23)
7 7
&= Zfiv ; foo = 14 b2ar — 5 s
8
Ys = 8y + fa(mi/memo); ¥y = 3v + {ou(md/mimo);
—24
Ys = (B T $si)w; Yi = (3 + Ly (524
Coefficient of friction for the diffusion of particles.s and ¢ relative to
each other: _
Ky = Ky = %l-"aNsNtZ:(s%D- (5"25)

Components of the tensor (M) occurring in (5-34) below:

h k

11 (2es/msc)[(Ps)12Bs — (Ps)13Bs]

22 (2es/msc)[(Ps)23B1 — (Ps)12B3)

33 (2es/msC)[(Ps)138B3 — (Ps)23B1] (5-26)
12,21 (es/mic)[(Po)15B1 — (Po)2sBz — (P)11Bs + (P3)3sBsl
13,31 (es/msc)[ — (Ps)12B1 4 (Ps)11Bs — (Py)33Bs + (Ps)23Bs]
28,82 (es/mec) — (Po)22B1 + (Py)ssB1 + (Po)12Bs ~ (P)15Bs]

The off-diagonal terms are symmetrical in k and %, and the trace of the
tensor is zero. In the place of the (P;)x: we might just as well have written
the (Ps)ar-
5-6 Resulting equations. (A) Equations for the flow of the gas as a whole.
Coutinuity equation: . , '
Dy pe=o. (5-27)
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Momentum equation:

Dup | 3pin _ w _ X B _ 0 5-28
PDt T bz PGh pelly c ' ( )»

Equation for the internal energy:
D (3 5 Lp . 0% _ puy )
E<§ p) "I“épe‘l"ipneu +3xi E3J; 0. (5-29)
An alternative is the equation for the total energy:

D(3p 1,2}, @ (o v 9 oo pn o
p'm<~+§?£)+ga(yipzj)+axi PG Ei(J; + pous) 0

2p
(5-30)
(B)- Egquations for the separate constituents of the gas mizture.
Continuity equations:
D S
Dpts + ps€ + 5&:—, (pswss) = 0. (6-31)

Momentum eqﬁations for the diffusion velocities, after elimination o
Duy,/ Dt with the aid of (5-28): , . -

D dup | 3(Ps)an  ps 9Py,
[E (Pswsn) + Pswsre + Psws Er -+ a;{ — ;f axz,-

9&_&22_< _&s_eg) *__1_{( _ b )x3}=

T om T p om YV A AN 5

= — Y Ko{wa — wa) — zer(aran — yra)}- (5-32)
t ) .

Equation for the internal energy:

§ (Ps)ijeij-l' aq;, + psws.i ‘m“"l"’b‘i(é' Ps +§Ps€ - psGi'wsz Estz -

l k(Ts — Ty
—- 2 : Kds — 14) 5-33
3 - K” me ( )
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Equation for the viscous stresses:

[Dt (Powr + (Ps)ni€ + !(Ps)hkl — % 3hkqszl -+

D
+ ps (’w&k '3?? + Wsn % — -g 3hkwsz%%—l) +

a .|
+ (Ps)hl u;, —l- (Ps)kl § 3ni(Ps) 15 z—ul] +
1
-+ Ds€rr — Ps (thsk + Grwen — g 3thz’wsi) —
- (E}’fJ ok + EiJsn — g BT si) — (M =

V2
= — T aaszgz)(Ps)hk -

- Z NoN: oZ5i {a*(Ps)/Ns + 2y(Po)us/ N} —

- E NN —= msmt az(n){(Ps)hk/Ns — (Pow/N .

¢ (5-34)
Equations for the components of the heat flow:

6
[Dt (gsn) + gsne + qsz + (ps)hz; u] + 5 aw (Ps)nik

D 5 1
TS 8:1: (Ps)ri+ (Ps)hl ul —35Ps {p 11))t (Pswsn) —+ wsn€ + wsy 3z }] -+

- T aT £s es s
S — GePons — B2 E*(Ps)h-—%; W =

= ZK st 5 2 o (wsh —\w) — % KT zssrsh -

- E Kst — { 22y (ren =+ ra) + Yra, — ys"'th] -

(5-35)

In the summations with respect to ¢ in Egs. (5-34) and (5-35) the case
t = s must be excluded, since it has been 1ntroduced as a separate term.

5-71 " ALTERNATIVE FORM OF THE EQUATIONS OF MOTION 131

The left sides of Eqgs. (5-27) through (5-35) are independent of the
assumptions introduced to describe the effect of the collisions. The
right sides of Egs. (5-32) through (5-35) have been based, as stated
before, upon Eq. (5-2), together with (5-3), (5-12), (5-13), and (5-14).
The right sides of Eqs. (5-27) through (5-31) are zero, independently
of any assumption about the form of the right side of the Boltzmann
equation.

No terms have been omitted in the equations, but in many cases various
terms on the left sides can be left out of account. In order to arrive at the
usual equations for the calculation of diffusion coefficients (including the
coefficient of electric conductivity), viscosity, and heat flow, the terms
between [ ] should be omitted. In certain cases, however, it may be inter-
esting to retain the time derivatives in order to obtain information concern-
ing relaxation times. In the energy equation (5-33) one will usually omit
the third term of the first line, but the term 9gs;/9x; must be retained when
the divergence of the heat flow is of importance, and the term %(Ps)sj€:5
when viscous dissipation has to be taken into consideration. These terms

~have been retained also in Eq. (5-29) for the gas as a whole [the sum

3 spsWsi(Du;/ D) = 0 in consequence of (5-5) and (5-6)].

5-7 Alternative form of the equations of motion. In cases where colli-
sions between particles are almost or wholly negligible, the diffusion
velocities ws, may become of the same order of magnitude as the mean -
mass flow velocity 4. In such cases it may be less convenient to use the
equations of motion in the form given in the preceding section, and one
may prefer equations based upon the velocity components ug; for éach
separate component, as defined by Eq. (5-4). When this is done a number
of quantities must be defined differently from before.

The random or peculiar velocity of the particles of type s will now
have the value

e = Esn — Uon, (5-36a)

. 80 that

¢ = cen — wer, with  ¢$ = 0. (5-36b)

The components of the pressure tensor and those of the heat flow vector
must be defined with reference to the flow velocities usz. We obtain

@Dne = Nsmscohed = (Ds)nk — PWsiWsk,

pg == %Nsms(cg)2 = Ps — 'élpswszy (5-37)

P = @Dk — oup%;

(q Y = —Nsma(cg) 203}; = Qsh — %pswsh — (ps)ntWss ~+ Pswzwsh- (5-38)
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It must be observed that now it is not possible to sum the pressure com-

ponents or the components of the heat flow for the various species of

particles, since they are referred to different flow velocities.
We further write -
' D; 3
Dt b 5+ e o P

(differentiation with respect to time, following the motion of a particular
constituent of the mixture).

The -components of the electric current carried by the particles of
type s will be defined by

Jgh = PesUsh = pesuh.'}‘ Jsh; (5‘39)

so that the new quantities J% combine what in the other description are
distinguished as convection current and conduction current.
The equations obtam ‘the following forms:

Lquation of continuity [replacing former Eqgs. (5-27) and (5-31)]:

6P3 d e
‘ Fraaa e (ostiss) =0 ,
or . : : - (5-40)
Dsps AUy ‘

Dt TP, = O

Momentum equation [replacmg former Egs. (5-28) and (5—32)

Ps — R (u8h) -+ @- {(P )zh} psGn — PesEr — g"‘%& =

= effect of collisions. (5-41)

Energy equation [replacing former Egs. (5-29) and (5-33)]:

Ds 3 5 a S S, ST ' e
E(:‘Z pg) +50p p? 2% -|- (PO au’ \aq = effect of collisions.

3 2
_ A (5-42)
Alternative form [replacing Eq. (5-30)]:

9 0 dgds 70
'a_x—'i {ush(ps)hi} + EXy - pstusi - Eﬂv]sz =

= effect of collisions. (5-43)
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It is not possible to obtain expressions for the right sides of these equa-
tions by a direct transformation of the right sides of the equations of
Section 5-6, because the latter have been derived with the.aid of approxi-
mations holding only when the relative diffusion velocities of the various
constituents and their differences in temperature are small. An approxima-
tion suitable when the differences in flow velocity and in temperature are
arbitrary will be given in Section 5-15.

5-8 Other procedures used in the deduction of transfer equations.
(The observations in this section have been taken mainly from contribu-
tions to the discussion by Max Krook.) The procedure applied in Sections
5-4, 5-5, and 5-6 was based upon the assumption that the distribution
functions F; could be developed into series and that the coefficients
appearing in these series are sufficiently small so that an approximation
could be constructed, proceeding according to-the powers of a conveniently
chosen parameter. The parameter chosen is related to the inverse of
the collision frequency; the equations given in Section 5—6 represent a
first step in the procedure, in which only terms of the first order are re-
tained. The Chapman-Enskog method, extensively treated in reference
[1], is a device for obtaining successively higher approximations. The
difficulties encountered are due to two circumstances: the nonlinear form
of the right side of the Boltzmann equation, and the appearance on the
left side of moments of an order one unit higher than the order of the
main terms. This necessitates the introduction of specially designed cutoff
procedures in order to arrive at a regular increase of precision in the
results. A mathematical investigation into -the convergence of this pro-
cedure, adapted to the case of Maxwellian molecules, has been developed
by Truesdell in reference [3].

Other methods have been proposed to cope with the cutoff problem.
In most of them, a convenient particular form is chosen for the distribution
function, containing polynomials with a number of adjustable coefficients
which are supposed to be functions of the coordinates and the time. This
distribution function is substituted into the Boltzmann equation and the
moments of both sides are calculated with full account of the terms of the
second degree on the right side. It is always possible to construct as many
moment ‘equations as there are unknown coefficients in the development,
and in this way a closed set of differential equations of the second degree
is obtained.” With modern computational machinery, such equstions can
be attacked. The degree of precision obtained is determined by the number
of coefficients that have been introduced, and there is no longer the re-
striction that these coefficients should be small.
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The thirteen-moment method devised by Grad in reference [2] and the

method worked out by Mott-Smith [9] are based upon this idea [10]
Krook ob§erved that both the Chapman-Enskog method and Grad’s
proced.ure aim at the deduction of flow equations that hold within the
ﬁeld?' independently of boundary conditions. Their ‘application to the
boundary conditions relevant to a particular problem is considered at a
later .stage.. This may not always be the most convenient approach when
the Sftuatlon in the field leads to the appearance of sharp gradients of
velocity or temperature. It may then be more profitable to choose a
representation of the distribution funetion in which the particular char-
acter of the boundary data of the problem has been taken into account
As an example, consider the problem of determining the structure of' 8

plane stationary shock wave in an ionized gas, in the ab
fields. With the definition o absence of external

By(8,u, T) = (ms/2mkT)*'? exp [—mq(g — u)®/2cT],

the kinetic equations and the Poisson equation
dE/dx = 41y, Nees

have to be solved subject to the boundary conditions

Fo(t, —0) = No(—o0)®o(E i, T), B(—w) = 0;

Fo(E, +o0) = ;L; No(—o0)®(% usi, Ts), E(+o0) = 0.

De{ining the moments Mi;‘:)n of the distribution functions and the inter-
action moments I, by the equations

M = [&er,as
I’ﬁrf.)'n = [‘ETE?‘n_(dFs/dt)coll dE:

9. H. M. Motrr-Smrrr, The solution ! i

wave, Phas. Res, 63, 805802 (1951). of the Boltzmann equation for a shock

) 10. .GRAD made the point that the Hilbert-Chapman-Enskog method of solu-
tion gives an account of only a very special subelass of solutions of the Boltzmann
equatlor}. He- has considered this subject in great detail in his article “Principles
of the kinetic theory of gases,” Handbuch der Physik, XII (1958). It is therefore
that the procedure of using a polynomial expansion of the general solution of the
Boltzmann equation, rather than a “normal’”’ solution, is of so much importance.

[cBAP. 5
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we can derive, from the Boltzmann equation, the following sequence of
moment equations: ’

dms) s
_ﬁw - ,;Z—‘s BlmME_y o + 20M 3 10—1] = I
Withm,n-_—. 0,1,2,...; s = 1’2. (5—4431)

To construct a determinate set of N equations that involve only NV
moments, we set

2
Foe2) = 30 06 wih, T D ARR @, (5-44b)
A=1 m,n

where there are altogether N parameters A which are interpreted to be
arbitrary, unspecified functions of = only. We choose N particular mo-
ments M, to serve as macroscopic state variables, along with E. The N
parameters can then be expressed as linear homogeneous functions of the
state variables: Thus any “extraneous moments " can be eliminated from
a basic set of N of the moment equations (5-44a). Moreover, the inter-
action moments in these equations can be evaluated explicitly as quadratic
functions of the parameters ALY, and hence as quadratic functions of the
state variables. In this way, for any selected order of approximation N,
the problem reduces to the solution of a determinate set of N + 1 ordinary -
differential equations—the Poisson equation and N moment equations.
The four conservation requirements permit the elimination of four of the
state variables. Boundary conditions for the moments can be obtained
from the formulas given above. -

The approximating form (5-44a) may be motivated in the following way.

- As we proceed from z = —oo t0 7 = +o0, the Maxwellian distributions

®,(%, wii, T'1) decay nonuniformly with respect to the magnitude and the
direction of the molecular velocities, while the Maxwellian distributions
&, (£, usi, To) build up, also nonuniformly. The nonuniformity of the
decay and the buildup are represented by the modifying polynomials in
(5-44a) that multiply the two types of Maxwell functions. '

" The approximation procedure may be generalized by adding to the
form (5—44a) other modified Maxwell functions, based on other velocity-
temperature pairs.

In the problem of Couette flow, with or without heat transfer, we must
in general work with the auxiliary distribution functions F. (& z) defined
only for £ > 0 and F_(§, z) defined only for £ <0, gince F(£, z) is
singular on the plane £ = 0 in velocity space. When the distance be-
tween the walls is a few mean free paths, the approximation is improved
considerably by adding to sums of the form (5-44a) for Fy and F_,




136 - STATISTICAL PLASMA MECHANICS - [cru.é. 5

modified Maxwell functions corresponding to the local flow velomty and
local kinetic temperature. This type of generahzatlon is now being applied
to the shock wave problem.

