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In the past few years there has been an astonishing upsurge of interest 

in the science dealing with the interaction of deformable conducting 
materials (particularly conducting fluids) and the electromagnetic field. 
This science has been variously called plasma dynamics, magnetohydro­
dynamics, · hydromagnetics, magnetoaerodynamics, and Hg-dynamics. 
All fall short of expressing its proper scope. But however called, the 
science has an assured fascination for those now working· in it and the 
promise of an exciting future for those who will enter it in years to come. 

Almost certainly, the secret of success in controlling the fusion reaction 
of,_the light elements lies in mastering the use of electromagnetic fields to 
co~trol the 100 odd million degree plasmas in which such fusion will take 
place. When such mastery is achieved, the deuterium in the sea will pro­
vide power in quantities to satisfy our wildest dreams. Missile and space 
E\ngineers see in magnetoaerodynamics the possibilities of achieving 
greatly increased specific thrusts of rockets which will change space 
vehicles from flying fuel tanks to machines with respectable payloads. 
They also see the possibility of magnetic shields and magnetic wings for 
re-entry into the earth's atmosphere. More and more, astrophysicists are 
recognizing that magnetic fields are a powerful agent in the dynamics of 
our universe. Our own earth, sun, planetary system, stars, and the material 
between them are all profoundly influenced by magnetic fields. As 
engineers develop new magnetrons, klystrons, and traveling wave tubes, 
they' too find that they must master the difficult art of understanding 
the· interaction of beams of charged particles with electromagnetic fields. 

Even now, our goals for producing high temperatures, high frequencies, 
high forces, and high velocities by electromagnetic fields exceed by many 
powers of ten those limits which we accepted complacently only a decade 
or so ago. Our everyday chemistry, thermodynamics, strength of mate­
rials, and so on deal with individual particle energies of the order of a few 
electron volts or leEJS. To the man in the street, this level determines the 
nature of the physical world around him. Yet, now that we are achieving 
control of nuclear interactions, the level of interaction is being stepped up 
by· a factor of over a million, and a whole new kind of daily reality lies in 
store for us. The intermediary for the control of this vastly increased 
level of activity will almost certainly be the electromagnetic field. In the 
absence of control, this vast difference in interaction levels manifests itself 
in the explosive violence of the nuclear bomb. But as we learn to bridge 
the gap in gentler fashion, such mastery will surely have a profound 
effect on the concepts we now take for granted at the lower end of the scale. 
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iv PREFACE 

In the Fall of 1957, the Air Force Office of Scientific Research, recogniz­
ing the mounting scientific interest in the whole field of plasma dynamics, 
asked the National Academy of Sciences to prganize an international 
symposium which would bring together top-ranking scientists working on 
the many different aspects of the subject. The National Academy ap­
pointed a committee consisting of Professor William Allis, Professor 
Johannes Burgers, Professor Walter Elsasser, Doctor John Pierce, and 
Professor Francis Clauser, chairman, to organize such a symposium. The 
committee decided to invite men from the fields of astrophysics, fluid 
mechanics, thermonuclear physics, gaseous discharges, electron beam 
dynamics, statistical mechanics, and aerodynamics. The list of partici­

. pants is given on the following page. 
The symposium was held at Woods Hole, Massachusetts during the 

week of June 9 to June 13, 1958. Sessions were held during mornings and 
evenings, with afternoons free for recreation and discussion. Only a 
single session took place at any given time and everyone participated in 
that session. No formal papers were presented. Each session had a chair­
man, an introductory speaker to presen-~ the subject for discussion in a 
provocative manner, and an editor to put the material that was presented 
during the discussion in suitable form for inclusion in the present volume. 
A transcript of the discussion was taken for the benefit of the editors. 
After the first day or so, th~ participants were on a first-name basis and the 
discussion became both animated and penetrating. The consensus seemed 
to be that it was a healthy experience to be forced to defend those con­
cepts which you and your colleagues "take for granted before a group 
having widely different concepts to which they will cling with a tenacity 
equaling your own. It is probably not too presumptuous to say that the 
resulting record of the symposium which is contained in this volume gives 
as broad a picture of the field of plasma dynamics as has yet been presented.· 

On behalf of the members of the organizing committee as well as the 
participants in the symposium, I should like to extend our grateful thanks 
to Mr. John Coleman and the National Academy of Sciences and to 
Colonel Pharo Gagge, Dr. William Otting, and the Air Force Office of 
Scientific Research for the great effort they put into making the sym­
posium profitable and in providing the support which made it a success. 
I should also like to thank Mr. Joseph Byrne of the Addison-Wesley Pub­
lishing Company, who was present during the symposium and who played 
the role of executive editor in arranging the many details connected with 
publishing the present volume. 

Baltimore 

April 22, 1959 

-····~··---·~---~-=-

FRANCIS H. GLAUSER 

Chairman, Symposium Committee 

General Editor, Symposium Proceedings 

--••«•-· ·- ··-·- ·--------·-·----------
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o~ magnit~de less than wp, and this may be of considerable use in studying 
high-de~s1ty plasmas. The phase characteristic of Fig. 4-23 for no static 
magnetic field has the asymptotic low-frequency characteristic 

_ (:J ~logb/a 
w - • 2Ke Wpa, W << Wp, w/(:J « c, (4-36) 

wh~re a is the plasma radius, b the l"adius of the surrounding metallic 
cylinder, and Ke is the relative dielectric co;nstant of the medium between 
<:" ~d b. An analysis of a.nonuniform plasma in which the density variation 
IS g1~en _by Eq. (~34) shows that the low-frequency asymptotic phase 
veloc1t~ IS pr~port1onal to the average plasma frequency [81]. Hence when 
(4-36) is applied to calculate electron density, it yields average density. 

CHAPTER 5 

STATISTICAL PLASMA MECHANICS 

The Bridge between Particle Mechanics and Continuum Mechanics 

JOHANNES M. BURGERS, Editor 

5-1 Introduction. Many speakers at this Symposium have made use 
of the continuum equations to describe the flow of an ionized gas or of its 
constituen,ts from the .hydrodynamic point of view. Sometimes the equa­
'tions have been applied in a rather detailed form; in other' cases simplified 
forms have been preferred. The importance of the continu~m equations is 
fully recognized and they serve as a useful tool in many problems. How­
ever, the fuformation they offer is not always suffi.9ient; and we must then 
have recourse to distribution functions for the particle velocities and 
introduce th!') Boltzmann equation. 

It will be appropriate therefore to present a summary of the continuum 
equations and to review a number of their applications. This will bring 
us to several cases where the particle point of view must be called upon 
to help. It will also lead to a discussion of some basic concepts implied in 
the Boltzmann equ1;1.tion. It is hoped that the following account of the 
material considered in the session devoted to this subject will provide a 
background for comparison of questions treated by speakers in other 
sessions. In arranging the subject matter the author has taken the liberty 
of deviating from the order in which points of view were brought forward 
in the discussion, and also has interpolated a few references to existing 
literature where this appeared to be helpful. He also records with gratitude 
the help received from the speakers who supplied additional information 
concerning their contributions after the first draft of this chapter had been 
completed. 

Since the continuum equations have been treated by many authors, it 
is not necessary to go deeply into the mathematical aspects of their deduc­
tion. The classical treatise by Chapman and Cowling, The Mathematical 
Theory of Non-Uniform Gases [I], is well known. The participants in the 
Symposium were very fortunate to have Professor Chapman in their 
midst. A different method of treatment is that in which one works with the 
moments of the Boltzmann equation. This is the method that was used by 
MaXW'ell. Grad, in a paper "On the Kinetic Theory of Rarefied Gases" [2], 

1. S. CHAPMAN and T, G. CowLING, The JJ.f athematical Theory of Non-Uniform 
Gases, Cambridge University Press, 1939, with notes added in 1951. 

2. H. GRAD, On the kinetic theory of rarefied gases, Comm. on Pure and 
Applied llfath. 2, 331-407 (1949). 
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has dev~loped ~his method very fully, in such a way that it can be applied 
to obtam a thi!d-order approximation. The specific problems connected 
with this approximation, however, were not considered at the Symposium 
nor were the points of view investigate.cl in great detail by Ikenberry and 
Truesdell i~ their paper "On the Pressures and the Flux of Energy in a 
Gas accordmg to Maxwell's Kinetic Theory," I and II [3]. 

The present author has treated the deduction of the continuum equations 
by r:ieans of the. method of moments in a series of lectures given at the 
Institute for ~lmd J?ynam~cs and_ Applied Mathematics of the University 
of Maryla.nd, m which var10us features connected with the application of 
the eq~at10?s have been. analyzed [4]. The deduction is based upon the 
approximat10n of the distribution function by means of a convenient 
expres~ion containing (for each species of molecules) thirteen adjustable 
coefficients, squares and products of which are neglected. The main 
equations of !his report will be briefly recapitulated in Sections 5-2 through 
5-6; for details of the deductions the reader is referred to the lecture notes 
themselves. 

Reference must be made to a paper by Kolodner, "Moment Description 
of Gas Mixtures" [5], which in a number of respects runs parallel to the 
treatment given in the lecture notes. 

A recent paper reviewing what can be deduced more directly from 
Boltzmann's equation was published by Gross, "Dynamics of Electron 
Beams and Plasmas" [6]. . 
. 3. E. IKENBERRY and C. TRUESDELL, On· the pressures and the flux of energy 
m a gas according to. Maxwell's kinetic theory I, J. Rational Mechanics and 
A.nalysis 5, 1-54 (1956); C. TRUESDELL, idem II, ibid., 55-128. 

4. J. M. BURGERS, The application o~ transfer equations to the calculation 
of diffusion, ~eat conduction, viscosity and electric conductivity, parts I and II, 
Inst. for Flmd Dynamics and Applied Mathematics, U. of Maryland, Tech-
nical Note BN-124a/b (May 1958). · 

. 5·. I. I.' KoLODNER, Moment description of gas mi:irtures I, Inst. of Math. 
Sm., NYU, ~Y0-7980 (September 1957). Grad mentioned in a letter that 
~olodner i~ his thesis (NYU, 1950), which unfortunately was never published 
m full, derived the complete set of moment equations for an arbitrary mh.-ture 
of gases, and calculated the relevant collision integrals for general force laws. 
The re~o~t o~ 1957 extends the results to include magnetic fields, and specializes 
the collision mtegrals to coulomb forces. A complete set of collision integrals bas 
bee~ e".al_uated,. including matrix beat conductivity and viscosity coefficients for 
the md1v1dual gases, as well as all the conventional coefficients, such as Spitzer's 
and Landshoff's parallel and perpendicular resistivity. The temperature differ­
ences between the gases can be taken arbitrarily large in ·this approximation 
method. · 

6. E. P. GRoss, Dynamics of electron beams and plasmas Electronic Wave 
Guides, Symposium Series Vol. 8, Microwave Research Institute, Polytechnic 
Institute of Brooklyn, 1958. 
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5-2 The Boltzmann equation. Plasma dynamics, as a part of kinetic 
gas theory, starts from Boltzmann's equation for the behavior of the 
functions F 8 describing the velocity distributions of the various types of 
particles present in a gas mixture. This equation has the form 

aF. + ~.~ aF. + fsh aF. = (dFs) . 
at axh m. a~.h dt coll 

(5-1) 

Subscripts s, t, ... refer to the different kinds of particles present in the 
gas; the ~sh are the velocity components of a particle of type s, having a 
mass ms and possibly an electric charge e. (electrostatic units); and F. is 
the distribution function for the ~sh·' The fsh are the components of the 
force acting upon a particle of type s; in calculating the f.h, attention is 
given only to so-called field forces (electric and magnetic fields, and in 

some cases gravity). 
The forces coming into play in collisions between particles are not 

included in fsh, but are treated separately. They are accounted for in the 
expression (dF./dt) 0011 appearing on the right side ofthe equation. Various 
forms are given for this right-hand member. .Since it refers to the inter..: 
action between at least two particles (and sometimes between more than 
two), a proper treatment necessitates the introduction of distribution 
functions referring to the simultaneous position and state of motion of 
more than one particle. We shall come to this subject fo Sections 5-18 
and 5'-19. For the present we follow the customary.method of treatment, 
introducing only functions F. for single particles. 

There are cases where collisions· are of such slight importance in com­
parison with the effects of electric and magnetic field forces that the right 
side can be replaced by zero. In. other cases collisions may be of some 
importance, but it is sufficient to take account of them in an approximate 
way. According to a method proposed by Krook [7], this can be done by 
introducing a mean collision frequency and assuming that each coUision 
redistributes the velocity components in a random i:nanner. A refinement 
of this method is possible, in which mean collision frequencies are differerit 
for different combinations of collision partners, and in which the random 
velocity distributions resulting from the collisions are based on mean fio'w 
velociti!'ls and mean temperatures, which also can be different for different 
combinations of collision partners. It is even possible to introduce mean . 
collision frequencies which are dependent upon the velocity of the particles 
s to which the distribution function F. refers, the averaging being done 
only with respect to the various velocities of the collision partner .. 

-7. M. KROOK, Dynamics of rarefied gases, Phys. Rev .. 99, 1896-1897 (1955); 
E. P. GRoss and M. KRoOK, Model for collision processes in gases: small­
amplitude oscillations of charged two-component systems, Phys. Rev. 102, 593~ 
604 (1956). 
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In those cases where collisions are of great importance the standard 
expression introduced on the right side of Eq. (5;_1) is that for binary 
collisions, in which account is taken of the geometry of the collision and of 
the nature of the forces acting between the colliding particles (considered 
as point centers of force without rotation or internal vibration): 

The summation with respect to the subscript tis extended over all possible 
collision partners, including the case t = s. F~ and F~ are distribution 
functions having as arguments the velocities of the particles s and t, 
respectively, after the collision. The relative velocity g is defined by 

The parameters b and E specify the geometr,y of the collision, b being the 
distance of the particle s from the original line of motion of the particle t 
(before the collision started) and E representing an angle of position. The 
element b db dE [to which the second integral sign on the right side of 
Eq. (5-2) refers, the first integral referring to di;i] is an element of the 
collisional cross section. The velocity components i;~h' ~~h of the particles 
after the collision are influenced by the relative velocity g, by the mag­
nitude of b, and by the force field coming into play in the collision process. 

In . calculating the velocities after the collision, attention usually is 
given only to conservative collisions, in which the particles suffer no in­
trinsic change. There can be, however, collisions in which energy is 
exchanged with interior degrees of freedom, in such a way that the rota­
tional, vibrational, or electronic state of one or both of the partners is 
altered; or the collision can lead to dissociation, ionization, recombination, J 
a chemical reaction, or exchange of energy with a radiation field. At 
sufficiently high temperatures, where quantum effects can be neglected, 
it is possible to take account of exchange of energy with rotational motion 
and with vibrations in an approximate but on the whole satisfactory way. 
When change of electronic state or a chemical reaction can occur, a de­
tailed treatment becomes very difficult. Quantum mechanics is involved, 
and the presence of another particle besides the direct collision partner 
may be of importance. So far the only practical way of treating phe­
nomena involving such reactions within the compass of plasma dynamics 
would be to introduce mean collision frequencies (or, alternatively, mean 
collision cross sections) for each phenomenon to be considered, and to 
assume that the particles resulting from the reaction will have a random 
·distribution of their velocity components around some mean flow velocity 
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and corresponding to some mean temperature, cj.epending upon the type of 
reaction investigated. Here these problems will be left aside. . 

There are cases where the assumption of· discrete binary collisions 
appears to be inappropriate, and where the almost simultaneous effect of 
a great number of weak collisions must be· considered. The ~orm then 
given to the right side of Eq. (5-1) is the Fokker-Pl~nck ex?ression _for t~e 
average resultant effect .of a large number of small mteractions, which will 
be considered in Sections 5-18, 5-20, 5-21, and 5-22., · 

5-3 Equations of transfer (moments of the Boltzmann equation). The 
equations of motion for the gas are deduced by taking the moments ?f both 
sides of the Boltzmann equation, with reference to factors which are 
functions of the velocity components. The equations obtained in this way 
are called "equations of transfer1" since the integral of the right side gives 
information concerning the transfer of momentum, energy, or some 
other quantity in the collisions. . 

The left side of the Boltzmann equation is linear in the distribution 
function F 8 and its mo~ents can be obtained by a straightforward inte­
gration. It. should be observed that when the multiplying f~ctor i~ of 
degree n in the velocity components, there always appear spatial deriva­
tives of moments of. degree n + 1, in consequence of the presence of the 
factor ~.h before aF./axh in Eq. (5-1). · 

The treatment of the right side of Boltzmann's equation brings greater 
problems. Apart from the trivial case in which the righ~ side_ is absent, 
the integration is simple only in those cases where the right side can be 
expressed with the aid of Krook's approximate formulas. It is ~lso r~la­
tively simple when a Fokker-Planck expression is used on the right side, 

· since this expression again is linear in the distribution function. . 
With the form (5-2) of the right side, which is the one that has received 

most attention it is in general not possible to evaluate the necessary 
integr~ls, unle:s series developments are introduced ~or the distribution 
functions F., F1, F~, F~. The only exception is the special case of molecules 
repelling each other with a force inversely proportion~l to the _fifth pm~er 
of the distance (so-called Maxwellian molecules). The mtroduct10n of series 
leads to problems concerning the most appropriate method o~ solution of 
the equations and concerning the convergence of the solut1011s so. ~on­
structed. The circumstance that the left side of the integrated equat10ns 
always contains certain moments of a degree higher than those appearing 
in the main terms complicates the problem of convergence. These ques- . 
tions are co~sidered in references [1], [2], [3], and in other papers. For­
tunately, in plasma dynamics, the problems of highe: approximati01:s and 
of convergence thus far have not forced their way mto the analysis. In 
the following sections they will be left aside. 
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5-4 Expansion· of the distribution function. In the "first-order" treat­
~ent of the right side of the Boltzmann equation, the distribution function 
1s assumed to be of the form 

(5-3) 

where <l>s i~ a small quantit~ whose squares and products can· be neglected. 
The func~10ns Fso, <l>s are given below in Eqs. (5-13) and (5..:..14). · 

We write Ns for the number density per unit volume of the particles of 
types. The mass density is given by Ps = N.m. and the charge density by 
Pes = N.e. for each type separately. For the gas as a whole we have 

P = LPs; Pe= 'l:P.es• 
8 

For each species of particles we define mean flow velocity components ush 
as the mean value of the particie velocities: . · 

(5-4) 

A mean flow velocity for the gas .as a whole is defined by 

(5-5) 

We then ·write 

(5-6) 

and call ~he Wsh the components of the diffusion velocity of the particles of 
types with respect to the mean mass flow. We also write 

with (5-:7) 

It is convenient to introduce the following quantities referring to the 
mean mass flow: , 

(5-8) 

and 

The electric current strength is given by" 

with (5-9) 
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The temperature Ts of the particles of type s (with reference to the 
mass flow velocity) is defined by · , · 

(5-10) 

where K is Boltzmann's constant. The mean temperature of the gas as a 
whole follows from 

It is convenient to write 

NT= 'i:N.T •. 

2 2KT 
as=-· 

ms 

. (5-11) 

(5-12) 

Here a. is defined with the aid of the mean temperature T of the gas (a 
different definition will be used temporarily in Section 5-15). 

For Fso we now assume . · 

· N 8 ('-c;) Fso = 3/23 exp - 2- • 
7r· . a. a. 

(5-13) 

Evidently F.0 can be expressed as a function of the ~.h; it then has as 
parameters the number density N., the. mean :mass fl.ow velocity uh, and 
the mean temperature T. 

The following expression is used for the function <Ps: 

</>8 = AshCsh + B.(c; - !a;) + Bshk(CshCsk - -! OhkC;) + 
+ c.h(c;c.h - ija;c.h). (5-14) 

The coefficients Ash, etc., are functions of the coordinates and the time, to 
be found from the equations which will be developed. In working out the 
integral of the right side of the Boltzmann equation, products and squares 
of these coefficients are neglected. When the development is limited to 
the terms occurring in (5-14), it is not necessary to introduce Hermite or 
Sonine polynomials. The degree of approximation reached in the results 
is the same as that given by Chapman and Cowling .in the treatment of a 
mixture of gases as presented in Chapter 9 of reference [l]. 

By calculating the mean values of the Csh and of powers and products of 
these quantities on the basis of the distribution function (5-3) in conjunc­
tion with (5-12) through (5-14) it is possible to express the coefficients 
Ash, etc., with the aid of the diffusion velocities Wsh, the temperature 
differences Ts - T, the deviation components of the pressure tensor 
(Ps)hlc [defined in equations (5-16) below], and the components of the 
heat fl.ow, q•h· This makes it possible to bring the resulting equations into 
a forn1 directly related to physical quantities. 
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The following multiplicative factors will be used· . . 

In all, thirteen equations are obtained for each constituent of the gas 
mixture. 

5-5 Additional definitions. Mean values indicated by a bar over a 
quantity refer to averaging over all velocity components of the particles 
of the type considered, making use of the distribution function F for 
these particles, as defined by (5-3) in combination with (5-12) thr~ugh 
(5-14). 

Quantities characterizing field forces are: 

Acceleration of gravity:. Gh 

Electric field strength: Eh (electrostatic units) 

Magnetic flux: Bh (magnetic units; the magnetic permeability 
of space is taken equal to unity and effects 
of magnetic polarization are' left out of 
account). 

We write 

E* = E + (u >< B)h 
h h • c . (5-15) 

Components of the pressure tensor: 

(5-16) 

" "-p = L..JPs - NKT. 
8 

Moments of the third degree and heat fl.ow components: 

(ps)hlcl = N.m.cshCskCsz, 

q.z = fr(Pshhi = frN.m.c;c.i. 

Residual heat fl.ow vector: 

(5-17) 

(5-18a) 
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reduced residual heat fl.ow vector: 

(5-18b) 

[with neglect of a second order t.erm i(T./T - l)w.h]. 
For the treatment of binary collisions between particles sand t (where t 

may be the same ass) we need 

y = m./mo, 

a~= 2KT/ms [seeEq. (5-12)], 

Collision cross section for a given relative velocity g: 

sW = S~!> = 27rJ (1 - cosz x)b db; (5-19a) 

average collision cross section for all possible relative velocities: 

z<li) = z<lil = 4 f"' dg g2i.+3 exp (-l) s(l) (5-19b) 
st ts 7fl/2a2f+4 ·a a2 st· 

For coulomb interactions between charged particles (both for attraction and 
repulsion) we introduce the Debye shielding distance: 

We also write 

Then [8]: 

with 

3KT 
A= - 2- rn. 

e 

S (2) = S7r (eset)2 In A. st µg2 , 

Z<13J _ z<22) _ 2z 
st - st - st, 

. ;-::. (e.e t) 2 Zst = 2v7r KT ln A. 

(5-20) 

(5-21) 

(5-22a) 

(5-22b) 

(5-22c) 

8. More refined expressions are given by CHAPMAN and CowLING (Ref. 1, 
p. 179; the notation is different from that used in the text). Their expressions 
make the ratio s<2) ;srn slightly less than 2~ But even these expressions are 
based upon assumptions concerning the best way of cutting off divergent 
integrals. 
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It should be kept in mind that these expressions do not hold for charged 
particles still carrying an electronic system (e.g., singly charged ions of an 
element other than H) ; in that case the electronic system will exert forces 
of another type when the particles approach each other closely and the 
cross sections S and Z have additional terms which may not vanish for 
infinite relative speed or infinite temperature (compare Section 5-15; last 
paragraph). 

Derived quantities (all symmetric in s and t): 

2 z<12) 
Z _ l st . 

st - - 5 zcu) ' 
st 

Z(22) 
If _ st • 

Zst - ZC1l) , 
st 

,,, -
•"St -

Y1 = 3x + S's1(m;/m1mo); 

(5-23) 

Ys = 3y + t"st(mrf m.mo); 

Ys = (3 T Sst)X; (5-24) 
Yt = (3 + !:s1)y. 

Coefficient· of friction for the diffusion of particles,. s and t relative to 
each other: 

Components of the tensor (Ms)hk oscurring in (5-34) below: 

h,k 

(2e./m.c)[(P.)i2B 8 - (P.)i 8B2] 

(2e./m.c)[(P.hsB 1 - (P.)r2Bs] 

(5-25) 

11 

22 

33 (2e./m.c)[(P.)raB2 - (P.)z 3B 1] (5-26) 

12,21 

13, 31 

(e./m.c)[(PshsB1 - (P.)zsB2 - (P.)uB 3 + (P~)z2B 3] 

(e./m.c)[ - (P.h2B1 + (P.)uB2 - (P.)saB2 + (P.)zaBa] 

The off-diagonal terms are symmetrical in h and k, and the trace of the 
tensor is zero. In the place of the (P.)hk we might just as well have written 
the (Ps)hk· 

5-6 Resulting equations. (A) Equations for the flow of the gas as a whole. 

Con thmity equation: . 
Dp 
Dt + pe = 0. (5-27) 

5-61 RESULTING EQUATIONS 

Momentum equation: 

Duh aPih G E* (] X B)h P - + - - P h - Pe h - = 0. Dt axi c 

Equation for the internal energy: 

D (3 ) 5 1 p . aqi E*J o 
Dt 2 P + 2 pe + 2 iiEii + axi - · i • = · 

An alternative is the equation for the total energy: 

129 

(5-28) 

(5-29) 

P ~t (~:+ ~ u 2) + a~i ('ifiPii) + :;: - pGiUi - Ei(Ji + PeUi) = 0. 

(5-30) 

(B) Equations for the separate constituents of the gas mixture. 

Continuity equations: 

Dp · a 
D; + Pse + axi (p.w.,) = 0. (5-31) 

Momentum equations for the diffusion velocities, after elimination of 
Dut./ Dt with the aid of ( 5-28) : 

f D auh a(P.)ih Ps aPih] l Dt (PsWsh) + PsWsh€ + PsWsi axi + ax:- - p axi 

+ ap, _ Ps ap _ (Pes _ PsPe) Et _!:_{(ls _ Ps 1) X B} = 
axh p axh p c p h 

= - 2': K.1{(wsh - Wth) - Zst(Xrsh - yr th)}. 
t 

Equation for the internal energy: 

(5-32) 

1 ) aqsi Dui + D (3 ) + 5 G E*J _ 2 (P. ijEij + axi + PsWsi Dt Dt 2 Ps 2 p.e - Ps iWsi - i si -

(5-33) 



130 STATISTICAL PLASMA . MECHANICS 

Equation for the viscous stresses: 

[gt (P.)hr. + (P~)hkE + a!z {(Ps)hr.t -i ohr.qsz} + 

+ ( . Duh Dur. 2 Duz) 
Ps War. Dt + Wah Dt - 3 OhkWsz Dt + 

(P ) au,. auh ·2 au·]· + s hl axz + (Pa)r.z axz - 3 ohr.(P.)z; ax~ + 

+ PsEhk - Ps ( GhWsk + Gr.Wsh - ~ Ohr.G,'W8 i) -
- ( EtJ.r. + EU sh - ~ Ohr.E1Jsi) - (M8 )hk = 

V2 N zc22i( ) = - 5 .a. •• P. hr. -:-

Equations for the components of the heat flow: 

[ D ( ) + auh au; 1 a 
Dt qsh qshE + qsz axz + (Pshz; axz + 2 axz (Ps)hlkk 

(CHAP. 5 

(5-34) 

5 Ps a (P ) + (P ) Duz 5 { I D auh}] - 2 Ps oxz s hl s hl Dt - 2 Ps Ps Dt CPsWah) + WahE + Wsz oxz + 

+ £ N.K2T. oTa - G·(P) . - p •• E*(P) p •• (q: x B)h 
2 m axh • • h• -P i • hi - - = 

• 8 p. c 

"K 5KTmt · 2 KT = LJ stZst 2m m (wsh - "wth) - -5 Kss - z1s~r8h -
t o • m. 

(5-35) 

In the summations with respect to tin Eqs. (5-34) and (5-35) the case 
t = s must be excluded, since it has been introduced as a separate term. 
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The left sides of Eqs. (5-27) through (5-35) are independent of the 
assumptions introduced to describe the effect of the collisions. The 
right sides of Eqs. (5-32) through (5-35) have been based, as stated 
before, upon Eq. (5-2), together with (5-3), (5-12),. (5-13), and (5-14). 
The right sides of Eqs. (5-27) through (5-31) are zero, independently 
of any assumption about the form of the right side of the Boltzmann 
equation. 

No terms have been omitted in the equations, but in many cases various 
terms on the left sides can be left out of account. In order to arrive .at the 
usual equations for the calculation of diffusion coefficients (including the 
coefficient of electric conductivity), viscosity, and heat flow, the terms 
between [ ] should be omitted. In certain cases, however, it ~Y be inter­
esting to retain the time derivatives in order to obtain information concern­
.hag relaxation times. In the ern~:rgy equation (5-33) one will usually omit 
the third term of the first line, but the term aq •• /ax. must be retained when 
the divergence of the heat flow is of importance, and the term i(P s)i;Ei; 
when viscous dissipation has to be taken into consideration. These terms 
have been retained also in Eq. (5-29) for the gas as a whole [the sum 
'L, 8 p8W8i(Du./Dt) = 0 in consequence of (5-5) and (5-6)]. 