Eugene Gross added some further comments and stated that his views
on the problem of solving the Boltzmann equation for definite microscopic
boundary conditions were in complete agreement with those of Krook,
except for some differences of emphasis. These views are set down in an
article on boundary value problems in the kinetic theory of gases [11].
As an example, the single relaxation time collision expression .is used
instead of the Boltzmann collision kernel. The most rigorous way of solv-
ing these problems is by the integral equation method described by Krook
in reference [7]. The method can be carried through for several collision
models, but it is probably not practicable for the rigorous Boltzmann
expression. It gives an account not only of the half-range character of the
distribution function near a wall, but also of the nonanalytic dependence

of the distribution function on veloc1ty A simpler procedure is to take -
aceount of the half-range character but to slur over the correct analytic

behavior with respect to velocity, hoping that the errors will not be too
great. There is some justification for this if one is interested in only low-
velocity moments of the distribution function, such as density, stresses,
_kmetlc temperature and heat flow. This justification can be inferred by
examining the similar but simpler mathematical theory of radiative
transfer, where both exact and approximate solutions have been studied in
detail. But even within the framework of the approximate ha]f—range
methods several different approaches are possible. XKrook and his co-
workers are emphasizing half-range: generalizations of the Mott-Smith
approach to the theory of the structure of a shock front. This approach
restricts the functional form of the half-range functions. The method is
neat and leads to a relatively simple theory of the difficult nonlinear
problems of gas dynamics. - However, the validity of the approach seems
hard to ascertain.

Gross has concentrated on a systematic half-range approach The
theory is considerably more cumbersome but more rigorous. Complete
analyses are possible, however, for problems where the linearized Boltz-
mann equation applies. The full Boltzmann collision kernel can be
handled. Two examples of this analysis have been published [12]. The de-

11. E. P. Gross, E. A. JacksoN, and S. ZreriNe, Boundary value problems
in kinetic theory of gases, Ann. phys. 1, 141~167 (1957).

12. E. P. Gross and 8. Zierine, Kinetic theory of linear shear flow, Physics
of Flurds 1, 215-224 (1958); E. P. Gross and E. A. Jackson, Kinetic theory of
the impulsive motion of an infinite plate, Physics of Fluids 1, 318-328 (1958),
E. A. Jackson, Ph.D. Thesis, Syracuse U. (1958).
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tailed results of the first paper provided some insight into the remarkable
range of validity of the slip flow approximation of continuum theory.
The second paper shows that the integral equation approach is needed to
discuss properly a time-dependent boundary value problem for time in-
tervals less than a few collision times.

In an unfinished publication Jackson and Gross have investigated the
justification of some of Krook’s generalized collision models. This is done
by showing that these models can be obtained by making a bi-orthogonal
expansion of the exact Boltzmann collision kernel. When this expansion
is approximated by a finite sum, Krook’s models result. Some of the more
sophisticated models are excellent approximations to the Boltzmann
equation.

5-9 Problems concerning electron beams. In the discussion Gross
pointed out that one of the most important aspects of the Boltzmann
equation is that it can lead to a closed set of equations in two limiting
conditions: one can go to the hydrodynamic limit, and one can go to the

- limit where individual particles are followed. It may be interesting to

devote some attention to the particle aspect, in view of the subjects which
have been considered in other sessions of this Symposium. When the
Boltzmann equation is combined with the idea of a self-consistent electric
field, we arrive at the basis for the descriptions used 'in electron beam
theory and in a great deal of plasma physics. Herman Haus mentioned

" that much of the experimental work done on electron beams can be con-

sidered as a test of certain solutions of the Boltzmann equation for cases
where short-range collisions can be neglected. In analyzing experimental
situations, the velocity distribution is also quite often neglected, but when
that is done we have put aside the Boltzmann equation itself as well. So
let us keep the velocity distribution in view and reduce the Boltzmann
equation to its left side only. To obviate the difficulties resulting when
there is a magnetic field, let us exclude magnetic effects and .write the
equation in the form (for electrons only)

F
OF | o OF _ efn F _ (5-45)

This equation must be combined with Maxwell’s equations in order to link
the electric field with the charge density. For simplicity we consider the
positive ions as giving a uniform background charge of density -+Nge; then

divE = 4me (Ng — No), rot E = 0, (5-46)
together with the equation linking N, and F':
N, = [ F dg. : (5-47)
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[We might add the equation
N le = / F E df;

defining the mean flow velocity of the electrons and the electric current ;
as a consequence of (5-45) we then find that current and charge density
are connected by the usual equation of continuity, but this adds nothing
new to what we have in (5-45), (5-46), and (5—47)].

Equations (5-45) through (5-47) contain the greater part of the theory
of electron beams, provided they are supplemented by appropriate initial
conditions and boundary conditions. (The reader should consult the
material given in Chapter 4 by Gould.) .

In order to obtain the theory of the klystron, we suppose that there is
only a component E; parallel to the z;-axis (By = E3 = 0), and assume
F to be independent of z» and z3. We may then suppose that the value of
F at the point z; = 0 is given by an expression of the type

F(SI; £2; 53; Ty = 0, t) = N _{[51 — 'w(t)]2 + Eg + E%} .

3128 XP pr)

(5-48)
Modulation effects can be obtained by making w(f) of the form

w(f) = wo + wy sin o,

where wo is a constant, w; being the modulation amplitude. In many
cases wo is made large compared with the thermal velocity a. In the usual

form of the klystron, the value of V is practically a constant, but in other -

arrangements modulation of N is possible.

The effects of “electron bunching” come to light if we consider the
characteristics of Eq. (5-45). The effects of space charge are brought into
the picture by (5-46) and (5-47). When one temporarily assumes that E
can be treated as a given function of zy, a formal solution of (5~45) satisfy-
ing the initial condition (5-48) can be written. One might use this result
to calculate N, with the aid of (5-47) and substitute its value into (5-46)
in order to arrive at an integro-differential equation for E;. The resulting
equation is complicated and is not linear. There appears the possibility
that trajectories will cross in the z;, t-plane; this can lead to a kind of shock
wave and will cause the production of harmonics of all orders of the
modulation frequency.

Another case is presented by traveling wave tubes. Here the E-field is
the sum of two contributions, one a divergence-free field impressed from
the outside, being a periodic function of, say, vz; — wt, while the other
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field is connected with the electron density through Eqgs. (5-46) and
(5-47) as before. In this case a particular part.can be played by electrons
with velocities close to the wave veloeity w/v. These electrons can be
trapped between the crest and a trough of the electrostatic potential
wave and there can be a strong exchange of energy between these electrons
and the wave. By means of an accelerated wave it is possible to pump
energy into a group of such electrons and to speed them up close to the
speed of light. Conversely, if the wave is slowed down, some of the par-
ticles will lose their energy and more or less turbulent motion can result.

Hence there appear two types of nonlinearities, klystron bunching and
trapping of electrons in a potential wave, which are inherently outside of
the nonlinearities of hydrodynamics. Gross is of the opinion that these
phenomena have not yet received the attention they deserve, and he ex-

" pects that their investigation may be of importance for many fields of

research, e.g. the theory of fusion processes, the physics of the solar atmos-
phere, and the theory of the Fermi mechanism for the acceleration of
cosmic ray particles [13]. ,

In reply to Gross’ remarks, Herman Haus observed that the klystron
problem actually has been solved, even with shocks[14]. Gross asked
why people who are working with microwave tubes do not undertake a
systematic study to understand more of these large-amplitude occurrences,
since they lead to noise activity of an irregular nature and to turbulence.

13. Reference can be made to a series of papers on plasma oscillations by
D. Borm and E. Gross, starting with: Theory of plasma, oscillations. A. Origin
of medium-like behavior, Phys. Rev. 75, 1851-1864 (1949); B. Excitation and
damping of oscillations, tbid., 1864-1876.

14. Dr. Haus gave the following references:

D. L. WeBstER, The theory of klystron oscillations, J. Appl. Phys. 10, 864—

872 (1939).

D. R. Hamruron, J. K. Knipp, and J. B. H. Kurer, Klystrons and micro-

wave triodes, Rad. Lab. Series 7 (McGraw-Hill, 1948), Sec. 9.3.

A. Norpsieck, Theory of the large signal behavior of traveling-wave ampli-

fiers, Proc. Inst. Radio Engrs. 41, 630-637 (1953). . ,

H. A. Haus, Propagation of noise and signals along electron beams at micro-

wave frequencies, Sc.D. Thesis, M.I.T. (June 1954).

F. K. TieN, L. R. WALKER, and V. M. WoronTis, A large signal theory of

traveling-wave amplifiers, Proc. Inst. Radio Engrs. 43, 260-277 (1955).

C. G. Currer, The nature of power saturation in traveling-wave tubes,
 Bell Syst. Tech. J. 35, 841-876 (1956).
J. E. Rowg, A large signal analysis of the traveling-wave amplifier: theory

and general results, IRE, PGED ED3: No. 1, 39-56 (1956).

" 8. E. WesBER, Ballistic analysis of a two-cavity finite beam klystron,

IRE, PGED ED5, 98-108 (1958).
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Gross believes that these microwave instruments, which make possible
so many forms of well-controlled experiments, will provide an excellent
means for investigating some of the most intricate processes that occur
- in turbulence. Haus indicated some trends in electron beam research which
point this way. In addition Edward Frieman mentioned work done at
Princeton on exact solutions of the nonlinear equations; John Dawson
found exact solutions for both running and standing waves, essentially
at zero temperature [15]; and Bernstein, Greene, and Kruskal obtained
exact nonlinear solutions referring to trapped particles [16]. Gross observed
that the latter paper deals with the same exact nonlinear solutions as
obtained earlier by Bohm and himself [13].

5-10 Flow without collisions in a magnetic field. Parker’s ‘“‘modified
hydromagnetic equation.” A fully ionized gas will be considered, of such
small density that collisions can be left out of account in comparison with
the effects of electric and magnetic fields (not necessarily uniform in space
and constant in time). )

We start from the momentum equations of Section 5-6, Egs. (5-28)
and (5-32). The right side of the latter is replaced by zero, and the terms
between [ ] on the left side will be neglected, with the exception of

—g-t (pswsn) + pswsn€ £ ps %Qfﬁ

(omitting a term of the second degree in the diffusion velocities). We
combine Egs. (5-28) and (5-32) in such a way that they give the values of
D(un + wsp)/Dt. Instead of subseripts s and ¢ we use superseripts ¢ (for
the positive ions) and e (for the electrons); we also write M for the ion
mass and m for the glectron mass and put ¥ = m/M. The number density
for ions and electrons is assumed to be very nearly the same: N* & N¢ =< N.
The following equations are obtained: '

D i J i i
NM B (i + wf) = — 2 @O+ NeBip + 22 0 X By (5-490)
D . d e . |
Nm 35 (un + wh) = — Fr ®°)ne — NeEj — ]~Vc_e (WX B)s, (5-49b)

together with wh + rw§ = 0. W@ thus have three sets of equations for the
components of three vectors u, w*, w°.

15. Jomn Dawson, Non-linear electron oscillations in a cold plasma, Project
Matterhorn (Princeton U.), PM-8-36, N'YO-8050 (August 1958).

16. I. B. BernstEIN, J. M. GreEENE, and M. D. KruskaL, Exact nonlinear
plasma oscillations, Phys. Rev. 108, 546550 (1957).
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Coordinate axes will be used with the z;-axis parallel to the local direc-
tion of the vector B at the point of interest, the zs-axis directed towards the
local center of curvature of the line of force through the origin, and the
zg-axis perpendicular to z; and z. With R = radius of curvature of the
line of force through the origin, and using R, Rs as quantities related
to the divergence of the lines of force, the following relations hold at the
origin: '

By =B, By=DB3=0,

By _ B 9By _ By B~ 9By B
ax1 - R’ 611!1 - ax2 R2 T3 R:.;
Q_B_l__<£ _@_).
axl— R2+R3

The components of V X B are

dB3 9By dBy B Q_‘B_l

ozs  Oz3  dzs R 0xg

It will be assumed that the Larmor radii for both ions-and electrons

. are small compared with the quantities B, Rs, R3. Since there are no

collisions there can be an appreciable difference between pi; = ps on
the one hand, and pss, Pss on the other hand, but it is admissible to
Suppose Pgs = Paz = Pn [17a]. Simple geometrical considerations con-
cerning stress equilibrium lead to

- p1s — Ps — Pn, P12 _ Ps — pn, dp1s = Ps — Pn
ax1 R ax2 R2 6933 R3

Op1s _ Opas _ 923 _

0xy 0xe 0x3

With the aid of these results, we find

" (5-50)
Oprz _ OPn | Ps — Pn 0By Opas _ 9Pn,

azp, Iy B dzy oxy, o3

These relations can be used separately for the components of the ion
pressure and for those of the electron pressure.

17a. This assumption is also made by Grap (compare Section 5-12) and by
G. F. Crew, M. L. GorpBERGER, and F. E. Low in the paper “The Boltzmann
equation and the one-fluid hydromagnetic equations in the absence of particle
collisions,” Proc. Roy. Soc. (London) A 236, 112-118 (1956), Eq. 20, p. 115.
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After these preparations we solve Egs. (5-49a) and (5-49b) for the direc-
tions perpendicular to the lines of the magnetic force (xs and 23 compo-
nents). Starting with the equation for the electrons, in which we neglect
the inertia terms, and introducing the “drift vector”

EXB

U=c=%5> (5-51)

we derive the following expressions:

w; = —Uz + U2 + NZB apn

__¢ OPn ps Pn )
NeB (69&2 Tz

These results can be combined into the formula

wg = —ug + Us

o _ __c . . Ps — Pnl.
W= —u-t+TU oB2 {(B X V)pr + B X [(B- V)B] = }
(5-52)
From w*® we obtain w* = —7w®. We neglect, however, w’ in Eq. (5-49a),

retaining on the other hand the inertia term. XKeeping Du/Dt as a quan-
tity to be considered later, we solve for us and us and combine the results
into the formula *

e o)
+ 5.5 {(B X V)pi + B X [(B- V)B] 1'13;_2..1’_3‘} L 5-53)

Substitution of u into (5-52) leads to a transformed expression for we.