5-7 Alternative form of the equations· of motion. In cases where colli­
sions betweeu particles are almost or wholly. negligible, the diffusion 
velocities Wsh may become of the same order of magnitude as the mean 
mass fl.ow velocity u.,.. In such cases it may be less convenient to .use the 
equations of motion in the form given in the preceding section, and one 
may prefer equations based upon the velocity components U 8 h for each 
separate component, as defined by Eq. (5-4). When this is done, a number 
of quantities must be defined differently from before. 

The random or peculiar velocity of the particles of type s will now 
have the value 

C~h = ~ah - Ush, (5-36a) 
so that 

with C~h = 0. (5...:36b) 

The components of the pressure tensor and those of the heat flow yector 
must be defined with reference to the flow velocities Ush· We obtain 

P~ = '!Nsms(c~) 2 = Ps - fp.w:, 

(P~)hr. -:- (p~)hk - ohkP~i 

(5-37) 
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It must be observed that now it is not possible to sum the pressure com­
ponents or the components of the heat flow for the various species of 
particles, since they are referred to different flow velocities. · 

We further write . 

Ds a a 
Dt = at + Usi OXi 

(differentiation with respect to time, following the motion of a particular 
constituent of the mixture). . . . 

The components of the electric current carried by the particles of 
type .8 will be defined by 

(5-39) 

so that the i1ew quantities J~h combine what in the other description are 
distinguished as convection current and conduction current. 

The equations obtain the following forms: · 

Equation of continuity [replacing former Eqs. (5-27) and (5-31)]: 

or 

ops o · at + OXi (pfUsi) = 0 

DsPs + oU8 i _ O 
Dt . Ps i'Jxi - . 

Momentum equation [replacing former Eqs. (5-28) and (5-32)]: 

D.(ush) + _j__ {( o). } G (J2 x B)h 
Ps Dt axi Ps ih - Ps h - PesEh - c · = 

= effect of collisions. 

Energy equation [replacing former Eqs. (5-29) and (5-33)): 

. (5-40) 

(5-41) 

D. (~ P0) + £ 0 au.i + (P 0) ·· au~i +'-.JJq~i - effect of collisions. 
Dt 2 8 2 Ps axi · 8 ' 3 axi axi -

Alternative form [replacing Eq. (5-30)]: 
(5-42) 

D. (!! pg + u;) + _j__ { ( o } oq~i i o 
Ps Dt 2 Ps 2 axi Ush Pshi + OXi - PsGiUsi - E Jsi = 

= effect of collisions. (5-43) 
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It is not possible to obtain expressions for the right si9.es of these equa­
tions by a direct transformation of the right sides of the equations of 
Section 5,--6, because the latter have been derived with the aid of approxi­
mations holding only when the relative diffusion velocities of the various 
constituents and their differences in temperature are small. An approxima­
tion suitable when the differences in flow velocity and in temperature are 
arbitrary will be given in Section 5-15. 

5-8 Other procedures used in the deduction of transfer equations. 
(The observations in this section have been taken mainly from contribu­
tions to the discussion by Max Krook.) The procedure applied in Sections 
5-4, 5-5, and 5-6 was based upon the assumption that the distribution 
functions F. could be developed into series and that the coefficients 
appearing· in these series are sufficiently small so that an approximation 
could be constructed, proceeding according to the powers of a conveniently 
chosen parameter. The parameter chosen is related to the inverse of 
the collision frequency; the equations given in Section 5-6 represent a 
first step in the procedure, in which only terms of the first order are re­
tained. The Chapman-Enskog method, extensively treated in reference 
[1], is a device for obtaining successively higher approximations. The 
difficulties encountered are due to two circumstances: the nonlinear form 
of the right side of the Boltzmann equation, and the appearance on the 
left side of moments of an order one unit higher than the order of the 
main terms. This necessitates the introduction of specially designed cutoff 
procedures in order to arrive at a regular increase of precision in the 
results. A mathematical investigation into .the convergence of this pro­
cedure, adapted to the case of Maxwellian molecules, has been developed 
by Truesdell in reference [3]. 

Other methods have been proposed to cope with the cutoff problem. 
In most of them, a convenient particular form is chosen for the distribution 
function, containing polynomials with a number of adjustable coefficients 
which are supposed to be functions of the coordinates and the time. This 
distribution function is substituted into the Boltzmann equation and the 
moments of both sides are calculated with full account of the terms of the 
second degree on the right side. It is always possible to construct as many 
moment ·equations as there are unknown coefficients in the development, 
and in this way a closed set of differential equations of the second degree 
is obtained. With. modern computational machinery, such equations can 
be attacked. The degree of precision obtained is determined by the number 
of coefficients that have been introduced, and there is no longer the re-
striction that these coefficients should be small. . 
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The thirteen-moment method .devised by Grad in refe:vence [2] and the 
method worked out by Mott-Snuth [9] are based upon this idea [10]. 

Krook ob~erved that both the Chapman-Enskog method and Grad's 
proce~ure aim at the deduction of flow equations that hold within the 
field~ mdepend~~tly of boun,dary conditions. Their application to the 
boundary cond1~10ns relevant to a particular problem is considered at a 
later ~tag~. T~1s may not always be the most convenient approach when 
the s~tuat1on m the field leads to the appearance of sharp gradients of 
velocity or. temperatur~ .. rt ~ay then be more profitable to choose a 
representation of the. d1stnbut10n function in which the particular char­
acter of the boundary ?ata of the problem has been taken into account. 

As an e~ample, consider the problem of determining the structure of a 
plane sta~10nary shoe~ wave in an ionized gas, in the absence of external 
fields. With the defimtion 

<I>s(t, u, T) = (ms/27rKT) 312 exp [-m8 (t - u) 2 /2KT], 

the kinetic equations and the Poisson equation 

dE/dx = 47r L: N 8e8 

8 

have to be solved subject to the boundary conditions 

Fsrn, -oo) = Ns(-oo)<I>s(t, ~1i, T1), E(-oo) = O; 

E(+oo) = 0. 

De~ing the mo~ents M~~n of the distribution functions and the inter­
action moments J:,,~n by the equations 

M~~n = f tit2nF8 d!;, _/ 

J$;~n = ftit2n(dFs/dt)coll dt, 

9. H. M. MoTT-SMITH, The solution of the Boltzmann equation for a shock 
wave, Phys. Rev. 82, 885-892 (1951). 
. 10 .. GRAD made the point that the Hilbert-Ohapman-Enskog method of solu­

t10n g~ves an account o~ only a v~ry special subclass of solutions of the Boltzmann 
equat10~. ~e· has considered this subject in great detail in his article "Principles 
of the kmetic theory of ~ases," Handbuch der Physik, XII (1958). It is therefore 
that the procedur.e of usmg a polynomial expansion of the general solution of the 
Boltzmann equat10n, rather than a "normal" solution, is of so much importance. 
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we can derive, from the Boltzmann equation, the following sequence of 

moment equations: 

dM(s) 
m+i.n - ~ E[mM(s) + 2nM(s) ] = J<•l dx ms m-i.n m+l.n-1 m,n 

with m, n = 0, 1, 2, ... ; s = 1, 2. (5-44a) 

To construct a determinate set of N equations that involve only N 

moments, we set 
2 

Fs(!;, x) = Z:: <I>.(!;, uJJ, T>.) Z:: A~:~l(x)~it2n, (5-44b) 
>.=l m,n 

where thew are altogether N parameters A~·~l which are interpreted t.o be 
arbitrary, unspecified functions of x only. 'we choose N particular mo­
ments M~!q to serve as macroscopic state variables, along with E. The N 
parameters can then be expressed as linear homogeneous functions of the 
state variables: Thus any "extraneous moments" can be. eliminated from 
a basic set of N of the moment equations (5-44a). Moreover, the inter­
action moments in .these equations can be evaluated explicitly as quadratic 
functions of the parameters A~:~, and hence as quadratic functions of the 
state variables. In this way, for any selected order of approximation N, 
the problem reduces to the solution of a determinate set of N + 1 ordinary 
differeritiai equations-the Poisson equation and N moment equations. 
The four conservation requirements permit the elimination of four of the 
state variables. Boundary conditions for the moments .can be obtained 
from the formulas given above. 

The approximating form (5-44a) may be motivated in the following way. 
-As we proceed from x = -oo to x = +oo, the Maxwellian distributions 

<I>.(!;, Uii, T1) decay nonuniformly with respect to the magnitude and the 
direction of the molecular velocities, while the Maxwellian distributions 
<I>.(f;, u2i, T2 ) build up, also nonuniformly. The nonuniformity of the 
decay and the buildup are represented by the modifying polynomials in 
(5-44a) that multiply the two types of Maxwell functions. 

The approximation procedure may be generalized by adding to the 
form (5-44a) other modified Maxwell functions, based on other velocity-

temperature pairs. 
In the problem of Couette fl.ow, with or without heat transfer, we must 

in general work with the auxiliary distribution functions F + (f;, x) defined 
only for h > 0 and F_(f;, x) defined only for h < 0, since F(f;, x) is 
singular on the plane ~ 1 = 0 in velocity space. When the distance be­
tween the walls is a few mean free paths, the approximation is improved 
considerably by adding to sums of the form (5-44a) for F+ and F_, 
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modified Maxwell functions corresponding to the local flow velocity and 
local kinetic temperature. This type of generalization is now being applied 
to the shock wave problem. · 

Eugene Gross added some further comments and stated that his views 
on the problem of solving the Boltzmann equation for definite microscopic 
boundary conditions were in complete agreement with those of Krook 
except for some differences of emphasis. These views are set down. in a~ 
article on boundary value problems in the kinetic theory of gases [11]. 
As an example, the single relaxation time collision expression is used 
instead of the Boltzmann collision kernel. The most rigorous way of solv­
ing these problems is by the integral equation method described by Krook 
in reference [7]. The method can be carried through for ·several collision 
models, but it is probably not practicable for the rigorous Boltzmann 
expression. It gives an account not only of the half-range character of the 
distribution function near a wall, but also of the nonanalytic dependence 
of the distribution function on velocity. A simpler procedure is to take 
account of the half-range character but to slur over the correct analytic 
behavior with respect to velocity, hoping that the errors will not be too 
great. There is some justification for this if one is interested in only low­
velocity moments of the distribution function, such as density, stresses, 
. kinetic temperature, and heat flow. This justification can be inferred by 
examining· the similar but simpler mathematical theory of radiative 
tl·ansfer, where both exact and approximate solutions have been studied in 
detail. But even within the framework of the approximate half-range 
methods several different approaches are possible. Krook and his co­
workers are emphasizing half-range generalizations of the Mott-Smith 
approach to the theory of the structure of a shock front. This approach 
restricts the functional form of the half-range functions. The method is 
neat and leads to a relatively simple theory of the difficult nonlinear 
problems of gas dynamics. · However, the validity of the approach seems 
hard to ascertain. 

Gross has concentrated on a systematic half-range approach. The 
theory is considerably more C1.f1Ilbersome but more rigorous. Complete 
analyses are possible, however, for problems where the linearized Boltz­
mann equation applies. The full Boltzmann collision kernel can be 
handled. Two examples of this analysis have been published [12]. The de-

11. E. P. GROSS, E. A. JACKSON, and S. ZIERING, Boun.dary value problems 
in kinetic theory of gases, Ann. phys. 1, 141-167 (1957). 

12. E. P. GRoss and S. ZrnRING, Kinetic theory of linear shear fl.ow, Physics 
of Fluids 1, 215-224 (1958); E. P. GRoss and E. A. JACKSON, Kinetic theory of 
the impulsive motion of an infinite plate, Physics of Fluids Ii 318~328 (1958); 
E. A. JACKSON, Ph.D. Thesis, Syracuse U. (1958). 

I 
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tailed results of the first paper provided some insight into the remarkable 
range of validity of the slip flow approximation of continuum theory. 
The second paper shows that the integral equation approach is needed to 
discuss properly a time-dependent boundary value problem for time in­
tervals less than a few collision times. 

In an unfinished publication Jackson and Gross have investigated the 
justification of some of Krook's generalized collision models. This is done 
by showing that these models can be obtained by making a bi-orthogonal 
expansion of the exact Boltzmann collisiOn kernel. When this expansion 
is approximated by a finite sum, Krook's models result. Some of the more 
sophisticated models are excellent approximations to the Boltzmann 
equation. 

5...:9 Problems concerning electron beams. In the discussion Gross 
pointed out that one of the most important aspects of the Boltzmann 
equation is that it can lead to a closed set of equations in two limiting 
conditions: one can go to the hydrodynamic limit, and one can go to the 

· limit .where individual particles are followed. It may be interesting to 
devote some attention to the particle aspect, in view of the subjects which 
have been considered in other sessions of this Symposium. When the 
Boltzmann equation is combined with the idea of a self-consistent electric 
field, we arrive at the basis for the descriptions used in electron beam 
theory and in a great deal of pl;:i,sma physics. Herman Haus mentioned 
that much of the experimental work done on electron beams can be con­
sidered as a test of certain solutions of the Boltzmann equation for cases 
where short-range collisions can be neglected. In analyzing experimental 
situations, the velocity distribution is also quite often neglected, but when 
that is done we have put aside the Boltzmann equation itself as well. So 
let us keep the velocity distribution in view and reduce the Boltzmann 
equation to its left side only. To obviate the difficulties resulting when 
there is a magnetic field, let us exclude magnetic effects and . write the 
equation in the form (for electrons only) 

aF + ~h aF _ eEh aF = 0 
iJt dXh m d~h • 

(5-45) 

This equation must be combined with Maxwell's equations in order to link 
the electric field with the charge density. For simplicity we consider the 
positive ions as giving a uniform background charge of density +N 0e; then 

div E = 47re (N0 - N.), rotE = 0, (5-46) 

together with the equation linking Ne and F: 

(5-47) 
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[We might add the equation 

N.u. = jF~ d~, 

defining the mean flow velocity of the electrons and the electric current· 
. ' 

as a consequence of (5-45) we then find that current and charge dl:lnsity 
are connected by the usual equation of continuity, but this adds nothing 
new to what we have in (5-45), (5-46), and (5-47)]. 

Equations (5-45) through (5-47) contain the greater part of the theory 
of electron beams, provided they are supplemented by appropriate initial 
conditions and boundary conditions. (The reader should consult the 
material given in Chapter 4 by Gould.) 

In order to obtain the theory of the klystron, we suppose that there is 
only a component Ei parallel to the x1-axis (E2 = E 3 = O), and assume 
F to be independent of x2 and x3. We may then suppose that the value of 
F at the point x1 = 0 is given by an expression of the type 

F(h ~2 ~a X1 = 0 t) =_!!___exp -{[b - w(t)] 2 + ~~ + d}. 
• • ' ' 7f'a12aa a2 

(5-48) 

Modulation effects can be obtained by making w(t) of the form 

w(t) = Wo + W1 sin wt, 
• 

where w0 is a constant, w1 being the ·modulation amplitude. In many 
cases wo is made large compared with the thermal velocity a. In the usual 
form of the klystron, the value of N is practically a constant, but in other 
arrangements modulation of N is possible. 

The effects of "electron bunching" come to light if we consider the 
characteristics of Eq. (5-45). The effects of space charge are brought into 
the picture by (5-46) and kf)-47). When one temporarily ·assumes that E 
can be treated as a given function of x1, a formal solution of (5-45) satisfy­
ing the initial condition (5-48) can be written. One might use this result 
to calculate N. with the aid of (5-47) and substitute its value into (5-46) 
in order to arrive at an integro-differential equation for E 1. The resulting 
equation is complicated and is not linear. There appears the possibility 
that trajectories will cross in the x1, t-plane; this can lead to a kind of shock 
wave and will cause the production of harmonics of all orders of the 
modulation frequency. 

Another case is presented by traveling wave tubes. Here the E-field is 
the sum of two contributions, one a divergence-free field impressed from 
the outside, being a periodic function of, say, :PX1 - wt, \Vhile the other 
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field is connected with the electron density through Eqs. (5-46) and 
(5-47) as before. In this case a particular part can be played by electrons 
with velocities close to the wave velocity w/v. These electrons can be 
trapped ·between the crest and a trough of the electrostatic potential 
wave and there can be a strong exchange of energy between t~ese electrons 
and the wave. By means of an accelerated wave it is possible to pump 
energy into a group of such electrons and to speed them up close to the 
speed of light. Conversely, if the wave is slowed down, some of the par­
ticles will lose their energy and more or less turbulent motion can result. 

Hence there appear two types of nonlinearities, klystron bunching and 
trapping of electrons in a potential wave, which are inherently outside of 
the nonlinearities of hydrodynamics. Gross is of the opinion that these 
phenomena have not yet received the attention they deserve, and he ex­
pects that their investigation may be of importance for many fields of 
research, e.g. the theory of fusion processes, the physics of the solar atmos­
phere, and. the theory of the Fermi mechanism for the acceleration of 
cosmic ray particles [13]. 

In l'.eply to Gross' remarks, Herman Haus observed that the klystron 
problem actually has been solved, even with shocks [14]. Gross asked 
why people who are working with microwave tubes do not undertake a 
systematic study to understand more of these large-amplitude occurrences, 
since they lead to noise activity of an irregular nature and to turbulence. 

13. ·Reference can be made to a series of papers on plasma oscillations by 
D. Bom11.r and E. GRoss, starting with: Theory of plasma oscillations. ·A. Origin 
of medium-like behavior, Phys. Rev. 75, 1851-1864 (1949); B. Excitation and 
damping of oscillations, ibid., 1864-1876. 

14. Dr. HAUS gave the following references: 
D. L. WEBSTER, The theory of klystron oscillations, J. Appl. Phys. 10, 864-

872 (1939). ' 
D.R. HAMILTON, J. K. KNIPP, and J.B. H. KUPER, Klystrons and micro­

wave triodes, Rad. Lab. Series 7 (McGraw-Hill, 1948), Sec. 9.3. 
A. NoRDSIECK, Theory of the large signal behavior of traveling-wave ampli-

fiers, Proc. Inst. Radio Engrs. 41, 63Q-637 (1953). . 
H. A. HAus, Propagation of noise and signals along electron beams at micro­

wave· frequencies, Sc.D. Thesis, M.I.T. (June 1954). 
F. K. TIEN, L. R. WALKER, and V. M. W:oLONTIS, A large signal theory of 

traveling-wave amplifiers, Proc. Inst. Radio Engrs. 43, 260-277 (1955). 
C. G. CUTLER, The nature· of power saturation in traveling-wave tubes, 

Bell Syst. Tech. J. 35, 841-876 (1956). 
J.E. RoWE, A large signal analysis of the traveling-wave amplifier: theory 

and general results, IRE, PGED ED3: No. 1, 39-56 (1956); 
S. E. WEBBER, Ballistic analysis of a two-cavity finite beam klystron, 

IRE, PGED EDS, 98-108 (1958). 
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Gross believes that these .microwave instruments, which make possible 
so many forms of well-controlled experiments, will provide an excellent 
means for investigating some of the most intricate processes that occur 
in turbulence. Haus indicated some trends in electron beam research which 
point this way. In addition Edward Frieman mentioned work done at 
Princeton on exact solutions of the nonlinear equations; John Dawson 
found exact solutions for both running and standing waves, essentially 
at zero temperature [15]; and Bernstein, Greene, and Kruskal obtained 
exact nonlinear solutions referring to trapped particles [16]. Gross observed 
that the latter paper deals with the same exact nonlinear solutions as 
obtained earlier by Bohm and himself [13]. 

5-10 Flow without collisions in a magnetic field. Parker's "modified 
hydromagnetic equation." A fully ionized gas will be considered, of such 
small density that collisions can be left out of account in comparison with 
the effects of electric and magnetic fields (not necessarily uniform in space 
and constant in time). 

We start from the momentum equations of Section 5-6, Eqs. (5-28) 
and (5-32). The right side of the latter is replaced by zero, and the terms 
between [ ] on the left side will be neglected, with the exception of 

(omitting a term of the second degree in the diffu.sion velocities). We 
combine Eqs. (5-28) and (5-32) in such a way that they give the values of 
D(uh + W 8h)/Dt. Instead of subscripts 8 and t we use superscripts i (for 
the positive ions) and e (for the electrons); we also write M for the ion 
mass and m for the fr.l:ectron mass and put. 'Y = m/ M. The number density 
for ions and electrons is assumed to be very nearly the same: Ni '.::::'. N" "' N. 
The following equations are obtained: 

NM DDt (uh+ w~) = - a~ (pi)hk + NeEt + Ne (wi X B)h; (5-49a) 
· Xk C 

Nm D (uh+ wh) = - ~ (p•)h1c - NeE't, - Ne (w" X B)h (5-49b) 
Dt ax1c c · ' 

together with w~ + 'YW~ = 0. We thus have three sets of equations for the 
components of three vectors u, wi, w•. 

15. JOHN DAWSON, Non-linear electron oscillations in a cold plasma, Project 
Matterhorn (Princeton U.), PM-S-36, NY0-8050 (August 1958). 

16. I. B. BERNSTEIN, J. M. GREENE, and M. D. KRUSKAL, Exact nonlinear 
plasma oscillations, Phys. Rev. 108, 546-550 (1957). I 
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Coordinate axes will be used with the x1-axis parallel to the local direc­
tion of the vector B at the point of interest, the xraxis directed towards the 
local center of curvature of the line of force through the origin, and the 
x3-axis perpendicular to x1 and x2 . With R = radius of curvature of the 
line of force through the origin, and using R 2, Ra as quantities related 
to the divergence of the lines of force, the following relations hold at the 
origin: 

B1 = B, B 2 =Ba= 0, 

0B2 B aBa = 0 aB2 B aBa B 
OX1 = R' -=-· axa = Ra' ax1 ' ax2 R2 

aB1 -(~+~). 
OX1 R2 Ra 

The components of V X B are 

It will be assumed that the Larmor radii for both ions and electrons 
. are small compared with the ·quantities R, R 2, Ra. Since there are no 

collisions there can be ari. appreciable difference between P11 = P• on 
the one hand, and p22, Paa on the other hand, but it is admissible to 
suppose p22 = Paa = Pn [17a]. Simple geometrical considerations con­
cerning stress equilibrium lead to 

Ps - Pn 
R 

ap13 Ps - Pn 
axa = Ra ' 

ap13 = op23 = ap2a = 0_ 
ax1 ax2 axa 

With the aid of these results, we find 

(5-50) 

These relations can be used separately for the components of the ion 
pressure and for those of the electron pressure. 

17a. This assumption is also made by GRAD (compare Section 5-12) and by 
G. F. CHEW, M. L. GOLDBERGER, and F. E. Low in the paper "The Boltzmann 
equation and the one-fluid hydromagnetic equations in the absence of particle 
collisions," Proc. Roy. Soc. (London) A 236, 112-118 (1956), Eq. 20, p. 115. 
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After these preparations we solve Eqs. (5-49a) and (5-49b) for the direc­
tions perpendicular to the lines of the magnetic force· (x2 and x3 compo­
nents). Starting with the equation for the electrons, in which we neglect 
the inertia terms, and introducing the "drift vector" 

EXB 
U=c~, 

we derive the following expressions: 

c op6 

W~ = -U2 + U 2 + -- ___!!, ' NeB ox3 

w3 = -ua +Us-. _c_ (op~+ p! ~ P~) · 
NeB ox2 R 

These results can be combined into the formula 

(5-51) 

w• = -u + U - Ne~2 {(BX V)p~ +BX [(B · V)B] p:; p~} · 
(5-52) 

From w• we obtain wi = .-'Yw". We neglect, however, wi in Eq. (5-49a), 
retaining on the other hand the inertia term. Keeping Du/ Dt as a quan­
tity to be considered later, we solve for u2 and u3 and combine the results 
into the formula 

u = U + ~~ ( B X ~~) + 

+ N;B2 {(BX V)p! +BX [(B · V)B] p!; p~}. (5-53) 

Substitution of u into (5-52) leads to a transformed expression for w•. 
We write at once the expression for the conduction current, J = -New• 
(with sufficient approximation): 

J = N:;c (BX f;;) + ; 2 {(BX V)Pn +BX [(B · V)B] Ps ; 2 Pn} 

(5-54) 

where Pn = p~ + p~, etc. Neglecting the displacement current, we now 
make use of the relation 

47r(J/c) = v X B 

in order to obtain an equation for Du/ Dt. 
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We apply the identity 

V.XB = 
B X [B X (V X B)] 

B2 
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which holds so IOng as we restrict to the directions of x2 and x3 • Omitting 
the details of the calculation, the result is found to be 

NM Dti = -V (p + B 2
) - (B · ~)B (P• ~ .Pn - .l) · (5-55) 

Dt n 811' . B2 471' . 

With the aid of this result we can ~liminate Du/Dt from Eq. (5-53). The 
result is 

u = U - N;B2 {(BX V) (p~ + ~;) + 

+ B X [(B · V)B] (p: - p~ - .l)} · 
B 2 471' 

(5-56) 

The equations thus obtained from the continuum equations are the same 
as those deduced in two papers by Parker [I7b] [Eq. (5-56) given above is 
identical with Eq. (53) of Parker's paper of 1957; Eq. (5-55) is identical 
with Eq. (1) of the paper of 1958, but differs from the corresponding equa­
tion (44) in the 1957 paper, insofar !l>S it is there given with DU/Dt on the 
left side instead of Du/Dt (in Parker's notation: dun/dt instead of dv/dt 
in the 1957 paper, or of dun/dt in the 1958 paper)]. Equation (5-55) is 
called the "modified hydromagnetic equation." 

Parker deduced his results from a particle picture, resolving the motions 
of the ions and the electrons into various parts and· deducing expressions 
for the separate parts (circulating current, drift current, and polarization 
current). Combiriation of these parts leads to the resulting equations for 
the flow of the- ions and for the current. · 
· A somewhat similar calculation, also starting from a particle picture, 

has been given by Brueckner and Watson [18], who write for the flow 
velocity: · · · 

17b. ·E. N. PARKER, Newtonian de:velopnient· of the dynamical properties of 
ionized gases oHow density, Phys. Rev.' 107, 923-933 (1957); Dynamical insta­
bility in an anisotropic ionized gas of low density, Phys. Rev. 109, 1874-1876 
(1958). . 

18. :):):. A. BRUECKNER and K. M. WATSON, Use of the Boltzmann equation 
for the study of ionized gases of low density, Phys. Rev. 102, 19-27 (1956). 
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c ( V·p) 
v 1 = Ne BX Jj2 ' 

Mc ( Dv2) 
Va = eB2 B X Dt ' 

EXB 
V2= C--= U 

B2. ' 

Mc ( Dv1) V4=- BX--. eB2 Dt 

[CHAP. 5 

Comparison with Eq. (5-53) shows that v1 corresponds to the third term· 
on the right side of (5-53), v2 is the first term, while v3 and v4 together. 
give an approximation to the second term of (5-53). 

In a letter to the author, Grad mentioned still another approach [19], 
which gave the first order result: 

EXB 
V= V11 +c-w- (=V11 + U). 

In second order, there must be added for the components perpendicular 
to the lines of magnetic force: 

c { dV µ, ( 1B2)} 
eB2 B X m dt + B V 2 ' 

where µ, = m Vi/2B is the magnetic moment of the particle. The motion 
i~ the direction ofB is given by 

mB · dV = - ~ B · V(iB2). dt.. B 

Gmd interprets the particle spiraling around the line of force as a 
"molecule" located at the guiding center with "internal energy" µ,Bas well 
as a fixed magnetic moment µ. To the lowest order this describes a one­
dimensional gas, since every particle has the same ("fluid") velocity 
U = c(E X B)/B2 perpendicular to B and there is a dispersion of veloci­
ties along B. An interesting feature of this gas is the polarization: His not 
the same as B. Making the conventional macroscopic approximation 
yields a set of fluid equations with anisotropic stress tensor, similar to 
those obtained by Chew, Goldberger, and Low [17a] and by Watson [18]. 

5-11 Flow in the direction of the magnetic flux. The equations of the 
preceding section, in particular Eqs. (5-52) through (5-56), are valid only 
for components perpendicular to the direction of the magnetic lines of 

19. H. Gru.n, A guiding center fluid, Proc. Sherwood Conference on Controlled 
Thermonuclear Reactions, Princeton U., October 1955, TID-7503, p. 495. 
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force. Hence cross multiplication with B of any vector in these equations 
entails that this vector is rotated 90° around B. 