We write at once the expression for the conduction current, J] = —New®
(with sufficient approximation):
NMe Du [ s — DPn
T =5 (Bx Dt)+~,§5{(B>< V)ps + B X [(B- V)B] ”-—B—?—}
(5-54)

where p, = p -+ p%, ete. Neglecting the displacement current, we now
make use of the relation

4w(J/c) = V X B

in order to obtain an equation for Du/Di.
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We apply the identity

BX[BX(VXB)]

VXB=— o

which holds so long as we restrict to the directions of x5 and z3. Omitting
the details of the calculation, the result is found to be

Du B2> (ps — Pn 1>

With the aid of this result we can éliminéie Du/Dt from Eq. (5-53). The
result is

el 8):
u=TU— 375 |BX V) -§7E+

rexie v (B o Ll gag

The equations thus obtained from the continuum equations are the same
as those deduced in two papers by Parker [17b] [Eq. (5-56) given above is
identical with Eq. (53) of Parker’s paper of 1957; Eq. (5-55) is identical
with Eq. (1) of the paper of 1958, but differs from the corresponding equa-
tion (44) in the 1957 paper, insofar as it is there given with DU/D¢ on the
left side instead of Du/Dt (in Parker’s notation: dup/dt instead of dv/di
in the 1957 paper, or of du,/dt in the 1958 paper)]. Equation (5-55) is
called the “modified hydromagnetic equation.” :

Parker deduced his results from a particle picture, resolving the motions
of the ions and the electrons into various parts and deducing expressions
for the separate parts (circulating current, drift current, and polarization
current). Combination of these parts leads to the resultmg equatlons for
the flow of the'ions and for the current.

- A somewhat similar calculation, also starting from a partlcle picture,
has been glven by Brueckner and’ Watson [18], who write for the flow
velocity:

V‘-=V1+V2+V3+V4;

- 17b. B. N. PARKER, Néwtonian development of the dynamical properties of
ionized gases of low density, Phys. Rev. 107, 923-933 (1957); Dyihamical insta-
bility in an anisotropic 10mzed gas of low density, Phys. Rev. 109, 1874-1876
(1958).

18. K A. BRUECKNER and K. M. VVATSON, Use of the Boltzma.nn equation
for the study of ionized gases of low density, Phys. Rev. 102, 19-27 (1956).
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with

vy = Ne(BX sz>> v2=cEXF=U,

Me Dv Me Dv
V3=é‘B“2<BX’13"tg>’ Ve = Bs (BX Dt1>

Comparison with Eq. (5-53) shows that v corresponds to the third term
on the right side of (5-53), vy is the first term, while v3 and v, together-

give an approximation to the second term of (5-53).
In a letter to the author, Grad mentioned still another approach [19],
which gave the first order result:

V_V”_,_cExB

(=V” + 1U).
In second order, there must be added for the components perpendicular
to the lines of magnetic force:

eB2BX{ dt+ V(B2)}

where u = mV?2/2B is the magnetic Inoment of the particle. The motion
in the direction of B is given by
av 1

Grad interprets the particle spiraling around the line of force as a
“molecule” located at the guiding center with “internal energy” uB as well
as & fixed magnetic moment u. To the lowest order this describes a one-
dimensional gas, since every particle has the same (“Auid”) velocity
U = ¢(E X B)/B? perpendicular to B and there is a dispersion of veloci-
ties along B. An interesting feature of this gas is the polarization: H is not
the same as B. Making the conventional macroscopic approximation
yields a set of fluid equations with anisotropic stress temsor, similar to
those obtained by Chew, Goldberger, and Low [17a] and by Watson [18].

5-11 Flow in the direction of the magnetic flux. The equations of the
preceding section, in particular Egs. (5-52) through (5-56), are valid only
for components perpendicular to the direction of the magnetic lines of

19. H. Grap, A guiding center fluid, Proc. Sherwood Conference on Controlled
Thermonuclear Reactions, Princeton U., October 1955, TID-7503, p. 495.
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force. Hence cross multiplication with B of any vector in these equations
entails that this vector is rotated 90° around B.

The question of the flow in the direction of the magnetic flux was
raised by Kenneth Watson and by Marshall Rosenbluth. It was pointed
out that the equation

E + (u X B)/e = 0, (5-57)

which is often given as a basic relation for plasma dynamics, will not hold
in general and one must expect a component F; connected with the differ-
ence in inertia of the ions and the electrons (this same point is discussed
by Allis in Chapter 3). An electric field will arise as soon as differences
in the motions of ions and electrons threaten to lead to the appearance
of a space charge; this field adjusts itself in such a way that space charges
remain as small as possible. As observed by Rosenbluth, the component
E; in most cases will be small, unless one is dealing with frequencies
comparable to the plasma frequency. Instead of introducing E;, a suffi-
cient approximation can usually be obtained by putting the space charge
equal to zero, which means that N° — N° <« N. This entails that the
divergence of the electric current vector will be very nearly zero.

When we return to Eq. (5-56) and take the cross product with B/c,
we arrive at the relation

E* =E + (ux B)/c |
! ®B- v)B(p:—p:_g .
=Ne' ( Pt ) TN 37 ) 5

again for the components perpe'ndicular to B only. The relation (5-57)
thus does not hold even for these components.

As regards F, if we make the same approximations as before, Egs.
(5-49a), (5—49Db) give the results

Duy _ _ops | p 3B ps—pn
NM Dt - ax1 + B 5 0111 B + N6E1,
0 — aps +B oB ps — Pn — NeE;.

dry axl Bz

We may consider the second equation as giving an approximate value of
E;; substitution of this value into the first equation gives

Duy _ _ 3ps | p 3B po—pu,
NM —/= Dt = " 3n + B 5, B (5-59a)
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It is possible that in many cases the value of p; can be neglected with
respect to that of p,; we then arrive at

Du1 ~ 21,,_ 6B
NM —= =R 6x1 v(5 59b)
indicating a tendency for the gas to move in the direction of decreasing
magnetic field, a point often mentioned in the literature [20].

" 5-12 Anisotropy of the pressure tensor: Anisotropy of the pressure
tensor arises when collisions are insufficient to restore approximate isotropy.
The transfer equations give only partial information about the magni-
tude of the anisotropy. By combining Eqs. (5-29) and (5-34) so as to
obtain expressions for -D(ps)nr/Dt, omitting all terms referring to collisions
and a_lso those which contain the (ps)axi, the s, and the diffusion velocities
where they occur explicitly (retaining, however, the electric currents),
we arrive at

D(gt)hk {(pS)”’“e + (Ps)hl + (ps)kl } +

+ ps(Grwsr + Grwsr) (EhJ sk + EiJ ) + (M, )hk: (5-60)

with (M¢)ar as given by (5-26) (in which B; = B3 = 0 for our coordinate
system). ’

It is more convenient to make use of the alternative equation constructed
upon the principle indicated in Section 5-7, where the pressure tensor is
defined with reference to the flow velocities us;, of the separate constituents

(ions and electrons) of the gas. Since in this description there is no diffusion -

velocity, nor an electric current relative to the mean flow for either the ions
or the electrons, the equation has the form

Degbie _ i, 2 o RPN WEL I

(6-61)

where again third-order moments and components of the heat flow have
been left out, while now (M®)s, must be defined with the aid of the
(). For simplicity we omit the subscript s in what follows.

20. This equation agrees with Grad’s equation for dV/dt when we take
pn = $pV2. The possibility that electrons can be trapped in some parts of the
electric field makes the deduction of a simple equation for the motion along the
lines of force less certain (remark by Eugene Parker).
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Brueckner and Watson [18] assume that to a good approximation the
tensor (M )% may be considered to be equal to zero. This is the case.if
we suppose that (%12 = (#%1z = (p%2s = 0; ®)42 = (%ss. The
simplest case to be considered is that where dus/0zr = 0 for h = k (no
rotation and no shear). If dus/dzs 5% dus/dxs, it is better to assume that
(p°) 23 is not zero; we then arrive at the following equations:

0
D(%t)n = — ("1 <€ P 6u1>

: | A
D(z;)t)zz = —(p% 22 (e +2 a_u2> 2¢B (po)z?n

0
Qﬁ%g_sg — (%33 (E + 2 6u3> : 2B (po)zs,

D®%12 _ D13 D®%)2s —0

Dt~ Dt Dt

(5—62)

The value of (p°)s3 should be such that

D(P%)ss _ D(po)as. — —(p%)ss (e 4.9 3“3) . (5-62a)

Dt Dt a’lfz axg

The following special cases are of interest:

p_(_p?_)_li — _3(1,0)1167
U = uz = 0; Dj . (A)
D(pNez _ D@3z _ oy ..
Dt == Di - (p )2267
D@D 0
—' ) au2 _ % Dt - (p )lley
w =0 =3 - ~ (B)
2 8 | D%z _ D(p%)s3 = —2(p%) 06,
Dt Dt

Lyman Spitzer [21] introduces two different temperatures in this case:
T corresponding to (p®)11, and T'x corresponding to (9% sz and (p°)3s.
It is then found that

DT, DT,
R T A T

21. L. Spr1zER, JR., Physics of Fully Ionized Gases, Interscience Publishers,
1956, pp. 13-14.
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This is sometimes expressed by saying that the adiabatic exponent has the
value 3 for longitudinal compression, and the value 2 for transverse
‘compression. .

Grad in reference [19] had proposed the following expression for the

stress tensor:
‘ B.B.
Pij = DPs BZJ + P ( - ""é“f")

(also given by Chew, Goldberger, and Low in [17a]), which he used with
the conventional macroscopic mass, momentum, and energy equations,
assuming the heat flow to be zero, and supplementing them by Maxwell’s
equations and E + (u X B)/c = 0. An additional equation is necessary,
since two scalar unknowns, p, and pn, replace the ordinary pressure p. One

- method is to assume p, = 3p (V}) = BNy, where Nu is the mean
magnetic moment per unit volume and where du/df = 0. Another
method is to write the entropy as

7= 3RIn (pspn) — 3RInp,

and add the equation dn/dt + (u - V)y = 0.

In 1956 Marion Rose and Grad rederived the equations, using the
moment equations. A version of the modified guided-center fluid equations
was used by Rose to study a problem in shock structure [22].

Watson made the remark that when one uses as variables the quantities

&

ImVI/B  and  imV} +e[E, ds,

the transport equation can be solved explicitly. However, a simple hydro-
dynamic description is not obtained [22a]. Work on this aspect of the
equations has been carried out by a group of scientists at Princeton, but
no further information was presented in the discussion.

Rosenbluth added some observations concerning the effect of the
anisotropy of the particle pressure on the stability of various cases of
motion., This is a subject also considered by Parker {23].

22a. Proc. of Sherwood Conference on Controlled Thermonuclear Reactions,
Gatlinburg, Tenn., June 1956, TYD-7520, part 2, p. 547.
22b. See K. M. Watson, Use of the Boltzmann equation for the study of
ionized gases of low density I, Phys. Rev. 102, 12-19 (1956); K. A. BRUECKNER
and K. M. WarsoN, paper mentioned in Ref. 18; 8. CaaNDRASEKHAR, A. N.
Kaurman, and K. M. WarsoN, Properties of an ionized gas of low density in
a magnetic field ITI, Ann. phys. 2, 435 ff (1957); IV, ibid. 5, 1-25 (1958); and
Proc. Roy. Soc. (London) A 245, 435 ff (1958).
23. See Ref. 17 (second paper), and also “Plasma instability in a magnetic
field,” The Plasma in a Magnetic Field, Stanford University Press, Palo Alto,
Calif., 1958. Edited by R. K. M. Landshoff.
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5-13 Electric conductivity and heat flow. We shall now briefly indicate
how the trangfer equations can be used to calculate the electric conductivity
of a compl&ely ionized and neutral gas. In this case the effect of the
collisions is of prime importance and we must use the complete equations
with their right sides, as given in Seetion 5-6. The calculations to be carried
out are analogous to those given in reference [1] for the determination of
the coefficient of diffusion in a binary mixture, to what Chapman and
Cowling call the “second approximation,” in which account is taken of
the effect of heat flow and thermal diffusion. .Along with the electric field
a magnetic field will be introduced. It would be worth while to have similar
calculations to the second approximation for a partially ionized gas, but
so far only the first approximation has been worked out [24].

In order to examine to what extent the assumption of binary collisions
can be used for particles influencing each other through coulomb forces
we introduce the dimensionless parameter :

kT 1
A= —;2- N%l3’ . ‘ (5*’63&)

where N, = > Nse2?/e?. This parameter is a measure for the ratio of
the mean distance between charged particles and the distance at which
coulomb forces produce large deflections. With the aid of this parameter
the Debye shielding distance rp defined in Eq. (5-20) can be expressed
as follows:

2
(471')”27'1) — 2_7 A2 = NUB\U2

while the mean free path (apart from a numerical factor which is defined
in various ways) is given by

2(2 )1/2l )\3 —1/3 _2‘_2__
4 KT ma™ " Ta

The quantity A has been defined by (5-21); it can also be written .
A = @&Va) A\ (5-63b)

24. See T. G. Cowring, The electrical conductivity of an ionized gas in a
magnetic field, with applications to the solar atmosphere and the ionosphere,
Proc. Roy. Soc. (London) A 183, 453470 (1945), in particular pp. 464—466; and
J. M. BureEeRrs, in Seminar on Applied Mathematics, Boulder, Colorado, 1957
(to be published by the Am. Math. Soc.). Since this was written the second
approximation for a partially ionized gas has been fully worked out by A. C.
Prexin, The electric conductivity of a partially ionized gas, Inst. for Fluid
Dynamiecs and Applied Mathematies, U. of Maryland, Technical Note BN-170
(April 1959).
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It follows that a large value of the parameter A suffices to make rp and !
large compared both with e?/kT and N, /%, while at the same time it
leads to a large value for A. Under such circumstances the assumption is
justified that the collision processes are mainly binary. In order that the
condition shall be satisfied we must havé

T > (e2/K)NL® = 1.67 x 1073NY/3.

When magnetic fields are present we must also require that the Larmor
radius for an electron (which is smaller than that for an ion) shall be large
compared with e2/kT; thi'sintroducesthe additional condition

B K (8/7r)1/2(I<T/62)3/2cm,§l2 “or B 20T

‘We observe that when

B < 4V2c¢(mNo)Y? = 51 x 10°°NY2,

the Larmor radius will also be larger than the Debye shleldmg distance,
but it does not appear that this is necessary.

The equations of motion for the ions and the electrons are obtamed from
Eq. (5-32). They are each other’s opposites, so that the equations for the
electrons are sufficient. The equations for the heat flow follow from (5-35);
these must be written out both for the ions and for the electrons. The
magnetic field will be considered as constant in time and uniform in space;
the z;-axis is in the direction of the magnetic flux, so that B; = B;
By = B3 = 0. Also p. = p¢ + p% = 0.

With m./M = 7 as before, we have w* = —7Yw®. It is convenient to
write

we—w=w J+]=7J=New.

We write K for K12 (1, ions; 2, electrons) as deﬁned in (5-25), so that
with N* = N¢ (or N3 = N,) =

' 3/2 aAr2, 4
_ % (2:<Tme)”2NZZ = E%/__;" (é’%) % InA. (5-64)

The following abbrewatlons will be used for quantltles which often re-
appear:

Nk . NeB
ﬂ—fv:ﬁ w—Kc

= (2V2/5)v "M%, £ = (8+ 13\/5)/10x/§ = 1.865.

|
|
§
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‘With \Eﬁese notations we arrive at the following equations (three equa-
tions of motion and two times three equations for the heat flow):

ape : ‘ = K _ i e.