. The question of the flow in the direction of the magnetic flux was 
raised by Kenneth Watson and by Marshall Rosenbluth. It was pointed 
out that the equation 

E + (u X B)/c = 0, (5-57) 

which is often given as a basic relation for plasma dynamics, will not hold 
in general and one must expect a component E 1 connected with the differ­
ence in inertia of th,e ions and the electrons (this same point is discussed 
by Allis in Chapter 3) .. An electric field will arise _as soon as differences 
in the motions of ions and electrons threaten to lead to "the appearance 
of a space charge; this field adjusts itself in such a way that space charges 
remain as small as possible. As observed by Rosenbluth, the component 
E 1 in most cases will be small, unless one is dealing with frequencies 
comparable to the plasma frequency. Instead of introducing Ei, a suffi­
cient approximation can usually be obtained by putting the space charge 
equal to zero, which means that N' - N" « N. This entails that the 
divergence of the electric current vector will be very nearly zero. 

When we return to Eq. (5-56) and take the cross product with B/c, 
we arrive at the relation 

E* = E + (u X B)/c 

= __!_ V ( e + B 2) + (B · V)B (p= - p! _ __!__) , 
Ne · Pn 87r Ne B2 47r (5-58) 

again for the components perpendicular to B only. The relation (5-57) 
thus does not hold even for these components. 

As regards E 1, if we make the same approximations as before, Eqs. 
(5-49a), (5-49b) give the results 

NMDu1= _ap!+BaB p!-p~+NeE1 
Dt ax1 ax1 B 2 ' 

0 = - ap: + B aB p: - p! - NeE1. 
ax1 OX1 B2 

We may consider the second equation as giving an approximate value of 
E 1 ; substitution of this value into the first equation gives 

(5-59a) 
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It is possible that in many cases the value of p8 can be neglected with 
respect to that of Pni we then arrive at 

(5-59b) 

indicating a tendency for the gas to move in the direction of decreasing 
magnetic field, a point often mentioned in the literature [20]. 

5-12 ·Anisotropy of the pressure tensor. Anisotropy of the pressure 
tensor arises when collisions are insufficient to restore approximate isotropy. 
The transfer equations give only partial information about the magni­
tude of the anisotropy. By combining Eqs. (5-29) and (5-34) so as to 
obtain expressions for D(p8)hk/ Dt, omitting all terms referring to collisions 
and also those which contain the (p.)hkz, the q8 z, and the diffusion velocities 
where they occur explicitly (retaining, however, the electric· currents), 
we arrive at 

(5-60) 

with (Ms)hlc as given by (5-26) (in which B2 = Ba= 0 for our coordinate 
system). , " 

It is more convenient to make use of the alternative equation constructed 
upon the principle indicated in .Section 5-7, where the pressure tensor is 
defined with reference to the flow velocities U8h of the separate constituents 
(ions and electrons) of the gas. Since in this description there is no diffusion · 
velocity, nor an electric current relative to the mean flow for either the ions 
or the electrons, the equation has the form 

D.(p~)hk = _ {c o). ausi + ( o) au.k + ( o) au.h} + (Mo) 
Dt Ps hk axi Ps hl axz Ps kl iJxz s hk, 

(5-61) 

where again third-order moments and components of the heat flow have 
been left out, while now (M2)hk must be defined with the aid of the 
(p~)hk. For simplicity we omit the subscript s in what follows. 

20. This equation agrees with Grad's equation for dV /dt when we take 
Pn = ~P V2• The possibility that electrons can be trapped in some parts of the 
electric field makes the deduction of a simple equation for the motion along the 
lines of force less certain (remark by Eugene Parker). 
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Brueckner and Watson [18] assume that to a good approximation the 
tensor (M0 )hk may be considered to be equal to zero. This is the case if 
we suppose that (p0) 12 = (p0)i3 = (p0) 23 = O; (p0)'£2 = (p0)a3. The 
simplest case to be considered is that where auh! axk = 0 for h ~ k (no 
rotation and no shear). If au2/iJx2 ~ aua/ax3, it is better to ass,ume that 
(p0)23 .is not zero; we then arrive at the following equations: 

D(p0h1 
Dt 

D(p0h2 
Dt 

D(p0)as 
Dt 

-(p0)11 ( e + 2 ~~~)' 
. ( o ( iJu2) 2eB ( 0 . 
- P )2 2 e + 2 iJx2 . + m~ p h~, 

o ( Bua) 2eB ( o -(p)aa e+2- -- p)23, 
ax3 me 

The value of (p0)2 3 should be such that 

(5-62) 

D(poh2 = D(po)as = -( o) (e + au2 + aua). (5-62a) 
Dt Dt , P 22 ax2 axs 

The following special cases are of interest: 

{

D(p0)i1 _ _ 3(po) € 
Dt - i1 ' 

D(p0h2 = D(p0ha = o 
Dt Dt -(p )22e; 

u 2 = u3 = O; (A) 

~ D(p
0h1 ( o) 

. au au Dt = - P 11 e, 
u1 = o· - 2 = - 3 (B) 

' ax2 OX3 0 . 0 
D(p h2 _ D(p ha = _2(po) E · l Dt - Dt 22 . 

Lyman Spitzer [21] introduces two different temperatures in this case: 
T11 corresponding to (p 0)i 1 , and T .L corresponding to (p 0 )22 and (p 0)aa. 
It is then found that 

DT .L Dt = -T.LE. 

21. L. SPITZER, Jn., Physics of Fully Ionized Gases, Intersciencc Publishers, 
1956, pp. 13-14. 
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This is sometimes expressed by saying that the adiabatic exponent has the 
value 3 for longitudinal compression, and the value · 2 for transverse 
compression. 

Grad in reference [19] had proposed the following expression for the 
stress tensor: 

(also given by Chew, Goldberger, and Low in [17a]), which he used with 
the conventional macroscopic mass, momentum, and energy equations, 
assuming the heat flow to be zero, and supplementing them by Maxwell's 
equations and E + (u X B)/c = 0. An additional equation is necessary, 
since two scalar unknowns, Ps and Pn, repiace the ordinary pressure p. One 

. method is to assume Pn = :J.tp (Vi> = BN µ, where N µ is the mean 
magnetic moment per unit volume and where dµ/ dt = 0. Another 
method is to write the entropy as 

1J = f R ln (p.p!) - !R ln p, 

and add the equation 01J/8t + (u · V)'l) = 0. 
In 1956 Marion Rose and Grad recferived the equations, using the 

moment equations. A version of the modified guided-center fluid equations 
was used by Rose to study a problem in shock structure [22]. 

Watson made the remark that when one uses as variables the quantities 

µ = fmVl/B and fmV~1 + eJ E 11 ds, 

the transport equation can be solved explicitly. However, a simple hydro­
dynamic description is not obtained [22a]. Work on this aspect of the 
equations has been carried out by a group of scientists at Princeton, but 
no further information was presented in the discussion. 
· Rosenbluth added some observations concerning the effect of the 

anisotropy of the particle pressure on the stability of various cases of 
motion. This is a subject also considered by Parker '[23]. 

22a. Proc. of Sherwood Conference on Controlled Thermonuclear Reactions, 
Gatlinburg, Tenn., June 1956, TID-7520, part 2, p. 547. 

22b. See K. M. WATSON, Use of the Boltzmann equation for the study of 
ionized gases of low density I, Phys. Rev. 102, 12-19 (1956); K. A. BRUECKNER 
and K. M. WATSON, paper mentioned in Ref. 18; S. CHANDRASEKHAR, A. N. 
KAUFMAN, and K. M. WATSON, Properties of an ionized gas of low density in 
a magnetic field III, Ann. phys. 2, 435 ff (1957); IV, ibid. 5, 1-25 (1958); and 
Proc. Roy. Soc. (London) A 245, 435 ff (1958). 

23. See Ref. 17 (second paper), and also "Plasma instability in a magnetic 
field,'' The Plasma in a Magnetic Field, Stanford University Press, Palo Alto, 
Calif., 1958. Edited by R. K. M. Landshoff. 
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5-13 Electric conductivity and heat flow. We shall now briefly inJicate 
how the transfer equations can be used to calculate the electric conductivity 
of a complbt~ly ionized and neutral gas. In this case the effect of the 
collisions is of prime importance and we must use the complete equations 
with their right sides, as given in Section 5-6. The calculations to be carried 
out are analogous to those given in reference [l] for the determination of 
the coefficient of diffusion in a binary mixture, to what Chapman and 
Cowling call the "second approximation," in which account is taken of 
the effect of heat flow and thermal diffusion .. Along with the electric field 
a magnetic field will be introduced. It would be worth while to have similar 
calculations to the second approximation for a partially ionized gas, but 
so far only the first approximation has been worked out [24]. 

In order to examine to what extent the· assumption of binary collisions 
can be used for particles influencing each other through coulomb forces 
we introduce the dimensionless parameter 

KT 1 
A= 2 Nita' e e 

(5-63a) 

where Ne = I:s N.e;/e2• This parameter is a measure for the ratio of 
the mean distance between charged particles and the distance at which 
coulomb forces produce large deflections. With the aid of this parameter 
the Debye shielding distance rn defined in Eq. (5-20) can be expressed 
as follows: 

2 
(4,,,.) i12 _ !!____ , 3/2 _ N-113, 112 

" rn - KT " - • " ' 

while the mean free path (apart from a numerical factor which is defined 
in various ways) is given by 

2 3 ,2 
2(27r)112z = ~ ~ = N-113 -"-. 

KT ln A e ln A 

The quantity A has been defined by (5-21); it can also be written 

(5-63b) 

24. See T. G. COWLING, The electrical conductivity of an ionized gas in a 
magnetic field, with applications to the solar atmosphere and the ionosphere, 
Proc. Roy. Soc. (London) A 183, 453---470 (1945), in particular pp. 464---466; and 
J. M. BURGERS, in Seminar on Applied Mathematics, Boulder, Colorado, 1957 
(to be published by the Am. Math. Soc.). Since this was written the second 
approximation for a partially ionized gas has been fully worked out by A. C. 
PIPKIN, The electric conductivity of a partially ionized gas, Inst. for Fluid 
Dynamics and Applied Mathematics, U. of Maryland, Technical Note BN-170 
(April 1959). 
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It follows that a large value of the parameter A suffices tO make rD and l 
large compared both with e2 /KT and N; I/ 3 , while at· the same time it 
leads to a large value for A. Under such circumstances· the assumption is 
justified that the collision processes are mainly binary. In order that the 
condition shall be satisfied we must have· 

When magnetic fields are present we must also require that the Larmor 
radius for an electron (which is smaller than that for an ion) shall be large 
compared with e2 /KT; this·introduces·the additional condition 

B « 20T812. 

We observe that when 

the Larmor radius will als__g be larger than the Debye shielding distance, 
but it does not appear that this is necessary. 

The equations of motion for the ions and the electrons are obtained from 
Eq. (5-32). They are each other's opposites, so that the equations for the 
electrons are sufficient. The equations for the heat flow follow from (5-35); 
these must be written out both for the ions and for the electrons. The 
magnetic field will be considered as constant in time and uniform in space; 
the x1-axis is in the direction of the magnetic flux, so that B 1 = B; 
B2. = Bs = 0. Also Pe= p~ + p~ = 0. 

With m./M = 'Y as before, we have wi = -'Yw•. It is convenient to 
write 

t + J" = J = New. 

We write K for K 12 (I, ions; 2, electrons) ,as defined in (5-25), so that 
with Ni ·= Ne (or N 1 = N 2) = N: . . 

K = ~ (2KTme)112N2z = 16f (2mT)a12 N2e4 In A. (5-64) 
. K me 

The following abbreviations will be used for quantities which often re­
appear: 

a- 'NK VT 
K ' 

.,., NeB w=--, 
Kc 

~ = (8 + 13v'2)/10v'2 = 1.865. 

I'. 

Ii 
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. With tbese notations we arrive at the following equations (three equa­
tions of motion and two times three equations for the heat flow): 

= K(w1 - z'Yr~ + zr1), 

ape NeB i e) ( ) - + NeE2 + -- (u3 - w3) = K(w2 - z'Yr2 + zr2 , 5-65 
iJx2 c 

ap• NeB ( ) K( i + e)· - + NeE3 ~ -- u2 - w2 = Ws - z'Yr3 zr3 , 
OX3 C 

fi?-2 - Wr~ = !z'Yw2 - K1r~ + ~&'Yr~, 
fl?-a + WT~ = tz'YW3 - K1T~ + ~&'Yrai 

fi?-1 
5.o + .,., e _ 5 + 27-v i I: e 
2 v 2 wr3 - -2zw2 101r2 - .,r2, 

ti?-a - wr~ = -!zw3 + ~b'Yr1 - ~r3. 

(5-66a) 

(5-66b) 

The coefficient z, defined in (5-23), has the value!- for coulomb forces. 

5-14 Electric conductivity and heat flow. (Cont.) To work out the 
conductivity problem we take Vp = 0, VT = 0 (iJ = 0). We pick out 
first the equations referring to the xi-direction: 

NeE1 = K(w1 - z'Yri + zr!), 

(5-67) 

We can expect that 'Yri « r1 (which is confirmed by the solution). We 
then find 

e 5 Z 
r1 = - - - W1 

2 ~ 
and 

where A= !(z2n) = 0.483, so that 1/(1 - A) = 1.93. Keeping in 
mind that the electric current is given by J = New, it is convenient to 
write 

<F = N 2e2 = _3_ (2KT)312 m, _l_. 
° K rnv;;: m. e2 In A 

(5--68) 
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In electrostatic units: <To= 6.9 X 107T312jln A; 

in electromagnetic units: <To = 7.7 x 10-14T312/ln A, 

or 
<To= 7.7 X 10-5T3' 2/lnAmho/cm. 

We then have (by (5-18)]: 

(5-69) 

. In ~reating the remaining s?c equati~ms, referring to the x2- and xa­
drrect10ns, we assume that 'Yr2 and 'Yr3 will be small compared with r• 
and r~. The last two equations of (5-66b) then reduce to 2 

from which v;e can obtain r~ and r~ in terms of w2 and w3• Substitution of 
the r~sults JJ&to the second and third equations of (5-66a) gives two 
eq:iati~ns for the calculation of r1 and rt confirming the smallness of 
'Yr2, 'Yr3. 

We' now write the second and third equation of the system (5-65) in 
the form • 

NeEVK = w2 + eow3 + zr2, 

N eEVK = -ww2 + w3 + zr~, 
and substitute the values of r~, r~. The resulting equations can then be 
solved for W2 and W3. The corresponding components of the electric 
current are found to be 

J 2 _ u E~(l - o) ~ Etw(l + o/~) 
0 (1 - 0) 2 + w2(1 + o/~)2 ' 

(5-70a) 
Js = u E~w(I + o/~) + E~(l _ o) 

0 (1 - 0)2 + w2(1 + o/~)2 ' 
where 

0 - §. 2 ~ 
- 2 z ~2 + (;)2 < /:!... (5-70b) 

The results thus obtained are in satisfactory agreement with those given 
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by Spitzer [25] ai;td by Landshoff [26), which have been deduced according 
to a different method [27]. 