—— + NeE, = K(w; — 27r] + 2r1),

6371

"’p -+ NeEly VB oy — ) = Kws — 217k + 2r%), (5-65)

e B .
g% 4 NeEz — Nz;— (ug — wg) = K(wg — 275 + 2r3);
3
59, = Szvw; — Kir% + 25rs,
59y — Gry = $evYws — Kirh + 25V, (6-662)

595 + G = Sevws — Kiry + FEUTS;

£ = —Szw;y + ¥t — &%,
39y + Gry = —§ews + 2Ly, — s, (56-66Db)
893 — Gry = —3ews + % ’)’r3 — rg.

The coefficient z, defined in (5-23), has the value £ for coulomb forces.

5-14 Electric conductivity and heat flow. (Cont.) To work qut the
conduetivity problem we take Vp = 0, VI = 0 (¢ = 0). We pick out
first the equations referring to the z;-direction:

NeE, = K(wy — 2vri + 2r%),
0 = —-z’)'wl — K17’1 + 7'1, (5"67)

0 = zw1 -l“ 'YT] — s

We can expect that vri < 7§ (which is confirmed by the solution). We
then find

Ne 1

K T —af

r] = — wy and  w; =

bo} Ot
veel

where A = $(2%/£) = 0.483, so that 1/(1 — A) = 1.93. Keeping in
mind that the electric current is given by J = New, it is convenient to
write

(5-68)
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In electrostatic units: oo = 6.9 X 10"T%2/In A;

J
in electromagnetic units: o9 = 7.7 X 10"14T3’ 2/In A

or 0o = 7.7 X 107°T%2/In A mho/em.

We then have [by (5—-18)]:
Ji=+—2_F =1 Qé
T — A% 930 Hy. (5-69)

) In fsreating the remaining ij equations, referring to the z,- and T3~
directions, we assume that 77y and vrh will be small compared with r§
and r§. The last two equations of (5-66b) then reduce to

f?'% + 57‘% = ——%zwg,
_57‘5 + 57'5 = _‘25‘3103,

from which we can obtain 7§ and r§ in terms of w, and w3. Substitution of
the rgsults into the second and third equations of (6~66a) gives two
equations for the caleulation of 7% and r$, confirming the smallness of
vry, vry.

We now write the second and third equation of the system (5-65) in
the form !

NeE3/K = wy + wg + a5,
NeE3/K = —Gwy + ws -+ 2r3,
and substitute the values of 73, r3. The resulting equations ean then be

solved for wy and w;. The corresponding components of the electric
current are found to be

Ts = oo B2 = 8) = BE&(1 + 5/¢)
(I — 82 +a2(1 + o/B2 '

(5-70a)
Ty = oo 200+ 8/ + E3(1 — o)
A =92 +a2(1 +5/p7
where
s=222_f 4
2° 52 - (5-70b)

The results thus obtained are in satisfactory agreement with those given

5-14] ELECTRIC CONDUCTIVITY AND HEAT FLOW 153

by Spitzer [25] and by Landshoff [26], which have been deduced according
to a different method [27]. ' :
It is of interest to invert Eqgs. (5-69) and (5-70); we find

Ef =E, = (1 — A)J1/oy,
Ef = {(1 — 8)Js + &1 + 8/8)J 3} /o0, (5-71)
Ef = {—&(1 4 8/8)J2 + (1 — 8)Js} /o0,

and also

L=8Ji+ 0 —0)J3+J3).
)

BT, + B3Jy + BiTs = (5:72)

The latter formula shows that the dissipation connected with the current
components perpendicular to the magnetic field is somewhat larger than
the dissipation connected with the component parallel to the field.

In certain cases of a field of limited extent in which an electric force E,
is set up by exterior means, it can happen that there will arise a component
E3 as a result of polarization due to charges on the planes limiting the field,

25. The result is in close agreement with that given by Cowring in the paper
mentioned in Ref. 24.

Compare L. Sprrzer, Jr., Ref. 21, p. 84, Eq. 5-37, and also L. Spirzer and
R. Hirm, Transport phenomena in a completely ionized gas, Phys. Rev. 89,
977-981 (1953).

26. R. K. Lanpsaorr, Transport phenomena in a completely ionized gas in
presence of a magnetic field, Phys. Rev. 76, 904-909 (1949). The conductivity is
given here as a complex quantity, the real part being the coefficient of E¥ in
the expression for J2, while the imaginary part is the coefficient of E%. From
Landshoff’s Table I (loc. cit., p. 906) one must take the values of Ax/A given for
Z = 1 (singly charged ions); the parameter w/» is the same as our & (with the
correction of an error of print in Landshoff’s Equation 62, p. 908, where appar-
ently a factor V& has been lost). .

27. With collision cross sections such as hold for coulomb forces there is no
difference in cross section for ion-ion, ion-electron, or electron-electron collisions.
Whereas the mass of the electron in most instances can be neglected in com-
parison with the mass of the ion, we do not have before us the case of a Lorentz
gas, which is characterized by the condition that one type of particle has both
a very small mass and a very small collision cross section. Calculations which
take the Lorentz gas as a starting point need a correction for the effect of elec-
tron-electron encounters, to which reference is made in various papers (see, for
instance, Ref. 21, pp. 83-84). In the present treatment, electron-electron inter-
actions come in through the quantities r and the coefficient k3, and no further
correction is necessary.
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of such magnitude that the current component J3-is reduced to zero.
The value of E; necessary to produce this result is easily found from the
last line of (5-71). When this is introduced into the expression for J,
[first line of Eq. (5~70a)], we obtain '

J2=1T5 5, for  Jg=0. (5-73)

It follows that the conductivity in the direction of 2 now is only slightly
smaller than that in the direction parallel to the magnetic field. This point
was brought forward in the discussion by Sydney Chapmgn, who men-
tioned that in 1933 Cowling had already directed attention to it [28].

The expressions obtained for 71, 15, 75 .(and, if desired, also those for ™,
etc.) can be applied in order to calculate the heat flow connected with the
electric current. :

Appendiz to Section 14. TIn the discussion Chapman, as an example of
the effect of the anisotropy of electric conductivity, mentioned the applica-
tion to the ionosphere, which is traversed by the magnetic field of the
Earth in a way strongly dependent upon latitude. The magnetic lines of
foree cross the layers of the ionosphere at angles varying from 90° at the
magnetic poles to 0° at the magnetic equator. Electromotive forces are
induced‘in this layer by the motion of the air through the magnetic field.
But the ionosphere cannot continuously carry a current perpendicular to
itself, because at its lower limit it is bordered by nonconducting gas.
This condition of noncontinuous yertical flow of current produces a
variation in the effective conductivity in the two horizontal directions.
When horizontal coordinates are introduced, = directed to the north and y
to the east, one can write the equations

Jz = szE: -+ o'a;yE;,k,
— % &
Jy - _O'xyE’x + O-nyy,

in which three coefficients of conductivity must be used which differ
from those for either the longitudinal or the transverse electric conduc-
tivity of a gas which is not limited in any direction. The coefficients will
vary with latitude, according to the inclination of the magnetic field.
This has a remarkable. consequence for the electric current induced by
the regular daily circulation of the atmosphere. Consider the pattern of
currents which will be seen by an observer looking from the Sun toward
the Earth, assuming that the Sun is in the plane of the magnetic equator.
There is a narrow strip along the magnetic equator, only about 5° wide in

28. T. G. Cowwuing, The electric conductivity of an ionised gas in the pres-

ence of a magnetic field, Monthly Notices Roy. Astron. Soc. 93, 90-98 (19388), in
particular p. 96.
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latitude, within which the magnetic dip is small and in which the conduc-
tivity is higher than elsewhere. Here a considerable enha,flcement of
the eastward electric current is obtained during the. daylight hqurs.
This approximately doubles the dsdily magnetic varia.tlon of the north
component of force at equatorial stations under the strip. .The _effect was
first observed at the observatory Huancayo in Peru, which lies almost
exactly on the magnetic equator [29].

5-15 The ‘‘runaway” phenomenon. The results obtained ix} Sec_tion
5-14 are based upon the development of the distribut_ion function given
by (5-8) in conjunction with (5-12) through (5~14), with the a:ssumptlo'n
that only terms linear in the coefficients A, ete. need be retained. This
has led to a resistance proportional to the current and. does not show the
decrease of the resistance appearing when very high velocities are reached,.,
This -decrease of the resistance leads to the phenomenon of “runaway,
which has turned up in many discussions [30]. .

We shall briefly indicate the link between the linear resistance law for
low speeds and the decreasing resistance for high spee(.ls.. Instead.of the
development of the distribution function used before, it is convenient to
assume

Ns — (& — us)2 4
Fy = T372a7 exp p7 , | (5-74a)

so that the flow velocity u; of each separate constituent of the‘ gas is
introduced explicitly. The mean mass flow velocity and the dl.ﬂ"uswn
velocities will not be used in this treatment. For greater gene?ahty, we
will not suppose that all temperatures are the same, and we will replace
(5~12) temporarily by

: ’ 2T

al = ==2. (5-74b)
Ms

The new expressions for the distribution functions are more suitable when
the differences in velocity and in temperature are high. tI‘h.ey ne.glect,
however, the anisotropy which must be introduced when it is desirable
to consider the tensor character of the pressure and to take account of

29. The subject has been worked upon by CowriNg in the papers mentioned
in Refs. 28 and 24. Also by the Australian physicists D. F. MarTYN and W. G.
BaxEer: see Nature 162, 142-143 (1948); 163, 685-686 (1949); 170, 1090-1092
(1952); Phil. Trans. Roy. Soc.. (London) A 246, 281.—320 (1952_’,): 8. CHAI.’IV,.(AN
published a paper on it under the title “The electric conductivity of the iono-
sphere: a review”’ in the Nuovo cimento, Suppl. 4 (ser. X), 1385-1412 (1956). ]

~ 80. See remarks by James Tuck in Section 1-4 and by Wintzam Arirs in
Section 3—4.
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heat flow. It is possible to extend form (5-74a) by multiplying it with a

factor analogous to the one introduced i
; ced in (5-3 i
greater complication in the integrals. (5-3), but this will Iead to

We agaip work out the integral for the gain of momentum in collisions:

dF E
e (%) |
/ & @ /ool MsEs, )

and the integral for the transfer of kinetic energy:

dF
/ dgs (%)ooll% me(Es — us)z-

’I;izsze integrals will give the right-hand sides to be used in Egs. (5-41) and
( ).. The value of (dF,/dt) .o must be taken from Eq. (5-2). It is more
convenient, however, to work out the completely equivalent formulas [81]:

[ / dEs dEems(8, — E)FF,g b db de

o

and
Jf[ 28 dsamd(e — w)® — (& — w)3EF g db ae,

?vhere 5;.{5 is the v.alue of £ after the collision. We omit the details of the
111(1;«)3gra,t10n?§) which can be carried out when the collision cross sections
S and S have the values holding for coulomb forces [see formulas
(22a)]. With cross sections such as are used for other types of pérticles

(rigid spheres, fo i i i
(i 1) , for example) the integrations are more dlﬁicult.A The results

gain of momentum in collisions:

_ 4wN N eZe? In A w w?

{erf »_2Zuw —
“ w3 P \/_ '&- exp 7 H (5—75&)

gain of kinetic energy:’

B

4rN Nele?ln A 1 [ w w w —w
— Vsl ebs€s D A 1 v_ w_ 2w N
i o erf " (z+0) {erf P exp( >}]

a2

(5—75b)
31. See Ref. 1, p. 66 (Sec. 3.53).

[crar. 5
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The followirig abbreviations have been used:

2 - 2KT3 + 2KT#

2 2
w=1u; —u a” =05 T a ’
s ts s+t M ms

2k
o= 2 (Ts — Ty, == ms/mo, mo= ms~+ ms, = msmy/mo.
Mmoo

After summation with respect to ¢ (in which the case t = s can be omitted),
(5-75a) gives the appropriate right side for Eq. (5-41), and (5-75b) for
Eq. (5-42).

Formula (5-75a) reduces to our former expression —Kw [occurring in
Eq. (5-32)] when w/e is small and Ts = T;. On the other hand, when w/«
is large, we can use the approximation

47N NeZeiInA w
— ——-—-———;——-———-——- Eé' J

which is the expression mentioned by James Tuck.

As observed, the calculation is based upon the expression for the collision
cross sections holding when the forces between the particles are exclusively
coulomb forces. Thus the results hold strictly only for protons and elec-
trons. Other ions, unless they are completely stripped of electrons, will
exert forces of a different type at close encounters, and it must be expected
that the cross section then will not go down to zero when the velocity
becomes higher and higher. This point is stressed by Allis [32].

5-16 Plasma diffusion in a magnetic field. The system of equations
obtained in Section 5-13 can also be used for the treatment of a problem
considered by Rosenbluth and Kaufman under the title “Plasma Diffusion
in a Magnetic Field” [33]. What they call “plasma diffusion” is considered
here as “flow,” since it is the motion of ions and electrons together (in a
similar way as is the case with the .so-called ambipolar diffusion), not a
diffusion of one species relative to the other. The duthors treated the
problem by starting from the equation for the distribution functions.

A fully ionized plasma is considered, in a magnetic field constant in
time. We take the z;-axis in the direction of the magnetic flux B. This
flux, although having the same direction everywhere in the field, is not
supposed to be uniform, but is a function of z,. Initially, at { = 0, B is
large for x5 > 0 and small or zero for 7o < 0, and it is assumed that the
pressure field in the gas is adjusted in such a way that it balances the
difference of the magnetic pressures on both sides of the plane x5 = 0.

32. See Section 3—4.
33. M. N. Rosensrute and A. N. Kaurman, Plasma diffusion in a magnetic
field, Phys. Rev. 109, 1-5 (1958).
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This necessitates an electric current in the zz-direction, flowing in & thin
sheet at 2 = 0. In consequence of the thermal motion of the ions and
the electrons, both types of particles will escape towards the region zo > 0;
this escape phenomenon is studied under the name of “plasma diffusion.”
Since one expects that no large space charges can appear in the field, the
local mean density of ions and electrons must always be very nearly the
same, and this implies that the mean speed of flow of the ions and of the
electrons must have nearly the same value. Hence there will be no electric
current in the zs-direction and ws = 0, whil®us 5% 0. At the same time
there will appear an electric field E» of such magnitude that the equality
of flow velocities of ions and electrons is assured. There may also be a
temperature field, which is supposed to be a function of s, as is the case
with the pressure and with B. There may also be electric force components
E; and F; influencing the system of electric currents.