It is of interest to invert Eqs. (5-69) and (5-70); we find 

and also 

Ei = E1 = (1 - 1:!..)J i/<ro, 

E~ = {(1 - o)J 2 + &i(l + o/~)J s} /uo, 

E~ = {-w(l + o/~)J2 + (1 - o)Ja}/uo, 

(5-71) 

The latter formula shows that the dissipation connected with the current 
components perpendicular to the magnetic field is somewhat larger than 
the dissipation connected with the component parallel to the field. 

In certain cases of a field of limited extent in which an electric force E 2 

is set up by exterior means, it can happen that there will arise a component 
E 3 as a result of polarization due to charges on the planes limiting the :field, 

25. The result is in close agreement with that given by CowLING in the paper 
mentioned in Ref. 24. 

Compare L. SPITZER, JR., Ref. 21, p. 84, Eq. 5-37, and also L. SPITZER and 
R. H.A.RM, Transport phenomena in a completely ionized gas, Phys. Rev. 89, 
977-981 (1953). 

26. R. K. LANDSHOFF, Transport phenomena in a completely ionized gas in 
presence of a magnetic field, Phys. Rev. 76, 904-909 (1949). The conductivity is 
given here as a complex quantity, the real part being the coefficient of E~ in 
the expression for J 2, while the imaginary part is the coefficient of E~. From 
Landshoff's Table I (Zoe. cit., p. 906) one must take the values of Aoo/A given for 
Z = 1 (singly charged ions); the parameter w/v is the same as our w (with the 
correction of an error of print in Landshoff's Equation 62, p. 908, where appar­
ently a factor v-; has been lost). 

27. With collision cross sections such as hold for coulomb forces there is no 
difference in cross section for ion-ion, ion-electron, or electron-electron collisions. 
Whereas the mass of the electron in most instances can be neglected in com­
parison with the mass of the ion, we do not have before us the case of a Lorentz 
gas, which is characterized by the condition that one type of particle has both 
a very small mass and a very small collision cross section. Calculations which 
take the Lorentz gas as a starting point need a correction for the effect of elec­
tron-electron encounters, to which reference is made in various papers (see, for 
instance, Ref. 21, pp. 83-84). In the present treatment, electron-electron. inter­
actions come in through the quantities r and the coefficient K1, and no further 
correction is necessary. 
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of such magnitude that the current component J 3 ·is reduced to zero. 
The value of E 3 necessary to produce this result is easily found from the 
last line of (5-71). When this is introduced into the expression for J 2 
[first line of Eq. (5-70a)], we obtain 

J O"o E* 
2 = 1 - 0 2, for Js = 0. (5-73) 

It follows that the conductivity in the direction of E 2 now is only slightly 
smaller than that in the direction parallel to the magnetic field. This point 
was brought forward in the discussion by Sydney Chapm~n, who men­
tioned that in 1933 Cowling had already directed attention to it [28]. 

The expressions obtained for ri, r2, r3 (and, if desired, also those for r1, 
etc.) can be applied in order to calculate the heat flow connected with the 
electric current. 

Appendix to. Section 14. In the discussion Chapman, as an example of 
the effect of the anisotropy of electric conductivity, mentioned the applica­
tion to the ionosphere, which is traversed by the magnetic field of the 
Earth in a way strongly dependent upon latitude. The magnetic lines of 
force cross the layers of the ionosphere at angles varying from 90° at the 
magnetic poles to 0° at the magnetic equator. Electromotive forces are 
induced"in this layer by the motion of the air through the magnetic field. 
But the ionosphere cannot continuously carry a current perpendicular to 
itself, because at its lower limit it is bordered by nonconducting gas. 
This condition of noncontinuous yertical flow of current produces a 
variation in the effective conductivity in the two horizontal ·directions. 
When horizontal coordinates are introduced, x directed to the north and y 
to the east, one can write the equations 

J x = o-,,,,E; + <r xyE;, 

Jy = -<rxyE; + <ryyE;, 

in which three coefficients of conductivity must be used which differ 
from those for either the longitudinal or the transverse electric conduc­
tivity of a gas which is not limited in any direction. The coefficients will 
vary with latitude, according to the inclination of the magnetic field. 

This has a remarkable consequence for the electric current induced by 
the regular daily circulation of the atmosphere. Consider the pattern of 
currents which will be seen by an observer looking from the Sun toward 
the Earth, assuming that the Sun is in the plane of the magnetic equator. 
There is a narrow strip along the magnetic equator, only about 5° wide in 

28. T. G. COWLING, The electric conductivity of an ionised gas in the pres­
ence of a magnetic fo~ld, Monthly Notices Roy. Astron. Soc. 93, 90-98 (1933), in 
particular p. 96. 
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latitude within which the magnetic dip is small and in which the conduc­
tivity i~ higher than elsewhere. Her~ a consi_derable enha~cement of 
the eastward electric current is obtamed durmg the daylight hqurs. 
This approximately doubles the daily magnetic vari~tion of the north 
component of force at equatorial stations under the stnp. _The _effect was 
first observed at the observatory Huancayo in Peru, which hes almost 
exactly on the magnetic equator [29]. 

5-15 The "runaway" phenomenon. The re~ul~s o~tained i~ Sec~ion 
5-14 are based upon the development of the d1stnbut1on funct10n gr~en 
by (5-3) in conjunction with (5-12) through (5-14), with the ~ssumpt10;1 
that only terms linear in the coefficients Ash, etc. need be retamed. This 
has led to a resistance proportional to the curre~t and d~e.s not show the 
decrease of the resistance appearing when very. high velocities ~~e reached,; 
This decrease of the resistance leads to the phenomenon of runaway, 
which has trirned up in many discussions [30]. . . 

We shall briefly indicate the link between the lmear resistance law for 
low speeds and the decreasing resistance for high spee~s.. Instead. of the 
development of the distribution function used before, it is convement to 
assume 

(5-74a) 

so that the flow velocity Us of each separate constituent of the. ga~ is 
introduced explicitly. The mean mass flow velocity and the d~us10n 
velocities will not be used in this treatment. For greater gene:ahty, we 
will not suppose that all temperatures are the same, and we will replace 
(5-12) temporarily by 

2 2KTs as=--· 
ms 

(5-74b) 

The new expressions for the distribution functions are _more suitable when 
the differences in velocity and in temperature are high. !~ey ne~lect, 
however the anisotropy which must be introduced when it is desirable 
to consider the tensor character of the pressure and to take account of 

29. The subject has been worked upon by COWLING in the papers mentioned 
in Refs. 28 and 24. Also by the Australian physicists D. F. MARTYN and W. G. 
BAKER: see Nature 162, 142-143 (1948); 163, 685-686 (1949); 170, 1090-1092 
(1952); Phil. Trans. Roy. Soc. (London) A 246, 281.-320 (195~): S. CHA~MAN 
published a paper on it under the title "The electric conductivity of the iono­
sphere: a review" in the Nuovo cimento, Suppl. 4 (ser. X), 1385-1412 (1956) .. 
· 30. See remarks by JAMES TucK in Section 1-4 and by WILLIAM ALLIS m 

Section 3-4. 
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heat flow: It is possible to extend form (5-74a) by multiplying it with 
factor analogous to the one introduced in (5-3) but this will 1 d ta 
greater complication in the integrals. ' . ea o 

We again work out the integral for the gain of momentum in collisions: 