The flow problem. can be treated with Egs. (5-65), (5-66a), and (5-66b),
in which we retain 0p°/dzs and #5. We assume that u; and uz are zero
with respect to the system of coordinates introduced. The number density
of both the ions and electrons is indicated by N. We also suppose that ions
and electrons have the same temperature. Then

p* = p°* = NkT = %p.

We must supplement the system. (5~65), (5-66a), and (5-66b) by the equa-
tion for the mass flow (5-28) and the continuity equations. In Eq. (5-28),
the only component of importance is that corresponding to the zo-direction.
Taking G = 0, p, = 0, and neglecting the inertia term, it reduces to

w _TB _
dzs c
from which we have

Js = News = e 9 _ 2cdp (5-76)

The equations referring to the z;-direction are the same as those used
in Section 5-14; thus, again, ‘
N 262 E1

Jy= New; =~ 22 = 1 2= I (5-77)

The remaining equations have the form:

g_p_ -+ NeEy — NeB ws = K( — 2vrs + ard),
Lo C
from (5-65)

N6E3 — ]—\%e;Bi Ug = K(w;», — z’rr§ -+ zrg);

-
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: i, 27
g‘&g - ZOT% = — KiT2 + E’ ')’Tez,
from (5-66a)
"i—57 —-Kr"—l—gz'vrg'
wrg = 5 ZYW3 173 10 )
e 27 7 e
. g g + Gr3 = 072~ gra,
from (5-66b)
g = — 2 +~2—Z'Yri~£r§.
—_ Wreg = — § W3 10 3

Rosenbluth and Kaufman suppose that the Larmor frequel.lcy of ’p?’nh
the electrons and the ions is large compared with their~respect1ve collision
frequencies. This requires that nov only &, but even &/ must be larg§

ith unity; thus & > ;. _ _
Corl’[;xpizer?dlvi"ng theseye;quations we again assume that 175 apd yry are srp?,ll
compared with 7%, 75; we can then neglect the ﬁrst—mentloped quantities
in the fifth and sixth equations. Solving for 5, r3, we obtain

<«

~_ 3 5
rezgg-z —5 % s —geEy T

=
w

4

We next use the third and fourth equations to obtain approximate expres-
sions for 7%, 7%

z 5,60 7'N5.z_,lg-.
rzg——é-z%-z—zy 7‘3:_—.—2'{5
The sum 5
. b Kk1de W3 5!
r’2+r§%-§-é7+§—g)‘ (5-78)

can be used to find the heat flow in the direction of xa:
@z = ¢& = NkT(% + %)
Turning to the first equation, we find

1 dp¢ , NeEs

~ e o
s A = Bwg + 2rg = wws.
K dxs K

This gives the electric field component Eg, which ensures equality of flow
of jons and electrons:

Lopt Bus LS. (570)
Ne

'S

By = —

|

v T ¢ — 2Ne azs

[o1]
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Finally, the second equation of the system takes the form

NeE ™
K3“‘wu2“—=w3+zr§_%w3——g'?_.2.,

from which we obtain

_1cBs w 3 & :
uZ_TB__-ZQ—I—gCig’ ) (5—808:)
or, when use is made of the expressions for wz and for & [34],
_¢Es 1 ¢* ap 3 ¢ 3T
TR T Bar, Tae, B a0 (5-80D)

. The results obtained in this way from the transfer equations are essén—
tially the same as those given by Rosenbluth and Kaufman. Account
should be taken of the difference in notation ; moreover, Rosenbluth and
Kaufxr}an take By = K3 = 0 in their final results [an error of print occurs
in their Eq. (10"); when this is corrected, our Eq. (5-78) leads to their
Eq. (15); our (5~79) to their (34); and our (5-80a) or (5-80b) to their (10)].

Rosenbluth and Kaufman have added the equations ofvcdntinuity and
the energy equation in order to obtain a complete system, from which the
behavior of us as a function of z9 and ¢ can be derived.

5-17 Pher_lqmena of thermal diffusion. In the discussion Chapman
cajlled attention to the phenomena of thermal diffusion which are connected
with the occurrence of a thermal gradient in a gas. '

Taking ﬁrzt the most simple case, a binary mixture when there is no
pressure gradient, no gravity, and no electric or magnetic field, Eqs
(5~65), (5-66a), and (6~66b), written in vector form, reduce to e

0= W—zvr”'—}—zr",
(5/2)8 = (52/2)vw — kyr® + (27/10)71°,
(6/2)8 = —(52/2)w + (27/10)7r" — &,

Bearing in mind the smallness of 7, we find

—_32
W= g % = 1559,

ri= —_M'B, e 5/2
42

34. The second term of Eq. (5-80D) is essentially the same as what is given

by Serrzer, Ref. 21, p. 38, Eq. (3-16). Equation (5-76) above is
Spitzer’s equation (2-24), 1; 24 of Ref. 21. ) ve 15 the same s
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Since w' = Yw, and w® = —w, it follows that the ions tend to diffuse
in the direction of increasing temperature and the electrons in the direction
of decreasing temperature.

Actually, an electric field will appear which counteracts this process and
only an extremely slight separation will occur. We can consider the
equilibrium situation in which the state of the system is independent of
the time and where all diffusion velocities w; are zero. The effect of the
temperature is then balanced by a pressure gradient or by an electric field.
It will be assumed that there is no magnetic field. Keeping to a binary
mixture, Eqgs. (6-65), (5-66a), and (5-66b) now give

Vpe + NeE = K(—zvr® + 21,
(5/2)8 = —kit° + (27/10)71°,
(5/2)8 = (27/10)7r* — &,

From the second and third equations, we obtain

- ) "= — =4,
42 2¢
after which the first equation yields
Vpe + NeE = —(3/25)NkvT.

o VY o 5

Since the gas as a whole can be treated as neutral, Eq. (5-28) gives
Vp = pG, from which Vp* = Vp° = 2 Vp = $pG. Making use of this
result, we arrive at

NeE = —40G — (3/2E)NkVT. (5-81a)

Here G is the acceleration of gravity, defined as a vector. When the
z-axis of the coordinate system is taken vertically upward while gravitation
is acting downward, we obtain

NeE, = %p|G| — (3/28)Nk(dT/dz). (5-81b)

In a case without gravity the electric field is in the direction of decreasing
temperature; it must prevent the ions from going to the region of higher
temperature. When there is a gravity field, part of the electric field must
serve to hold down the electrons and to pull up the ions against gravity;
this part supports about half the weight of the ions if the ions are singly
ionized, as was supposed here.

A more complicated case is encountered when the ionized gas contains
positive ions of a different type. Chapman referred to conditions in the
solar corona and supposed that the gas, consisting for the major part of
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protons _and e.:lectrons, would also contain a small amount of positive ions
of atomic weight 4, much larger than unity, stripped of a great number
of electrons, so that the charge of these ions would be ne, with n possibly
of the orqler 10 to 15. Tons of calcium (4 = 40), having iost 14 electrons
and 'of mck'el (4 = 57), having lost 15 electrons, are typical exa,mples’
but ions of iron (4 = 56) and of argon (4 = 40) that have lost a smalle;'
numbt_ar of electrons may also come into this category. The number of
these ions per unit/ volume, N3, is supposed to be so small that we can still

assume that the number density of the protons is the same as that of the-

electrons (V for both).

Agaln considering a case of equilibrium with all diffusion velocities equal
to zero, we now write the heat flow equations (5-35) for the protons
(sul.)scr%pt s = 1), the electrons (s = 2), and for the heavy ions (s = 3)
taking into account the ratios between the masses, the cross sections anci
the nu;nber densities, all of which influence the ratios between the va,rious
coeﬁ'iclents K. Since collision cross sections for coulomb forces are pro-
pprtwnal to the square of the charges of both components, there appears
a factgr .nz in K3 and in K3, and a factor nt in Kgs. ’

Omlt'tlflg the details of the calculations, in which many terms appear to
be negligible, either in consequence of the smallness of my/m; and m /m
or that of N3/N, we arrive at the following results: v

_ 25V 5
(a 1= — 3 3, Iy = — % 3 (the same as before),
B re — _ (_45»_ 1,51
( ) r3 8\/—2- A + 6 n2 ‘\/7'(,,

(¢) from the equation for the gas as a whole,
Vp1 = Vpz = §Vp = $pG,
and from the equation for the electrons,
Vp2 -+ NeE = —(3/2£)NkvT.

Hence tI}e same pressure gradient and the same electric field appear as in
the previous case.

Finally, application of Eq. (5-32) to the heavy ions gives
Vo3 — N3AmiG — NaneE =

_ T Ar
= K (A_ﬁ - Zﬁ) + Kosz (% - 1‘2) o~

2 Ns (1'1 )
—n" 55 Ke\—~= +1,),
I Vo A

R
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when A -+ 1 is replaced by A. Substitution of the values of ry, rs, and E
leads to

v_Na._[z<_1§_ ,3__3_n_]li£ iy mG
N3—n4\/§+2g 2t 1 T+(A %J”)W (5-82a)

Of the terms on the right side; the first one with the factor n? is the most
important. The numerical coefficient associated with it is approximately
2.65 + 0.80 = 3.45. Hence we obtain

Ns  proportional to  T3-457%, (5-82b)

The result indicates that there is an astonishingly powerful thermal diffu-
sion in a plasma containing heavily ionized constituents, driving these
towards high-temperature regions [35].

35. See 8. CmapmaN, Thermal diffusion in ionized gases, Proc. Phys. Soc.
(London) 72, 353-362 (1958). There is a difference between the coefficients
obtained in Eq. (5-82a) of our text and those in Chapman’s Equation (33),
which would lead to a coefficient 15/4v/2 = 2.65 with n2, instead of the some-~
what larger value given here. It may be that the difference is due to the cir-
cumstance that Chapman uses the equation for binary diffusion, which will
be less appropriate for the system with three kinds of particles.

The most direct approach to the problem seems to be as follows. We write
Eqs. (5-32) (with the omission of irrelevant terms and with p, = 0) in the form

Vp, — % Vp — N E = Zwstwt -+ Z Qsirs *®
: 7

and similarly Eqs. (5-35), after division by «T/ms:
%NsKVT = Z Qs W: Z Qsexe. (**)
t t

The coefficients ws: . . . Qs can be obtained from the expressions for the right
sides of Eqs.(5-32),(5-35). Let Q be the determinant of the Qs and Q% its minors,
50 that 2-.0%Qs = 0uQ. We solve (+x) for the r; and substitute the results
into (x). This gives

Vps — % Vo — NeesBE = Y [we: — QerqniQin/Qlw, -+ %KVTZst(Q’ka/Q)Nh-

In the case of equilibrium all w; are zero. The equation then at once gives the
relation between Vp; and VT, and from there, by writing ps = N¢«T, the rela-
tion between VN, and VT. The equation should be applied to the case where
the subscript s corresponds to the heavy ions.

In evaluating the coefficients of the equations, the point which requires atten-
tion concerns the orders.of magnitude of the various terms and the decision as
to what terms can be rejected. However, for a system with three kinds of parti-
cles, the minors Q¥ reduce to two by two determinants, so that the work is not
too complicated. The calculation according to this scheme confirmed the result
given in Eq. (5-82a).
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It is difficult o say whether this effect will tend to make the heavy ions
predominant in the hot parts of the solar corona, since there is turbulence
which may upset the equilibrium distribution assumed here.

It is possible that these thermal diffusion phenomens may be of interest

in connection with nuclear reaction experiments in such apparatus as
“Zeta,” where a high-temperature plasma is confined by a magnetic field.
If some heavy, highly charged ions appear in the plasma, it may be that
they will be driven to the region of highest temperature. This point was
discussed by Rosenbluth and Post with Chapman. Post considered the
confinement of a plasma by a magnetic field in a long tube, where according
to Spitzer a radial electrostatic field will appear. Highly ionized heavy
ions might then perhaps be concentrated toward the axis. Thompson
added that such a radial electric field could be responsible for producing

large motions in impurity ions and consequent doppler shifts of their
spectral lines. .

5-18 Comments on the validity of the Boltzmann equation. Its relation

to the two-particle distribution function and to the Fokker-Planck equa-
tion. Extensive discussions took place at the Symposium. concerning the
validity of the Boltzmann equation, in which Gross, Grad, and to a lesser
extent Krook were the main participants. The discussion was followed by
a deduction of the Fokker-Planck equation by Chan-Mou Tchen. The
discussion was difficult to record, but Gross and Grad submitted much
of their remarks in writing after tie Symposium. The greater part of
these written comments has been incorporated in the present section. It
will be followed by some observations concerning the application of the
two-particle distribution function, mainly taken from other sources; after
this Tchen’s contribution will be considered.

Gross [36] pointed out the necessity for a deeper analysis of the collision

phenomena and of the correlation between particles in view of the follow-
ing points:

(a) The thermodynamic properties of a plasma—equation of state,
internal energy function, entropy function—require a knowledge of the
two-particle distribution function.

(b) The Debye cloud and its behavior at high frequencies and high
electric fields falls into the same category. There are observable effects,
such as the high frequency and high field conductivity of plasmas, which
should exhibit corrections arising from the failure of the cloud to form
completely.

(¢) The Holtsmark type of analysis of the line broadening problem

36. See also Gross’ contribution to Section 5-8.

. and the mean free path
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implicitly works on the level of multiparticle distribution function
37].
th(é)gd[ stln‘ted by observing that the divergences.which arise f?om lopg—
range coulomb forces make the problem of justifyl.ng or even <‘i1scover1ng
the correet form to be taken by a Boltzmann equation a very dlfﬁfzulp one.
Grad proposed to proceed at first formally, leaving the dlscpsslon until
later. One should start by considering various representative lengths.
Let o be the “molecular diameter” or mean distance of closest approach

e?/kT,
and introduce the mean interparticle distance
N = N3

[not to be confused with the parameter N defined by Eq. (5-63a)], and
further the Debye length, defined by

d2 = kT/Neé?,

L= L'/h’l A:

where I/ = 1/No? and A = d/o. Numerical factors have been sup-
pressed [in this sense the A defined here is the same ql{al%tlty' as the one
given before by Eq. (5-21)]. In rough comparisons the distinction between
L and L/ may be ignored. :

In a fully ionized plasma we have

oL KdKL;
more preciéely, the relative orders of magnitude can be seen from
cd? =2\ =L/, d®=oL. @)

The Debye length d measures the effective range of two—p.artif:le correla-
tions. Forces due to particles separated by more than this distance are
statistically independent and can be taken care of by the average_d charge
and current source terms in Maxwell’s equations. Forces arising from
particles closer than the mean interparticle d}stance Ao can ‘be handled
by the biﬁary collision analysis used in obtaining the coqventlonal Boltz-
mann equation. There is left the important range of distances betwgen

37. The problem of line broadening is of importance in spectroscopic re§earch
- concerning the state of the gas at high temperatures. It h@s beel} considered
by Post in Séction 2-4. :
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Mo and d in which we find particles which are correlated and yet cannot be
split into pairs: the Debye sphere contains many particles, since Nd® =
(d/70)® > 1. To be precise, binary collision analysis can be used up to a
distance &, where ¢ < ¢ << A\g. The omitted range between ¢ and d is
characterized by the superposition of many grazing deflections.. Assuming
that these impulses are random and independent, we have a Markoff
process and, following. Chandrasekhar and Spitzer, we conclude that the
resultant contribution to the Boltzmann equation is a second-order
differential operator (Fokker-Planck term) in addition to the integral
operator (Boltzmann term) which arises from the large deflection binary
collisions. If we examine the conventional Boltzmann collision term in
the range beyond ¢ (where it is, presumably, invalid) we find that, on
making a grazing collision approximation, it yields exactly the same
Fokker-Planck term as the one just described [38]. This can be seen
a priors. The original description was of a stochastic process with. many
simultaneous independent small deflections. The Boltzmann description
corresponds to a hypothetical physical situation in which there is a se-
quence in time of many independent random binary deflections. Although
the two physical pictures are radically different, the mathematical models
are clearly the same. The simplest procedure is then to include in the
Boltzmann term grazing deflections out to the distance d, instead of taking
a sum of Boltzmann and Fokker-Planck terms.

It is true that the justification that has been given of the use of a Fokker-
Planck equation is incomplete. However, any analysis which demon-
strates the validity of a Fokker-Planck equation also justifies (in this
roundabout way) the validity of the binary collision Boltzmann equation.

It is necessary to introduce a cutoff at the distance d to prevent diver-
gent integrals. To avoid this ad hoc procedure one should use the correct
shielded potential. This is

exp (—r/d)/r

rather than the 1/r in thermodynamic equilibrium, but it must be recom-
puted for more general use. This, however, is a erucial point. “The shielded

potential is roughly equivalent to the two-particle or radial distribution

function [39]. The basic question is how to approximate it in terms of
only the one-particle distribution.

38. H. Grap, Thermonuclear reaction rates in an electrical discharge, Inst.
Math. Seci.,, NYU, NYO-7977 (January 1958).

39. What one must actually compute is the two-particle correlation function
at two different times. For example, the radial distribution function in equi-
librium is exp (—r/d)/r even for moving particles. This single-time function,
however, is not the correct shielding distribution to be inserted in the collision
term of the Boltzmann equation.
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There exist several examples in statistical mechanics where a lower
order level of information suffices to determine the complete state of a
system in the limit as N — oo.  In equilibrium the complete state is de-
termined by the thermodynamic variables alone. There are several possi-
bilities in the nonequilibrium case. If we take No? fixed and let No® — 0,
we obtain, in the limit, a perfect gas which satisfies the binary collision
Boltzmann equation [40]; the mean free path is fixed in this limit. In this
limit, the two-particle distribution (which must be found to compute the
evolution in time of the one-particle distribution) can be shown to become
dependent upon the one-particle distribution. On the other hand, if we
take No® fixed and let No? — o, we obtain the Euler equations of fluid
motion in the limit [41]. In this case the reduction is more radical; the
local thermodynamic state is a complete description. From a careful
study of these examples it becomes clear that one cannot hope to find a
Boltzmann-like description (in terms of a one-particle distribution) for a
dense gas or liquid, but only for a rarefied gas [42].

In the case of a plasma, the situation is somewhat like that in a liquid:
many-body interactions are important. However, this is a very special
type of “liquid,” since the multiple interactions are all weak. To obtain
any strictly mathematical simplification over that of an n-body problem,
we must take some kind of limit. When it is desired to keep the effect of
collisions finite (L is finite) and to make o — 0, it is seen from equation (*)
above that the mean interparticle distance Ay and the Debye length d must
also approach zero. In this limit all that is left of collisions is the Fokker-
Planck term, since the binary collision term is smaller by the factor
In A = In (d/o). On the other hand, it may very well be that keeping
terms “to the next order,” i.e. to the order 1/In A is permissible, just as
dense gas corrections may possibly be kept in the usual Boltzmann equa-
tion [42] and just as Navier-Stokes terms arise in the fluid limit, No® =
constant, when higher order terms are kept. Thus one can expect that the
Boltzmann equation, including grazing collisions out to a distance d, may
be correct. , .

The problem that remains is to actually determine the two-particle
distribution in the limit of large d/o. This we can do by using the Boltz-
mann equation itself. It is a well-defined problem (but, as yet, solved only

40. See H. Grap, Principles of the kinetic theory of gases, Handbuch der
Physik 12 (1958). : )

41. C. B. MozrgreY, On the derivation of the equations of hydrodynamics
from statistical mechanics, Comm.-on Pure and Applied Math. 8, 279-326 (1955).

42, It is shown in the article mentioned in Ref. 40 (Section 14) that a hypo-
thetical virial-type expansion, such as the one introduced by Bogoliubov, express-
ing the two-particle distribution in terms of the one-particle distribution, can
be valid, at best, to first order in the density.
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for special cases [43]) to find the flow of a plasma past an external (macro-
scopic) fixed charge. This solution should then be used in the collision
term‘of the Boltzmann equation to replace the ad hoc cutoff at the distance
d. Ez-rst of all, it should be noted that L >> d if d >> o; consequently, the
coll@on term in the Boltzmann equation (which is not precisely kn’own
unbﬂ.we have solved the shielding problem) is largely irrelevant to the
“solution of this flow problem past a charge, since this flow has dimensions
of the order of d. Secondly, we note that the field due to an electron or ion
can bc.e considered to be macroscopic in the solution of this flow problem
since 1jss effective range is of the order of d, which is much larger than 0:
This situation can be compared to that in the ordinary virial expansion of
the radial distribution function. The leading term, exp (—¢/kT), is exact
for a potential ¢ which is macroscopic in range. Only for a potential which
is microscopie in range must the formula be corrected [44].

The procedure described here will allow a correct Boltzmann equation
to be' computed. However, the conventional expedient of adopting a cutoff
at d instead of a shielding potential is probably quite good [45, 46].

Finally, the following observations were made by Krook, mainly with
reference to the material of Sections 5-19 and 5-20. His contention is that
the distribution functions, of any order 1, 2, .. ., do not describe the state
of a real physical system at all. Omitting even the ticklish question of

43. Unpublished work of E. RuBiy and S. Ranp. Also see L. Kraus and K. M.
\VATSQN, Plasma motions induced by satellites in the ionosphere, The Physics
f’f Flu‘uls, 1, 480488, 1958, where the same mathematical problem is analyzed
in a different physical situation. This ‘“macroscopic’”’ procedure is much simpler
l1';Lhem) the collective coordinate approach of Bomm and Pines (see Section 5-23

ere). '

44. For a particle at rest this very formula can be used to obtain the spheri-
cally symmetric shielding potential, exp (—r/d)/r.

45. R. Lisorr, Computation of the transport coefficients using the shielded
coulomb potential, Inst. Math. Sci., NYU, NYO-8669.

46. Grap in his letter added the remark that some authors, among them
K{*ook and Gross, disagreed with his claim that it is possible to obtain a deter-
mined equation for the one-particle distribution in a plasma, rather than to
have to rely on higher correlations.

. The main point of Grad’s argument is to show that the two-particle distribu-
tion can be satisfactorily approximated in terms of the one-particle distribution.
More basically, the question is whether there exists any equation at all of the
B.o-ltzn.aann or Fokker-Planck type for the one-particle distribution. This possi-
bility is usually assumed rather than demonstrated. For example, BOGOLITEOV
and H. S. GreeN make this assumption for dense gases, a case for which it is
not even true. For a critical discussion of this and related points, Grad referred
to his article in Handbuch der Physik 12, which has just appeared.
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symmetries with respect to like particles in the classical formalism, the
distribution functions can be defined rigorously only as specifying the
state of an ensemble of systems. The Liouville equation is an equation of
motion for the ensemble and not for the system of interest. In equilibrium
statistical mechanics, where one inquires only into the average values of
certain local physical variables, a reasonable identification can be made

_between properties of the enserble and properties of the system of interest.

In kinetic theory, on the other hand, the situation is much more complex.

The term on the right side of Eq. (5-83), given in Section 5-19 below,
involves an average force calculated with the two-particle distribution
function as weight factor. However, to derive the Boltzmann form of the
interaction term (compare H. 8. Green) we must change our point of view
for calculating the average force arising from interaction of particles within
the correlation sphere. This may indeed be a very drastic step, so that
the Boltzmann equation, which already does not describe the behavior of
a real physical system, does not even describe the behavior of an ensemble
of systems. Krook thinks that nevertheless a case can be made for the
view that the kinetic equations do represent the state and behavior of the
physical system for a limited time, the description of the behavior be-
coming continuously worse with increasing time.

The Bogoliubov-Kirkwood type of cutoff is on somewhat safer ground,
but still only represents.in an approximate way the behavior of the en-
semble and not of the physical system. :

If we consider the actual physical problems which kinetic theory is
designed to handle, further difficulties of principle appear. Systems are
prepared to be in particular initial states by means of macroscopic handling
operations. The only properties that we can specify are then the values of
certain macroscopic fields; the number of such macroscopic variables may
of course be as large as we please, in principle, but the number must still
be finite. We have (1) to translate this initial macroscopic data into a
specifi¢ set of initial distribution functions, (2) to solve the corresponding
initial value problem for the kinetic equations, and (3) to translate the
microscopic solution back into terms of macroscopic variables. Step (1)
is by no means clear-cut. We have already remarked on the difficulties
associated with step (2). The conceptual difficulties become very much
clearer if we ask the questions in a somewhat different way, in particular,
if we inquire into the correlation between the state of the system at time
¢; and time 5 > ;. Krook hopes to deal with these questions more fully
in a forthcoming paper. In his opinion the formalism of kinetic theory
can only provide a description that becomes progressively more inexact.
The problem of determining a characteristic time for this decrease of in-
formation would be a tough one.
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5-19 Application of the two-particle distribution function. Relation to
Boltzmann’s expression for binary collisions. After these general con-
siderations and in order to have a bridge towards Chan-Mou Tchen’s
deduction of the Fokker-Planck equation, it may be useful to give some
attention to the fundamental equation which connects the distribution
function for a single particle with the two-particle function. This equation
is the first one of a set of successive equations, linking the distribution
functions for increasing numbers of particles, which have been derived by
such various authors as Born and Green, Kirkwood, and Bogoliubov by
an integration procedure applied to the so-called Liouville equation [47].
The first equation of this set is

oF OFs | fon OFs _ 1 // 0B, OF ;.
at T & 0%sh T ms 0&sh o ms Z N dx, dgt-axsﬁ 9&sh

(5-83)

In this equation the function Fy; is the two-particle distribution function,
depending upon the variables £, &, Zsr, T (it is necessary to label the
coordinates with subscripts. to indicate the particles to which they refer),
and the time. The function ®;; is the potential function for the interaction
between the particles s and ¢ (coulomb interaction for charged particles),
and fs;, as before represents the exterior forces, for instance the forces e;Ej,
derived from an electric field imposed from the outside. A magnetic field
will not be introduced. The functions F and Fg; in (5-83) are normalized
in such a way that

/Fsdgs': 1,

J[[Focixedgedge = v,

where V represents the total volume of the gas or of the plasma over which
the coordinate integration is extended; this volume is supposed to be very

large compared with the Debye sphere. (The normalization used for F; is
different from that used before.)

47. See: M. BorN and H. S. GreeN, A general kinetie theory of liquids I.
The molecular distribution funections, Proc. Roy. Soc. (London) A 188, 10-18
(1946); H. S. GreeN, Molecular Theory of Fluids (Amsterdam, 1952), p. 128,
Eq. (2.7).

J. G. Kirkwoon, The Statistical mechanical theory of transport processes
I. General theory, J. Chem. Phys. 14, 180~201 (1946); II. Transport in Gases,
ibid. 15, 72-76 (1947).

N. Bocorrusov, Kinetic equations, J. of Phys. (U.S.S.R.) 10, 265-274
(1946); Problems of a Dynamical Theory in Statistical Physics, State Techn.
Press, Moscow, 1946 (transl. by Geoph. Res. Directorate, AFCRC, Jan. 1959).

G. E. UgrLenBECK, The Boltzmann equation, in Seminar on Applied Mathe-
matics, Boulder, Colorado, 1957 (to be published by the Am. Math. Soc.).
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In carrying out the integration with respect to dx, attention must be
given to the various distances considered by Grad. We shall briefly sketch
how the standard formula (5-2) of the right side of the Boltzmann equa-
tion is related to the integral of the right side of (5-83) over the first
domain, which extends up to the distance o. We follow a method indicated
by Green [48].

Within this domain it can be assumed that terms due to three-particle

" distribution functions Fs may be left out of account. It is then possible

to make use of an approximate form of the equation which is satisfied by
Fy;. The full equation will be given in the next section, Eq. (5-87). When
we leave out the terms with the function F; and at the same time assume
that the exterior forces fsn have no appreciable influence upon Fy; within
this region, the equation takes the form

OF ;; oF s,
ot Oxsh

OFy 1 3By OFs; | 1 8%y OFs:
thzg M Osh OFsn | My OTim Ofm
(5-84)

With the aid of this equation we obtain the following expression for the
right side of (5-83):

1 3®s: OFst
T omy Xt: Nt/fdxt dE: 0 n 0feh +

Fs F
+ YN, / / dx, dg; (6_1;’;: i 3t © A+ b ‘) :
¢ v s

670;;,

+ Esh

The first term of this expression vanishes yvhen the integration Witl.l respect
to d, is performed. In order to transform the other term, we write

X; — X =1, & — =g

Since the location and the velocity of the particle s are fixed, we can use
r and g as integration variables, and the remaining part of the expression
can be written

OFyr  , OFs an,) , g
PIRL f dg f dr (—a-t— + &b g T 9 (5-852)
The most important term in this formula is
OF 54 .
}; N, f dg / dr gn 32 (5-85b)

48. H. S. GrEEN, Molecular Theory of Fluids (Amsterdam, 1952), pp. 218-
995 (derivation of Boltzmann’s equation, and corrections to Boltzmann’s
equation).
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since the derivative of Fy, with respect to the variable r will be large
within our domain, while the derivatives with respect to x, for fixed r,
and with respect to the time, will be of moderate magnitude.