(~ 

and the integral for the transfer of kinetic energy: 

~~~integrals will give .the right-hand sides to be used in Eqs. (5-41) and 
( )._The value of (dF./dt)coll must be taken from Eq. (5-2) It· 
convement h t k . is more 

, owever, o wor out the completely equivalent formulas [31]: 

J J J di;, dl;tm,(I;~ - l;.)F.Ft g b db de 

and 

J J J di;. dl;ifm,{(I;~ - u.) 2 - (!;, - u.) 2}F.F1 g b db de, 

:Where !;~ is the v_alue of I;. after the :ollision. We omit the details of the 
;c~~gra~o~~2i ~hich can be carried out when the c'ollision cross sections 

an . ave the values holding for coulomb forces [see formulas 
(2_2~)]. With cross sections such as are used for other types of particles 
(rigid spheres, for example) the integrations are more difficult Th It 
are . e resu s 

gain of momentum in collisions: 

. _ 4?rN.N1elet ln A::'!__ { '.!:'.'. --1_ w (-w2)} 
11. a erf - _ / - exp -- · (5-75a) ,.. w a V?r a a2 ' 

gain of kinetic energy: · 

_ 4?rNsN1eJe; In A 1 [ w { 2 ( 2)}] 
µ w <I erf ;; - (x + u) erf '.!:'.'. - - '.!:'.'. exp ~ . 

a ..;:;r a a2 

(5-75b) 
31. See Ref. 1, p. 66 (Sec. 3.53). 
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The following abbreviations have been used: 

W = U8 - Ut, a2 = a]+ at= 2KT8 + 2KTt, 
m. mt 

After summation with respect to t (in which the case t = s can be omitted), 
(5-75a) gives the appropriate right side for Eq. (5-41), and (5-75b) for 
Eq. (5-42). 

Formula (5-75a) reduces to our former expression -Kw [occurring in 
Eq. (5-32)] when w/a is small and Ts = T 1• On the other hand, when w/a 
is large, we can use the approximation 

41l"N.N 1e;er 1n A w 
µ ws' 

which is the expression mentioned by James Tuck. 
As observed, the calculation is based upon the expression for the collision 

cross sections holding when the forces between the particles are exclusively 
coulomb forces. Thus the results hold strictly only for protons and elec­
trons. Other ions, unless they are completely stripped of electrons, will 
exert forces of a different type at close encounters, and it must be expected 
that the cross section then will not go down to zero when the velocity 
becomes higher and higher. This point is stressed by Allis [32]. 

5-16 Plasma diffusion in a magnetic field. The system of equations 
obtained in Section 5-13 can also be used for the treatment of a problem 
considered by Rosenbluth and Kaufman under the title "Plasma Diffusion 
in a Magnetic Field" [33]. What they call "plasma diffusion" is considered 
here as "flow," since it is the motion of ions and electrons together (in a 
similar way as is the case with the so-called am bipolar diffusion), not a 
diffusion of one species relative to the other. The authors treated the 
problem by starting from the equation for the distribution functions . 

A fully ionized plasma is considered, in a magnetic field constant in 
time. We take the xi-axis in the direction of the magnetic flux B. This 
flux, although having the same direction everywhere in the field, is not 
supposed to be uniform, but is a function of x 2• Initially, at t = 0, B is 
large for x2 > 0 and small or zero for x2 < 0, and it is assumed that the 
pressure field in the gas is adjusted in such a way that it balances the 
difference of the magnetic pressures on both sides of the plane x 2 = 0. 

32. See Section 3-4. 
33. M. N. RosENBLUTH and A. N. KAUFMAN, Plasma diffusion in a magnetic 

field, Phys. Rev. 109, 1-5 (1958). 
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This necessitates an electric current in the x3-direction, flowing in a thin 
sheet at x2 = 0. In consequence of the thermal motion of the ions and 
the electrons, both types of particles will escape towards the region x2 > 0; 
this escape phenomenon is studied under the name of "plasma diffusion." 
Since one expects that no large space charges can appear in the field, the 
local mean density of ions and electrons must always be very nearly the 
same, and this implies that the mean speed of flow of the ions and of the 
electrons must have nearly the same value. Hence there will be no electric 
current in the x2-direction and w2 = 0, whilei u2 ;e 0. At the same time 
there will appear an electric field E 2 of such magnitude that the equality 
of flow velocities of ions and electrons is assured. There may also be a 
temperature field, which is supposed to be a function of .x2, as is the case 
with the pressure and with B. There may also be electric force components 
Ei and E 3 influencing the system of electric currents. 

The :fl.ow problem can be treated with Eqs. (5-65), (5-66a), and (5-66b), 
in which we retain ap•/ax2 and iJ2. We assume that ui and u3 are zero 
with respect to the system of coordinates introduced. The number density 
of both the ions and electrons is indicated by N. We also suppose that ions 
and electrons have the same temperature. Then 

pi = p• = NKT = !P. 

We must supplement the system (5-65), (5-66a), and (5-66b) by the equa­
tion for the mass flow (5-28) and the continuity equations. In Eq. (5-28), 
the only component of importance is that corresponding to the x2-direction. 
Taking G = 0, Pe = 0, and neglecting the inertia term, it reduces to 

from which we have 

Op _ JaB _ O 
0X2 C - ' 

· c ap 2c ap•· · 
J a = News = - - = - - · B ax2 B 0X2 

(5-76) 

The equations referring to the xi-direction are the same as those used 
in Section 5-14; thus, again, 

N 2e2 Ei <To 
Ji = Newi = -y{ 1 . fl.= 1 _ t.. Ei. (5-77) 

The remaining equations have the form: 

from (5-65) {
ap• + NeE2 - NeB w3 = K( - z'Yr~ + zr~), 
Clx2 c 

NeB -
NeE3 - -- u2 = K(wa - z'Yr'3 + zrll); 

c 
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\

5 - i - if2 - wra = 

from (5-66a) 
2 

· 5 i + 27 e 
wr~ = 2 Z'YW3 - Kira lO 'Yrs; 

{

5 +,.,. 
- if2 wra = 

from (5-66b) 
2 

'"' . - wr2 = 
5 27 i • - - zw3 + - 'Yrs - ~r3. 
2 10 

Rosenbluth and Kaufman suppose that the Larmor frequei:cy of ?~th 
the electrons and the ions is large compared with their respective colhs10n 
frequencies. This requires that not only w, but even w0 must be large 
compared with unity; thus w » Ki· . _ 

In handling these equations we again assume that 'Yr~ a~d 'Yr3 are si:i~ll 
d WI.th r• r• · we can then neglect the :first-mentioned quantities compare 2> a, . 

in the fifth and sixth equations. Solving for r2, r3, we obtam 

We next use the third and fourth equations to obtain approximate expres-

sions for r1, r1: 

The sum 

can be used to find the heat flow in the direction of x2: 

q2 = q~ = NKT(r~ + r1). 

Turning to the first equation, we find 

1 op• + NeE2 _ -w + zr" c:o:!. :".~ .. 3 . - - -- - w 3 2 - WW 

K ox2 K 

(5-78) 

This gives the electric field component E 2 , which ensures equality of flow 

of ions and electrons: 

(5-79) 
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Finally, the second equation of the system takes the form 

N eE 3 _.,,. _ • ,._,, 3 t?-2 
K WU2 - Ws + zrs = Ws - 2 w ' 

from which we obtain 

l.CE3 W3 3 t?-2 
u2 = B - w + 2 c;;2' (5-80a) 

or, when use is made of the expressions for w3 and for w [34], 

u2 = cEs - _.!_ ~ ap + _!__ ~ N iJ(KT) · (5-80b) 
B <To B2 iJx2 2u0 B2 ax2 

. The results obtained in this way from the transfer equations are esse~­
t1ally the same as those given by Rosenbluth and Kaufman. Account 
should be taken of the difference in notation; moreover, Rosenbluth and 
~ufn::an take E,i = Ea = _o ~their final results [an error of print occurs 
In therr Eq. (IO ) ; when thIS 1s corrected, our Eq. (5-78) leads to their 
Eq. (15); our (5-79) to their (34); and our (5-80a) or (5-80b) to their (IO)]. 

Rosenbluth and Kaufman have added the equations of continuity arid 
the energy equation in order to obtain a complete system from which the 
behavior of U2 as a function Of X2 and t can be derived. ' 

5-17 Phe~omena of thermal diffusion. In the discussion Chapman 
called attent10n to the phenomena of thermal diffusion which are connected 
with the occurrence of a thermal gradient in a gas. · 

Taking first the most simple case, a binary mixture when there is no 
pressure gradient, no gravity, and no electric or magnetic field, Eqs. 
(5-65), (5-66a), and (5-66b), written in vector form, reduce to 

0 = w - z'Yri + zr•, 
(5/2)-tJ. = (5z/2)'Yw - K1r' + (27 /IO)'Yr", 

(5/2)iJ = -(5z/2)w + (27 /IO)'Yr' - ~r·. 

Bearing in mind the smallness of 'Y, we find 

w = 312 iJ. I 55-a ~ - 9/10 = . v, 

r' = _ 25VY iJ. 
40 ' 

• 5/2 
r = - ~ _ 9110 iJ = -2.59iJ. 

34. The second term of Eq. (5-80b) is essentially the same as what is given 
by SPITZER, Ref. 21, p. 38, Eq. (3-16). Equation (5-76) above iS the same as 
Spitzer's equation (2-24), p. 24 of Ref. 21. 
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Since wi = 'Yw, and w• '.:::::'. -w, it follows that the ions tend to diffuse 
in the direction of increasing temperature and the electrons in the direction 
of decreasing temperature. 

Actually, an electric field will appear which counteracts this process and 
only an extremely slight separation will occur. We can consider the 
equilibrium situation in which the state of the system is independent of 
the time and where all diffusion velocities w. are zero. The effect of the 
te~perature is then balanced by a pressure gradient or by an electric field. 
It will be assumed that there is no magnetic field. Keeping to a binary 
mixture, Eqs. (5-65), (5-66a), and (5-66b) now give 

Vp• + NeE = K(-z'Yri + zr"), 

(5/2)iJ. = -K1ri + (27 /IO)'Yr•, 

(5/2)iJ = (27 /lO)'Yri - ~·· 

From the second and third equations, we optain 

, _ 25-v:Y _Q 

r - - 40 ·v, 

after which the first equation Yields 

r• = - ~ iJ 
2~ ' 

Vp• + NeE = -(3/2~)NKVT. 

Since the gas as a whole can be treated as neutral, Eq. (5-28) gives 
Vp = pG, from which Vp' = Vp" = t Vp = fpG. Making use of this 
result, we arrive at 

NeE = -fpG - (3/2~)NKVT. (5-81a) 

Here G is the acceleration of gravity, defined as a vector. When the 
z-axis of the coordinate system is taken vertically upward while gravitation 
is acting downward, we obtain 

NeE. = fpjGJ - (3/2~)NK(dT/dz). (5-81b) 

In a case without gravity the electric field is in the direction of decreasing 
temperature; it must prevent the ions from going to the region of higher 
temperature. When there is a gravity field, part of the electric field must 
serve to hold down the electrons and to pull up the ions against gravity; 
this part supports about half the .weight of the ions if the ions are singly 
ionized, as was supposed here. 

A more complicated case is encountered when the ionized gas contains 
positive ions of a different type .. Chapman referred to conditions in the 
solar corona and supposed that the gas, consisting for the major part of 
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protons and electrons, would also contain a small amount of positive ions 
of atomic weight A, much larger than unity, stripped of a great number 
of electrons, so that the charge of these ions would be ne, with n po$sibly 
of the order 10 to 15. Ions of calcium (A = 40), having lost 14 electrons, 
and of nickel (A = 57), having lost 15 electrons, are typical examples, 
but ions of iron (A = 56) and of argon (A = 40) that have lost a smaller 
number of electrons may also come futo this category. The nu~ber of 
these ions per urtit volume, N 3, is supposed to be so small that we can still 
assume that the number density of the protons is the same as that of the· 
electrons (N for both). 

Again considering a case of equilibrium with all diffusion velocities equal 
to zero, we now write the heat flow equations (5-35) for the protons 
(subscripts = I), the electrons (s = 2), and for the heavy ions (s = 3), 
taking into account the ratios between the masses, .the cross sections, and 
the number densities, all of which influence the ratios between the various 
coefficients K.i. Since collision cross sections for coulomb forces are pro­
portional to the square of. the charges of both components, there appears 
aJactor n2 in K1 3 and in K 23, and a factor n4 in K 33• 

Omitting the details of the calculations, in which many terms appear to 
be negligible, either in consequence of the smallness of m2/m1 and m2/m3, 

or that of N 3/N, we arrive at the following results: 

(a) 

(b) 

- 25'\h {} 
4\1'2 ' 

- (~ __!_ + £ _!_) y;y {} 
8Vz A 6 n2 ' 

(the same as before), 

(c) from the equation for the gas as a whole, 

Vp1 = Vp2 = iVp = ~pG, 

and from the equation for the electrons, 

Vp2 + NeE = -(3/2~)NKVT. 

Hence the same pressure gradient and the same electric field appear as in 
the previous case. 

Finally, application of Eq. (5-32) to the heavy ions gives 

Vpa - NaAm1G - NaneE = 

= K1sz (A+ I - A A~1 1) + K2sz ('Yla - r2) ~ 

;. 
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when A + I is replaced by A. Substitution of the values of ri, r2, and E 
leads to 

VNa -[ 2f 15 +1-)- 3n -1]VT +(A - ~) miG. (5-82a) 
N 3 - n \4\1'2 2~ 2~ T 2 KT 

Of the terms on the right side; the first one with the fact?r n 2 is t~e most 
important. The numerical coefficient associated with it 1s approxunately 
2.65 + 0.80 = 3.45. Hence we obtain 

Na proportional to Ta.4s n 2 • (5-82b) 

The result indicates that there is an astonishingly P?werful th~~al diffu­
sion in a plasma containing heavily ionized constituents, drivmg these 
towards high-temperature regions [35]. · 

35. See s. CHAPMAN, Thermal diffusion in ionized gases, Proc. Phys .. Soc. 
(London) 72, 353-362 (1958). There is a diffe~ence betwee~ the co~ffic1ents 
bt · d · Eq (5-82a) of our text and those in Chapman s Equation (33), 

o arne m · . rn · h 2 • t d f the some hich would lead to a coefficient 15/4v 2 = 2.65 wit n , ms ea o . -
:hat larger value given here. It may be that the ~ifferenc.e is .due to ~he c1;­
cumstance that Chapman uses the equation .for bmary .diffusion, which will 
be less appropriate for the system with three kinds of particles. . 

The most direct approach to the problem seems to b? as follows.. We wnte 
Eqs. (5-32) (with the omission of irrelevant terms and with P• = O) m the form 

Vp. - p. Vp - N.e;E = L: Ws1Wt + .L: n.ir1 (*) 
p I t 

and similarly Eqs. (5-~5), after division by KT /m.: 

. """ """ ( * *) iN.KVT = L..J q,t'Wt + L..J Q.1r1. 
t t 

The coefficients "'•t . .. Q.e can be obtained from the expressions f~r. the .right 
sides of Eqs. (5-32), (5-35). Let Q be the determinant of the Q.1 ai:-d Q.1 its mmors, 

th t "Q* Q - ~ Q We solve (**) for the r1 and substitute the results SO a ,/....,s ok st - Ukt • 

into(*). This gives 

Vp - p, Vp - N,e,E = L;[w81 - n.kq1>1Q~k/Q]w1 + fKVTL;Q,k(Q~k/Q)N1i. 
8 p 

In the case of equilibrium all w 1 are zero. The equa~i~n then at once gives th~ 
relation between Vp, and VT, and from there, by wntmg _P• = N,KT, the rela 
tion between VN, and VT. The equation should be .applied to the case where 
the subscripts corresponds to the heavy ions. . . . 

In evaluating the coefficients of the equations, the pomt which require~ ~tten­
tion concerns the orders .of magnitude of the various tei:ms and t~e decision ~s 
to what terms can be rejected. However, for a system with three krnds of ?arti-
1 the minors Q* reduce to two by two determinants, so that the work is not 
~o~'complicated. The calculation according to this scheme confirmed the result 
given in Eq. (5-82a). 
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It is difficult to say whether this effect will tend to make the heavy ions 
pre.dominant in the hot parts of the solar corona, since there is turbulence 
which may upset the equilibrium distribution assumed here. 

It is possible that these thermal diffusion phenomena may be of interest 
in connection with nuclear reaction experiments in such apparat"µs as 
"Zeta," where a high-temperature plasma is confined by a magnetic field. 
If some heavy, highly charged ions appear in the plasm.a,. it may be that 
they will be driven to the Tegion of highest temperature. This point was 
discussed by Rosenbluth and Post with Chapman. Post considered the 
confinement of a plasm.a by a magnetic field in a long tube, where according 
to Spitzer a radial electrostatic field will appear. Highly ionized heavy 
ions might then perhaps be concentrated toward the axis. Thompson 
added that such a radial electric field could be responsible for producing 
large motions in impurity ions and consequent doppler shifts of their 
spectral lines. 

5-18 Comments on the validity of the Boltzmann equation. Its relation· 
to the two-particle distribution function and to the Fokker-Planck equa­
tion. Extensive discussions took place at the Symposium concerning the 
validity of the Boltzmann equation, in which Gross, Grad, and to' a lesser 
extent Krook were the main participants. The discussion was followed by 
a deduction of the Fokker-Planck equation by Chan-Mou Tchen. The 
discussion was difficult; to record, but Gross and Grad submitted much 
of their remarks in writing after tli'.e Symposium. The greater part of 
these written comments has been incorporated in the present section. It 
will be followed by some observations concerning the application of the 
two-particle distribution function, mainly taken from other sources; after 
this Tchen's contribution will be considered. 

Gross [36] pointed out the necessity for a deeper analysis of the collision 
phenomena and of the correlation between particles in view of the follow­
ing points: 

(a) The thermodynamic properties of a plasma-equation of state 
internal energy function, entropy function-require a knowledge of th~ 
two-particle distribution function. 

(b) The Debye cloud and its behavior at high frequencies and high 
electric fields .falls into the same category. There are observable effects, 
such as the high frequer;cy and high field conductivity of plasmas, which 
should exhibit corrections arising from the failure of the cloud to form 
completely. 

(c) The Holtsmark type of analysis of the line broadening problem 

36. See also GRoss' contribution to Section 5-8. 
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implicitly works on the level of m.ultiparticle distribution function 

theory [37]. 
Grad started by observing that the divergences which arise from long-

range coulomb forces make the problem of justifying or even discovering 
the correct form to be taken by a Boltzmann equation a very difficult one. 
Grad proposed to proceed at first form.ally, leaving the discussion until 
later. One should start by considering various representative lengths. 
Let a- be the "molecular diameter" or mean distance of closest approach 

e2/KT, 

and introduce the mean interparticle distance 

Ao= N-11s 

[not to be confused with the parameter A defined by Eq. (5-63a)], and 
further the Debye length, defined by 

d2 = KT/Ne 2 , 

and the mean free path 
L = L'/lnA, 

where L' = l/Nu2 and A = d/a-. Numerical factors have been sup­
pressed [in this sense the A defined here is the same quantity as the one 