We take the integration with respect to dr first and assume that.the
region over which this integration is extended is enclosed by a surface 3,
surrounding the particle s to the extent indicated before. In this integra-
tion the vector g has a fixed direction. From every element dZ of 3 we
draw a normal n outward from d= and we call (n, g) the angle between
n and g. The surface = can be divided into two parts, on one of which
cos (n, g) is positive, while on the other cos (n, g) is negative. Performing
the integration with respect to dr, we obtain :

dF s¢
/ dr gn ar; =g / (Fse) cos (n, g) d=2,
where (Fs;) is the value of the function F.; at the element dZ, at the time ¢
and for the location z, for which the integration is performed. Consider
the part of Z for which cos (n, g) is negative; we then can write

—cos (n, g) d= = dS,

where dS is an element of the cross section for collisions with relative
velocity g, equivalent to the product b db de in our previous expressions.’
Hence when we consider these parts of the integral alone and carry out the
integration with respect to dg, we obtain the result

— [[ @aig as de,

referring to the particles ¢ entering the surface = or, as we can say, enter-
ing into a collision process with the particle s. On the other hand, when we
consider the part of = for which cos (n, g) is positive and carry out the
integration with respect to dg, we obtain the result

+ [[ @a'g s de,

refe.n:ing t9 the particles ¢ leaving the surface Z, that is, coming out of a
collision with the particle s. Thus the result of the integration can be

written

J[ @ gasag — [[F.) g as g, (5-86)
corz:e.sponding to the two terms in the standard formula (5-2) for binary
collisions. There is the difference that in (5-2) we considered the particles
{ and s as completely independent before they entered into a collision,
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whereas here the use of the function Fy; instead of the product F F'; allows
for the existence of a correlation produced by the influence of the particles
in the region surrounding our present domain of integration.

There remain the terms with derivatives with respect to the time and to
zsp, for fixed r in (5-85). These terms introduce corrections related to
changes in the function Fg; occurring during the transit of the particle ¢
through the space enclosed by Z, that is, changes of Fg; oecurring within
the duration of a single collision. We may expect these corrections to be
small, although they can be of some importance with nonuniform fields
or with changes of the field occurring in time. Attention to these correc-
tions is given by Green in reference [48], but we shall not pursue this
point here.

5-20 Reduction of the right side of Eq. (5-83) to an expression of the
Fokker-Planck type. We shall now consider the integral with respect to
dx; occurring in (5-83) over the region of grazing deflections. The exposi-
tion in the following lines is patterned mainly after Tchen’s contribution
to the discussion [49]. ’

For this purpose we need the first two equations of the set mentioned at
the beginning of the previous section, that is, Eq. (5-83) given in that
section, and the following equation for the function F;: :

oF s,
at

aF st
9T,

. dF . fon 8Fse | fon 8Fse _
0xin  ms 05sn Mg Of

+ gsh + gt

_1_ a<I>st ant _1_ aq’st'ant
Mg 0Tsp, 08sn My OT4n 3%

1 & OF 34 _1___ % 3Fstr> 3
+‘ZNT / / dx, d&, (7,7 S B T Gae b

(5-87)

The normalization used here is similar to that introduced in connection
with Eq. (5-83). The coordinate dependence of the functions Fy; and
Fsip is mainly through the differences x; — x;, X; — X, ete., although
the coordinates themselves will enter if the state of the gas is not uniform

49. C. M. Tcuen, Kinetic equations for a plasma with unsteady correlations,
Phys. Rev. 114, 394411 (1959). Tchen’s treatment in part follows a paper by
S. W. Temgo, On the deduction of the Fokker-Planck equation for a plasma
(Russian text), Zhur. Ekspil. © Teort. Fiz., 31, 1021-1026 (1956); Am. Inst.
Phys. translation in Soviet Physics JETP 4, 898-903 (1957). Tchen’s paper
clears up several points which were left rather vague by Temko.
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in space. In several papers the momenta py, = ms&sh, ebe. are used as
variables in place of the velocities £y; then gsh is written for xs, ete.
The treatment of the equations is still in a stage of development. It is
usually assumed that the effect of the exterior forces upon the two- and
more particle distribution functions may be neglected; we shall drop the
terms containing these forces from (5-87). In that case, we can consider

Fsi and Fy, to be functions of the coordinate differences, with the coordi-

nates of the particle s as a slowly varying parameter.

The main problem is how to cope with the ﬁhree—particie function Fg,. |

Tchen made the suggestion that it be approximated by the expression

Fyr 2 FFyp + FiFop -+ FoFyy — 2F,FF,. (5-882)
When we write |
' F st = F sF ¢ + F

82
which is always possible, Eq. (5-88a) is equivalent, with
Fst7'=FsFtFr+FsF,tr+FtFér+FrF\,?t- ) (5_88b)

Equm.:i?ns (5-83) and (5-87) can then be transformed into two equations
f:ontammg only functions of type F, and F',. Certain terms drop out in the
Integrations, and the results are

aF, Fs | fon OFs _ 1 ~* // 3%y; OFY,
at + 2 %53, + ms a_&; o —7;1'; Zt: N: dx, d&; —6—5;:—11 ag:h ’ (5-89)

OFy . 3F% _ a@s,(ﬁ', oF, F, ggi)
" O0%eh  OTen \ms O my Ofm

0%,y (_1_ oFy _ 1 3y,
9zsp 3Esm.

Me Ok, My g
+ 3N, / / dx, d <a‘1’s’ T OFy | 3%y Far "’—F‘)

Orsh, ms 0fsn ' O my IEm)

(5-90)

We thus have arrived at a closed system of equations. In the case of a
simple plasma there will be two single-particle functions and three two-
partic}e functions; also there are two equations of type (5-89) and three
fequatlons of type (5~90). The equations are nonlinear and require the
introduction of various approximations, which cannot yet be made fully

satisfactory. Here we can indicate only a bare outline of the method of

treatment and refer the reader to reference [49].

and
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When provisionally the right side of (5-90) is considered as a given
quantity, the equation can be formally integrated along the characteristics
of the differential operator on the left side. Since in practically all cases
the distance between two particles can be considered as infinite for

"t = —o0, we integrate from ¢ = —oo to the current value of ¢ with

initial condition FZ,(—c0) = 0.

Fourier transforms are introduced to describe the dependence of the
functions F!, upon the coordinate differences x; — x;. The dependence
upon the velocity components is not subjected to any transformation.
We write ’

By = e564 f dv Yoy exp [wn(zsn — Tan)] ‘(5‘91)

e = esey / dv og(v) exp [z — zu)]- (5-92)

It is necessary to observe that the application of Fourier integrals makes
it less easy to take account of the limits of the domain we are considering,
both on the interior sideand on the exterior side. With regard to the latter
point, it will appear later that we can arrive at integrals converging for
v = 0, which means that the results obtained are independent of phe-
nomena happening at large distances. The form of the integrals in the
neighborhood of ¥ = 0 will automatically lead to expressions containing
the Debye screening effect. It is different with the behavior of the integrals
for large values of v. Here we shall make use of the following artifice: what
actually happens to the function Fy; on the occasion of close encounters
between the particles s and ¢ must be treated by a method of the type indi-
cated in the preceding section and will lead to the appearance of a binary
collision term to be applied for close encounters only. In treating the
cooperative effect of the wider surroundings, we shall therefore exclude
the effects which appear at close encounters; we can do this by assuming
that 'the potential function ® takes a constant value in the interior do-
main, so that no forces will be operating there. When the coulomb poten-
tial function has been altered in the appropriate way, we extend the
integration over the full space and can make use of the Fourier expressions
without difficulty. . -

‘To assure that &;; shall take a constant value within a domain of radius
a, we replace the fraction 1/2w%?% occurring in (5-91) by sin va/2r%3%a.
Instead of working with this somewhat complicated formula, we can just

* as well keep to Eq. (5-91), provided we cut off the integration with respect

to v at a maximum value of the order 1/a. This gives a slightly different
behavior of the potential in the interior domai'n, but again there is a
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finite maximum value and to the order of accuracy that can be obtained
in this type of calculation the result is quite sufficient. Since it has been
mentioned before that the radius of the interior domain should be of the
order ¢?/kT, we use a cutoff value for » equal to «T/e? [50].

Equation (5~-90) can now be transformed into an equation for the func-
tion ¢g(v). It is convement to introduce an integration W1th respect to
dE&; and to write

/d’ét (0st(1’) = Hi®).

Equation (5-90) then is transformed into an equation for the function H?.
At the same time, the right side of Eq. (5-89) becomes transformed into

@m%e: 9
 ms ka 27r2 2 ZN €1 H(2). (5-93)

We shall not writé out completely the transformed equation (5-90),
but observe that on the right side it will contain three groups of terms,
corresponding to the three groups of Eq. (5~90). These three groups play
different parts. The first group, depending directly upon the functions F,
and Fy, is the most typical. When suitable approximations are introduced,
it leads to an expression of the Fokker-Planck type and thus fulfills the
first objective of the calculation. It appears, however, that some of the
necessary integrations with respect to dv become divergent for v — 0.
(ecorresponding to large distances in ‘physical space) and for ¥ — o« (cor-
responding to very small distances in physical space). An approximation
for the third group of terms coming from Eq. (5-90) (the term with the
double integral over the coordinates and the velocity components of the
third particle 7) introduces a correction term, which ensures.the con-
vergence of the integration for » = 0. This correction at the same time
introduces the Debye screening effect, ensuring a finite value for the effec-
tive collision cross section. Finally, the second group of terms introduces
a correction which is of some importance at the larger values of », although
it may vanish when all particles have unit charges, so that there are as
many positive as there are negative charges in the plasma. The correction

50. The author found that several features of Eqs. (5-83) and (5-87) can be
investigated almost equally well by integration in ordinary coordinate space,
instead of introducing Fourier transforms. Such integration in particular makes
it easier to separate the contributions of close encounters from the grazing
deflections which are taken together in the Fourier integrals. A short account
has been given by J. M. BuraERs, Some aspects of particle interaction in gases,
Inst. for Fluid Dynamics and Applied Mathematics, U. of Maryland, Technical
Note BN-176, pp. 13-21 (June 1959). '
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does not materially influence the results when we introduce a cutoff for
the integration with respect to » at a limit of the order kT /e?, as was
proposed before.

5-21 An expression of the Fokker-Planck type. (Cont.) When we
restrict to the terms deriving from the first group on the right side of
Eq. (5-90) the transformed equation has the form

e F, oF, T, aF,] .
(Ho)x = 2 2112/ / dé: [ms Oksn My 0iptir exp (@agT)-
(5-94)

Here 7 is an auxiliary variable arlsmg from the integration with respect
to the time performed upon (5-90) along the characteristics. The subscript
¢t — T after the expression within [ ] indicates that its value must not be
taken for the instant ¢, but for the instant ¢ — 7. However, we shall sup-

. pose that the quantity within the [ ] varies very slowly with ¢ and that

the combined effect of the integrations with respect to dr and to d&; will
ensure a sufficiently rapid convergence to prevent that a serious error
would arise from this approximation [51].

As another approximation, we shall replace the unknown function F;
in the [ ] expression by a simple Maxwellian expression of the type indi-
cated in formula (5-13), with csn = &n — usn, S0 as to allow for different
flow velocities of the constituents of the plasma. For simplicity, we assume
that there is only one temperature 7.

These approximations reduce (H%)1 to a linear function of Fs and of its
first derivatives with respect to the velocity components £. When this
result is substituted into formula (5-93) an expression of the Fokker-
Planck type is obtained, which can be written

{ (An)1Fs} +5e {(Bhk)l } (5-95)
or, alternatively,

{(Ah)IF o} + s (B}, (5-962)

s 6£

51. When it is desired to take account of the subscript ¢ — 7 added to the
bracketed expression in Eq. (5-94), use can be made of a series development of
this expression with respect to powers of 7. The further reduction will then lead
to a more complicated result than the usual Fokker-Planck formula, in which
successive derivatives of F; and 6[4’3/6153;; with respect to the time play a part.
See TcuEN, Ref. 49.
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where

(A = (A1 + (2%@-@—1 ; | Bt = (Bh,,)l. (5——965)

The expressions for the coefficients 4 and B will be g1ven in the next
section.

If we introduce Maxwellian expressions for both F; and F; into (5—94),
both referring to the same mass flow velocity and to the same temperature,
we obtain

(H)r = — %2%@ ' (5-97)
When this is substituted into (5-93), the integrand becomes an odd func-
tion of v; and the integral vanishes. This proves that a Maxwellian equi-
librium distribution for the velocity components of all constituents of the
mixture will not change in the course of time through the interactions
considered here. The approximation (5-97), nevertheless, is convenient
in the reduction of the terms deriving from the third group on the right
side of Eq. (5-90). These terms assume the form

. 4 - aF sr(¥) @ .
T 5 oo, [P e e Ay 1,

Again we neglect that the expression between { } should be taken at the
time ¢ — 7. The whole expression must be added to the right side of
(5-94). Since the expression has an extra integration in it, it seems possible
to make use of a further approximation for its reduction. When it is
assumed that we may replace

‘Ptr(""’) | by (Ft/Fs)ﬁasr(V)r

it is found that the whole expression passes into
CODILES N
and when we replace (H%)1 by the approximation (5-97), it becomes

V2KT Z N2 Hr.

We now replace (5-94) by

(H)u = (H): — 2lcT ENr s (5-98)
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We assume that the HY occurring on the right side can be read as (H%)11.
Then it is easy to obtain the result

14 T' (
2N ek Hn = gy 2L Nk Hx, (5-99)

where we have made use of the definition of rp given in Eq. (5-20).

In view of Eq. (5-93) it follows that the expressions (5-95) and (5-96a)
retain their general forms, with second approximations to the coefficients
A and B obtained from the first approximations by multiplication with
the factor (v*r%)/(1 + v?r%). This at once guarantees the convergence
of all integrals at the limit v = 0, as will be seen from Eqs. (5-101).

‘We shall not go into the reduction of the second group of terms of Eq.
(5-94), but refer the reader to reference [49].

5-22 Coefficients of the Fokker-Planck expression. Mean loss of
momentum, Debye potential field. We introduce the following auxiliary

' functions of £:

® _ 2
E = / dr exp l:_.é/__lfz T2 — 'th(Ssh —_ uth)T] )
0 M (5-100)

The second approximations to the coefficients 4 and B of the Fokker-
Planck expression can then be written:

26 T | 2241 2 e
~ /d v2(1 + v%r3) Zt:NtetEl ’

= 2931'21)[ ViVg 2p
B oam? v v2(1 + v2r3) Z Nl

(5-101)

It follows from (5-96b) in connection with (5-101) and the second line of
Eq. (5~100) that

Ay =TT Mg (5-102)

ms

Wheq the integrals are worked out, we find
2
o 4:11“@?1111&"‘2?N,;e’t2 wh{ w2 w (———w )}
Ah - Mg T Mse w3 erf a; —\/_. Qg exp atz ’

(5-103)
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where
wh= & — up and  a; = (2kT/me) "2

Further, us; = mgmy/(ms + m;), while A* is approximately the quantity

.defined in Eq. (5-21), apart from a correction term connected with. the

second group of terms of Eq. (5-94) for which we refer the reader to
reference [49)]. ’

It is well known that the quantity 4;, occurring in the form (5-96a)
of the Fokker-Planck expression, measures the mean gain of momentum
experienced by a particle s of given speed £; in its collisions with particles ¢
of all possible speeds. This quantity is now given by Eq. (5-103). As will
be seen, its direction is opposite to that of the vector &, — u;, that is,
the velocity vector of the particle s with respect to. the mean speed of all
particles &. For small values of w/a; Eq. (5-103) reduces to an expression
linear'in w, whereas for large values of w/a; the loss of momentum becomes
proportional to w/w®. This is similar to the result obtained in the discus-
sion of the runaway phenomenon in Section 5-15. A complete agreement
with Eq. (5-75a) is reached when we calculate the value

N, [ dgF oAy,

Another point of interest is to observe that the correction deduced from
the result (5-99) permits us to replace the first approximation for A ¢ given
in (5-97) by the better one

V (HY1r = — - rBFs .
o)1 91 + v2r)RT (5-105)

Evidently this still is a “static” approximation, not containing any refer-
ence to the relative velocity vector w = £ = u,. Nevertheless, by apply-
ing the inverse Fourier transform, this expression can be used to obtain
an interesting approximation for F/, and for Fg;. If the result is divided
by Fs, the quantity Fg/Fs = F; + F,,/F; gives the probability that a
particle ¢ with arbitrary velocity components £ will be found at a location
X;, when it is known that a particle s is present at x,, We can use this
result to calculate the electrostatic potential at an arbitrary point x in
the neighborhood of x; due to all particles ¢ in the neighborhood of the
particle s. The outcome of the calculation appears to be '

e {1 _ exp (—_r/rp)} ,

r r

where r represents the absolute value of the distance of the point x from
the point x;. The result means that around the particle s we have obtained
the Debye potential field.

(5-106) -
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In principle, it should be possible to use a more sophisticated expression
for the function H%, in order to arrive at a potential field which brings into
evidence the effect of the relative speed of the particle s. There must be
a distortion of the Debye cloud connected with this speed and, as Gross
remarked, at very high relative speeds the particle s appears to “shake off”
the cloud.

It must be observed that in the deduction of Eq. (5-106) it has been
assumed that.the mean charge density over the volume of the Debye
sphere is zero; if this had not been done, it would have been found that
there remains a term connected with the mean space charge. Such a space
charge, however, requires other methods for its proper handling.

In the discussion, Gross asked where the irreversibility has come into
the treatment, since the equation which lies at the basis of Eqs. (5-83)
and (5-87) is a Liouville equation which in itself describes reversible phe-
nomena. In reply Tchen pointed out that in working with these equations
we do not start from precisely defined initial conditions, but assume initial
conditions described by random data, as, for instance, Ff,(—o0) = 0.
This introduces irreversibility, since we cannot make the same assumption
fort = 4.

5-23 Plasma oscillations. Collective coordinates. Next, we turn our
attention to the problem of oscillations occurring within a plasma. (See
Sections 1-5, 2-3, 3—4, 4-8, 4-9, and 4-10.) From papers which have
appeared in recent literature [52] it will be. seen that various aspects of
this subject have been investigated, often to great depth, but there is not
to be found so far a comprehensive treatment which brings all features
into proper perspective. Several of these features need the application
of the Boltzmann equation for their treatment; they cannot be treated
satisfactorily from the continuum equations alone. It is in particular
the anisotropic character of the pressure tensor which is involved. An-
other point is the trapping of electrons by waves.

52. From the many papers referring to plasma oscillations the following may
be mentioned:

D. Boru and E. Gross, papers mentioned in Ref. 13.

D. Bomwm and D. Pines, A collective description of electron interactions I.
Magnetic interactions, Phys. Rev. 82, 625-634 (1951); II. Collective vs. indi-
-vidual particle aspect of the interactions, Phys. Rev. 85, 338-353 (1952).

N. G. van KampeN, On the theory of stationary waves in plasmas, Physica
21, 949-963 (1955).

1. B. BernsrEN, J. M. GrEENE and M. D. XruskAx, paper mentioned in
Ref. 16.

I. B. BernsTEIN, Waves in a plasma in a magnetic field, Phys. Rev. 109,
10-21 (1958).
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Franz Kahn.mentioned the possibility of describing plasma behavior in
terms of Fourier components of the charge density. Consider 3 single
charge ey at a point a, within a rectangular volume V, with sides X, ¥, Z
It contributes a charge density : . voese

p1(r) = €1 8(r — a;) = %—F gf,—‘ Do cosk- (r — ay),
8

the summation being made over all lattice points in half of the wave-
number space. A typical lattice point is -

k, = (2ms1/X, 2mss/Y o, 2us5/Z,),

where sy, 83, 83 are integers. With N char i
, ; ' } ges €1, ..., ey In the vol
the charge density becomes , o voume

px) = Zn:en5(r—an) .=NI7e+gI7quscos(k3-r—as),

where
Ms COS g = z ey cos (ks - a,),
n

M SN o = Zen sin (ks - a,).

If the charges were randomly distributed, the expectation value of each
»2 would be 13 ¢2. But in i ilibri i
us ( 32 €2 thermodynamic equilibrium the electrostatic
mtgractlons between particles do not allow the charge distribution to be
entirely random. We find that (u2) is less than £Y €2 for wave numbers
smaller 1‘ihan about 2/A\p, where \p is the Debye wavelength.

Knovy*l.}:\g the different u’s, one can work out correlation functions for
the pos1t1.ons of the charges in the gas. The effect described here leads to a
dec?ea:se in the. scattering cross section of the electrons for electromagnetic
f'adlatlon. This result has an application in astrophysics: the reduction
in the cross section entails a decrease in the opacity of the material near
the centers of the hotter main sequence stars [53].

53. A. I.. Axuiezer, 1. G. ProxmoDA, and A. G. SitENKO, Scattering of elec-
tromagnetic waves in a plasma (Russian text), J. Zhur. Ekspil. © Teort. Fiz.:
Am. Inst. Phys. translation in Soviet Physics JETP 33: 6, 576-582 (1957)"
F. D', Kamw, Long range interactions in ionized gases in thermal equi]ibrium’
Astrophys. J. 129, No. 1, 205-216 (Jan. 1959). ’
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In connection with these remarks, Thompson referred to some problems
treated by Edwards [54] concerning the evaluation of the equilibrium
properties of a plasma. In this work it was necessary to calculate the
partition function

7= [ [atat akagew (),

2 &
H= jmi+ 3 —
- T35

i)

where

The integration with respect to the velocities is trivial and we are left
with integrals over the configuration space. If the potentials were short
range, this could be treated by a cluster expansion, as is used by Mayer
and others. Edwards’ technique is to split the potential effectively as
follows:
_1_ exp(=r/h) {1 _ __9_<—__@} _
¢ = T = r + r r = ¢s + 4’l7
and to use the Mayer expansion for ¢;. For ¢; he uses the collectivé co-
ordinates of Bohm and Pines, that is, the quantities

Pr = Z exp (k- x;).
J

This requires the introduction of the Jacobian J(pz, x;), which is found
to be proportional to :

exp (—pp*/2N),

after which the integrals can be obtained. There remains the problem of
determining the correct value of h, which is so far an arbitrary parameter.
This is done by using a minimum principle. The free energy is calculated,
and Edwards insists that one must have dF/9h = 0. This leads to an
integral equation for h, which gives the result that h ~ Ap, the Debye
length. '

Then Gross took up the subject, referring to work he did with Bohm,
described briefly in reference [6]. Here a completely collective approach
was used. A few of the equations are given below.

" The Hamiltonian for the motion of the electrons is taken in the form

=3 @D/2m+ 33 Vix: — x)) (5-107)

54, S. F. Epwarps, A variational calculation of the equilibrium properties
of a classical plasma, Phil. Mag. (8th ser.) 3, 119-124 (1958).
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where V' is the potential energy of two particles at the positions x;, x;.
The summation is over all 7, j, from 1 through N, with ¢ # j. A contact
transformation [55] is introduced as described by the equations

aQ @
Pr = g p: = ax; (5-108a)
with '
G =) myexp (—ik-x,) - (5-108b)
0k .

Here k (and similarly 1 in later equations) is summed over all integral
points =%y, ks, &=k3, with the exéeption of k¥ = 0 (which is necessary in

connection with the compensating background charge of .opposite sign).
From Egs. (5-108a) we obtain ' e

pr = Z exp (—ik - x;), pi = —1 Z ki exp (—ik - x;).
i . k
(5-108¢)

The transformation has the property that the Hamiltonian form of the
equations of motion is retained. When expressed in the new variables
px, Tk, the Hamiltonian becomes ’

1 2mre®
=5 ; (k- l)mgzrzpk+z -+ ; 5 Pwp—t (5-109)

By making the transformation (5-108a), the difficulties of the N-body
problem are split in two parts. One is that of solving the equations of
motion for the new variables, which have the form

. 1
pr = — — > (- W)mppn,
—
(5-110)
, 1 4qre?
T =5 ; {(& — h).- hymypmn — —%26— [

The second part is to solve the implicit equations (5-108¢) to get back
information about the particles in terms of the x; and the p;. This division
is similar to that of the general transformation theory of dynamics. There,
by making the transition to angle and action variables, the first part
becomes trivial and the second part hard. But many properties of systems
can be ascertained without analysis. of the second part. For the plasma

55. See, e.g., BE. T. WurrrAXER, Analytical Dynamics, Cambridge Univ. Press,
England, 1917, pp. 292-296.

C ——————
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the first part, i.e., solving the equation f01: pr and 7y, is not easy. 11;311’0
again many questions do not require inv:ertmg Egs. .(5—10.80). The c? 9}(13—
tive response of the plasma can be discussed entirely in t.erms o tl e
quantities built up from the pr and 7. One then deals with variables
particularly appropriate for correlation and turbulence theory.

Tt may be interesting to add an approximate trea‘?ment of Egs. (5—_1 10?,
following Bohm and Pines [56], although here a mixed representation 1
used and not the approach emphasized by Gross. From the two equations
(5-110) we obtain

o= g 2 (e DIl + - Hhrimaoss i =

— 55 > (e DA —B) - W _irai
Lk

dmre® ~~ (K- 1) 5
- ‘WTZ: T PriP—t (5-111a)

The single sum occurring in the last line of this formula can be written

dme® < (k- 1) 4 Dzl

- - iP—1-

o ; 7 exp [—i(k + 1)

Bohm and Pines, in treating a problem of this type,- assume that the only
contributions of importance in this sum are those with 1 = —k. The sum
then reduces to

. ATNé’ o
m_ e

The double sums can be taken together and reduced to

Y (k- (k- B)Tamafk-+i4h)
Th

which can be transformed into

— 3 (- po) exp (—ik- %)

Here Bohm and Pines assume that we may replace (k- pi)? !oy a mean
value. If we take this to be (k?/3) (PP mean = K*kT'm, we arrive at the
following equation:

2
b= — {4_7%@— R %} pr. (5-111b)

56. See BorM and PiNes, paper IT mentioned in Ref. 52, pp. 340-341.
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This leads to oscillations with a frequency

'__. 47|'N62 2KT 1/z
e= (T TR ) (5-112)

As is well known, this is an approximation for s

tudinal plasma, os pace-charge Waves‘(longi-

cill_atiog_s) in the elementary theory [57].

57. An accurate treatment leads fo . |
: to a factor 3 before k2(kT'/m). See B
ang EINES, paper menthned in Ref. 13, p. 1867; P. L. BHATNAéAI)t M.eeKnc?cfgI
Ia;; dia. II:IIa gEzzlszi IPrehén];nary report of the committee on dynamics of ionize(i
y ar ollege servat: ;
tioned in mes 50, g 3%) . atory (1952), p. 25; J. M. BureEers, paper men-

CHAPTER 6

CONTINUUM PLASMA DYNAMICS

Hans W. LiepManNN and Jurian D. Cour, Editors

6-1 Introduction (based on remarks by George Batchelor). The people
who are interested in the physics of gases and plasmas can be divided,
broadly speaking, into two groups. The first group constitutes the contin-
uum or field specialists who like to think of gases, ions, and electrons as
smeared over the whole of space. They are in their element when the mean
free path is small compared with all other lengths occurring in the plasma.
The other group comprises those who are equally in their element when the
opposite situation holds. These people come with the point of view that

' space is mostly vacant and the occurrences of particles are such special

events that they must be treated with the individual respect that is their
due. In the present chapter, we shall be concerned with the accomplish-
ments and aspirations of the first group.

As a matter of fact, the distinction between the two points of view is not
so clear as was once supposed. Aerodynamicists have become quite famil-
iar with phenomena like shock waves, where large changes occur in one or
two mean free paths. They have also learned to handle the problems of

" flight at low densities, where the mean free path is comparable to the thick-

ness of the boundary layer. The word “continuum” is now being used in
an extended sense to describe not only the physical model that is being
used, but also the approach or the attitude toward the problem. If the
problem is formulated in terms of a relatively small number of dependent
variables, then the continuum approach is being used. If the number of
dependent variables is large, the particle approach is being used. Since
only a reasonable amount of information can be digested from a given
problem, the dependent variables of the particle approach must finally be
condensed by some averaging process. Thus the distinction ultimately
resides in whether the average occurs before or after the analysis, ie.,
whether statistics precede or follow mechanics.

Obviously there exist regimes for which one of the approaches becomes
particularly simpler than the other. For example, one would hardly think
of dealing with water waves from the particle point of view, or with
continuum mechanies in molecular beam experiments. In the dynamics of
conducting gases there does exist, however, a broad realm of conditions
where both approaches can be applied and where the choice is often a
matter of taste or of previous experience and skill. The continuum equa-~
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