given before by Eq. (5-21)]. In rough comparisons the distinction between 
L and L' may be ignored. 

In a fully ionized plasma we have 

(}" « Ao « d « L'; 

more precisely, the relative orders of magnitude can be seen from 

d2 = a-L'. (*) 

The Debye length d measures the effective range of two-particle correla­
tions. Forces due to particles separated by more than this distance are 
statistically independent and can be taken care of by the averaged charge 
and current source terms in Maxwell's equations. Forces arising from 
particles closer than the mean interparticle distance Xo can _be handled 
by the binary collision analysis used in obtaining the convent10nal Boltz­
mann equation. There is left the important range of distances between 

37. The problem of line broadening is of importance in spectroscopic re~earch 
. concerning the state of the gas at high temperatures. It has been considered 
by PosT in Section 2-4. 
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Ao and din which we find particles which are correlated and yet cannot be 
split into pairs: the Debye sphere contains many particles, since Nd3 = 
(d/A0) 3 » 1. To be precise, binary collision analysis can be used up to a 
distance u, where O" « u « . Ao. The omitted range between 0- and d is 
characterized by the superposition of many grazing deflections. Assuming 
that these impulses are random and independent, we have a Markoff 
process and, followingJ Chandrasekhar and Spitzer, we conclude that the 
resultant contribution to the Boltzmann equation is a second-order 
differential operator (Fokker-Planck term) in addition to the integral 
operator (Boltzmann term) whi<.'h arises from the large deflection binary 
collisions. If we exall).ine the conventional Boltzmann collision term in 
the range beyond 0- (where it is, presumably, invalid) we find that, on 
making a grazing collision approximation, it yields exactly the same 
Fokker-Planck term as the one just described [38]. This can be seen 
a priori. The original description was of a stochastic process with many 
simultaneous independent small deflections. The Boltzmann description 
corresponds to a hypothetical physical situation in which there is a se­
quence in time of many independent random binary deflections. Although 
the two physical pictures are radically different, the mathematical models 
are clearly the same. The simplest procedure is then to include in the 
Boltzmann term grazing deflections out to the distance d, instead of taking 
a sum of Boltzmann and Fokker-Planck terms. 

It is true that the justification that has been given of the use of a Fokker­
Planck equation is incomplete.. However, any analysis which demon­
strates the validity of a Fokker-Planck equation also justifies (in this 
roundabout way) the validity of the binary collision Boltzmann equation. 

It is necessary to introduce a cutoff at the distanced to prevent diver­
gent integrals. To avoid this ad hoc procedure one should use the correct 
shielded potential. This is 

exp (-r/d)/r 

rather than the l/r in thermodynamic equilibrium, but it must be recom­
puted for more general use. This, however, is a crucial point. The shielded 
potential is roughly equivalent to the two-particle or radial distribution ' 
function [39]. The basic question is how to approximate it in terms of 
only the one-particle distribution. 

38. H. GRAD, Thermonuclear reaction rates in an electrical discharge, Inst. 
Math. Sci., NYU, NY0-7977 (January 1958). 

39. What one must actually compute is the two-particle correlation function 
at two different times. For example, the radial distribution function in equi­
librium is exp (-r/d)/r even for moving particles. This single-time function, 
however, is not the correct shielding distribution to be inserted in the collision 
term of the Boltzmann equation. 
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There exist several examples in statistical mechanics where a lower 
order level of information suffices to determine the complete state of a 
system in the limit as N -> oo. In equilibrium the complete state is de­
termined by the thermodynamic variables alone. There are several possi­
bilities in the nonequilibrium case. If we take N0" 2 fixed and let No-3 -> 0, 
we obtain, in the limit, a perfect gas which satisfies the binary collision 
Boltzmann equation [40]; the mean free path is fixed in this limit. In this 
limit, the two-particle distribution (which must be found to compute the 
evolution in time of the one-particle distribution) can be shown to become 
dependent upon the one-particle distribution. On the other hand, if we 
tak~ Nu3 fixed and let Nu 2 ~ oo, we obtain the Euler equations of fluid 
motion in the limit [41]. In this case the reduction is more radical; the 
local thermodynamic state is a complete description. From a careful 
study of these examples it becomes clear that one cannot hope to find a 
Boltzmann-like description (in terms of a one-particle distribution) for a 
dense gas or liquid, but only for a rarefied gas [42]. 

In the case of a plasma, the situation is somewhat like that in a liquid~: 
many-body interactions are important. However, this is a very special 
type of "liquid," since the multiple interactions are all weak. To obtaiii 
any strictly mathematical simplification over that of an n-body problem, 
we must take some kind of limit. When it is desired to keep the effect of 
collisions finite (Lis finite) and to make o- -> 0, it is seen from equation (*) 
above that the mean interparticle distance Ao and the Debye length d must 
also approach zero. In this limit all that is left of collisions is the Fokker­
Planck term, since the binary collision term is smaller by the factor 
In A = In (d/o-). On the either hand, it may very well be that keeping 
terms "to the next order," i.e. to the order I/In A is permissible, just as 
dense gas corrections may possibly be kept in the usual Boltzmann equa­
tion [42] and just as Navier-Stokes terms arise in the fluid limit, Nu3 = 

constant, when higher order terms are kept. Thus one can expect that the 
Boltzmann equation, including grazing collisions out to a distanced, may 
be correct. 

The problem that remains is to actually determine the two-particle 
distribution in the limit of large d/u. This we can do by.using the Boltz­
mann equation itself. It is a well-defined problem (but, as yet, solved only 

40. See H. GRAD, Principles of the kinetic theory of gases, H andbuch. der 
Physik 12 (1958). 

41. C. B. MORREY, On the derivation of the equations of hydrodynamics 
from statistical mechanics, Comm. on Pure and Applied Math. 8, 279-326 (1955). 

42. It is shown, in the article mentioned in Ref. 40 (Section 14) that a hypo­
thetical virial-type expansion, such as the one introduced by Bogoliubov, express­
ing the two-particle distribution in terms of the one-particle distribution, can 
be valid, at best, to first order in the density. 
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for special cases [43]) to find the fl.ow of a plasma past an external (macro­
scopic) fixed charge. This solution should then be used in the collision 
term of the Boltzmann equation to replace the ad hoc cµto:ff at the distance 
d. First of all, it should be noted that L » d if d » u; consequently, the 
collision term in the Boltzmann equation (which is not precisely known 
until we have solved the shielding problem) is largely irrelevant to the 

. solution of this fl.ow problem past a charge, since this fl.ow has dirn:ensions 
of the order of d. Secondly, we note that the field due to an electron or ion 
can be considered to be macroscopic in the solution of this flow problem, 
since its effective raiige is of the order of d, which is much larger than a:. 
This situation can be compared to that in the ordinary virial expansion of 
the radial distribution function. The leading term, exp (-</>/KT), is exact 
for a potential cf> which is macroscopic in range. Only for a potential which 
is microscopic in range must the formula be corrected [44]. 

The procedure described here will allow a correct Boltzmann equation 
to be computed. However, the conventional expedient of adopting a cutoff 
at d instead of a shielding potential is probably quite good [45, 46]. · 

.Finally, the following observations were made by Krook, mainly with 
reference to the material of Sections 5-19 and 5-20. His contention is that 
the distribution functfons, of any order I, 2, ... , do not describe the state 
of a real physical system at all. Omitting even the ticklish question of 

43. Unpublished work of E. RUBIN and S. RAND. Also see L. KRAUS and K. M. 
WATSON, Plasma motions induced by satellites in the ionosphere, The Physics 
of Fluids, I, 48()-488, 1958, where the"same mathematical problem is analyzed 
in a different physical situation. This "macroscopic" procedure is much simpler 
than the collective coordinate approach of BOHM and PINES (see Section 5-23 
here). · 

44. For a particle at rest this very formula can be used to obtain the spheri­
cally symmetric shielding potential, exp (-r/d)/r. 

45. R. LIBOFF, Computation of the transport coefficients using the shielded 
coulomb potential, Inst. Math. Sci., NYU, NY0-8669. 

46. GRAD in his letter added the remark that some authors, among them 
Krook and Gross, disagreed with his claim that it is possible to obtain a deter­
mined equation for the one-particle distribution in a plasma, rather than to 
have to rely on higher correlations. 

The main point of Grad's argument is to show that the two-particle distribu­
tion can be satisfactorily approximated in terms of the one-particle distribution. 
More basically, the question is whether there exists any equation at all of the 
Boltzmann or Fokker-Planck type for the one-particle distribution. Thi!S possi­
bility is usually assumed rather than demonstrated. For example, BoGOLIUBOV 
and H. S. GREEN make this assumption for dense gases, a case for which it is 
not even true. For a critical discussion of this and related points, Grad referred 
to his article in Handbuch der Physik 12, which has just appeared. 

5-18) THE BOLTZMANN EQUATION' 169 

symmetries with respect to like particles in the classical form~li~m, the 
distribution functions can be defined rigorously only as specifymg the 
state of an ensemble of systems. The Liouville equation is an equation of 
motion for the ensemble and not for the system of interest. In equilibrium 
statistical mechanics, where one inquires only into the average values of 
certain local physical variables, a reasonable identification can be made 

. between properties of the ensemble and properties of the system of interest. 
In kinetic theory, on the other hand, the situation is much more complex. 

The term on the right side of Eq. (5-83), given in Section 5-19 below, 
involves an average force calculated with the two-particle distribution 
function as weight factor. However, to derive the Boltzmann form of the 
interaction term (compare H. S. Green) we must change our point of view 
for calculating the average force arising from interaction of particles within 
the correlation sphere. This may indeed be a very drastic step, so that 
the Boltzmann equation, which already does not describe the behavior of 
a real physical system, does not even describe the behavior of an ensemble 
of systems. Krook thinks that nevertheless a case can be mad.e for the 
view that the kinetic equations do represent the state and behav10r of the 
physical system for a limited time, the description of the behavior be­
coming continuously worse with increasing time. 

The Bogoliubov-Kirkwood type of cutoff is on somewhat _safer ground, 
but still only represents in an approximate way the behav10r of the en­
semble and not of the physical system. 

If we consider the actual physical problems which kinetic theory is 
designed to handle, further difficulties of principle appear. S!stems ~re 
prepared to be in particular initial states by mean~ of macroscopic handlmg 
operations. The only properties that we can specify are t~en th~ values of 
certain macroscopic fields; the number of such macroscopic vanables m~y 
of course be as large as we please, in principle, but the nun:ber mu~t still 
be finite. vVe have (I) to translate this initial macroscopic data mt~ a 
specific set of initial distribution functions, (2) to solve the correspondmg 
initial value problem for the kinetic equations, and (3) to translate the 
microscopic solution back into terms of macroscopic variables. .step \0 
is by .no means clear~cut. We have already remarked on the difficulties 
associated with step (2). The conceptual difficulties become very much 
clearer if we ask the questions in a somewhat different way, in particu!ar, 
if we inquire into the correlation between the state of the system at time 
ti and time t2 > ti. Krook hopes to deal with these.questio~s :rr:ore fully 
in a forthcoming paper. In his opinion the formalism of kmetic theory 
can only provide a description that becomes progressiv~ly more inexa?t. 
The problem of determining a characteristic time for this decrease of m­
formation would be a tough one. 
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5-19 Application of the two-particle distribution function. Relation to 
Boltzmann's expression for binary collisions. After these general con­
siderations and in order to have a bridge towards Chan-Mou Tchen's 
deduc~ion of the Fokker-Planck equation, it may be useful to give some 
attent10n to the fundamental equation which connects the distribution 
~unction for a single particle with the two-particle fonction. This equation 
IS the first one of a set of successive equations, linking the distribution 
function~ for increasing numbers of particles, which have been derived by 
sue~ var10~s authors as Born and Green, Kirkwood, and Bogoliubov by 
an mtegrat10n procedure applied to the so-called Liouville equation [47]. 
The :first equation of this set is 

(5-83) 

In this equation the function F.t is the two-particle distribution function 
dependiug upon the variables ~.h, ~th, Xsh, Xth (it is necessary to label th~ 
coordinat.es with subscri~ts to i?-dicate the particles to whic~ they refer), 
and the time. The funct10n <I>st Is the potential function for the interaction 
between the particles sand t (coulomb interaction for charged particles), 
an~ fsh as before represents the exterior forces, for instance the forces e.Eh 
derived from an electric field imposed from the outside. A magnetic :field 
:Vill not be introduced. The functions F. and Fst in (5-83) are normalized 
m such a way that 

f F 8 di;.= 1, 

where V represents the total volume of the gas or of the plasma over which 
the coordiuate integration is extended; this volume is supposed to be very 
large compared with the Debye sphere. (The normalization used for F is 
different from that used before.) .• 

47. See: M. Bo:RN and H. S. GREEN, A general kinetic theory of liquids I. 
The molecular distribution functions, Proc. Roy. Soc. (London) A 188, 10-18 
(1946); H. S. GREEN, Molecular Theory of Fluids (Amsterdam, 1952), p. 128, 
Eq. (2.7). 

J. G. KIRKWOOD, The Statistical mechanical theory of transport processes 
I. General theory, J. Chem. Phys. 14, 180-201 (1946); II. Transport in Gases, 
ibid. 15, 72-76 (1947). 

N. BoGOLIUBOV, Kinetic equations, J. of Phys. (U.S.S.R.) 10, 265-274 
(1946); Problems of a Dynamical Theory in Statistical Physics, State Techn. 
Press, Moscow, 1946 (transl. by Geoph. Res. Directorate, AFCRC, Jan. 1959). 

G. E. UHLENBECK, .The Boltzmann equation, in Seminar on Applied Mathe­
matics, Boulder, Colorado, 1957 (to be published by the Am. Math. Soc.). 
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In carrying out the integration with respect to ax1 attention must be 
given to the various distances considered by Grad. We shall briefly sketch 
how the standard formula (5-2) of the right side of the Boltzmann equa­
tion is related to the integral of the right side of (5-83) over the first 
domain, which extends up to the distance u. We follow a method indicated 
by Green [48]. 

Within this domain it can be assumed that terms due to three-particle 
distribution functions Fstr may be left out of account. It is then possible 
to make use of an approximate form of the equation which is satisfied by 
Fst· The full equation will be given in the next section, Eq, (5-87). When 
we leave out the terms with the function Fstr and at the same time assume 
that the exterior forces fsh have no appreciable influence upon Fst within 
this region, the equation takes the form 

aF.1 + ~.h aF.1 + ~th aF.i = J_ a<I>.i aF.t + J_ a<I>.t aFsi. 
at OXsh OXth m. OXsh abh mt OXth O~th 

(5-84) 

With the aid of this equation we obtain the following expression for the 
right side of (5-83): 

- J_ 2: N tff axi aI;t o<I>st aF.t + 
mt t OXth o~th 

+ ""'N j(a ai= (aF.i+ i: aFst + t aFst). L..J t Xt st -"t Ssh !\ i;;th OX 
t • u ~d a 

The first term of this expression vanishes when the integration with respect 
to di;t is performed. In order to transform the other term, we write 

Xt - X 8 = r, lit - ~s = g. 

Since the location and the velocity of the particle s are fixed, we can use 
rand gas integration variables, and the remaiuing part of the expression 
can be written 

""'N Ja Ja (oFst + 1: aF.t + aF.1) . L..J t g r at <;;sh ax gh or t sh h 
(5-85a) 

The most important term in this formula is 

""' f f ·aF t Lt N t ag ar gh ar: ' (5-85b) 

48. H. S. GREEN, Molecular Theory of Fluids (Amsterdam, 1952), pp. 218-
225 (derivation of Boltzmann's equation, and corrections to Boltzmann's 
equation). 
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since the derivative of F81 with respect to the variable r will be large 
within our domain, while the derivatives with respect to x. for fixed r, 
and 1vith respect to the time, will be of moderate magnitude. 

We take the integration with respect to dr first and assume that the 
region over which this integration is extended is enclosed by a surface :z, 
surrounding the particle s to the ex.tent indicated before. In this integra­
tion the vector g has a fixed direction. From every element d:Z of :Z we 
draw a normal n outward from dZ and we call (n, g) the angle between 
n and g. The surface :Z can be divided into two parts, on one of which 
cos (n, g) is positive, while on the other cos (n, g) is negative. Performing 
the integration with respect to dr, we obtain 

J dr gh a:r~t = g J (F.t) cos (n, g) d:Z, 

where CF st) is the value of the function Fst at the element d:Z, at the time t 
and for the location X8 for which the integration is performed. Consider 
the part of L: for which cos (n, g) is negative; we then can write 

-cos (n, g) d:Z = dS, 

where dS is an element of the cross section for collisions with relative 
velocity g, equivalent to the product b db de in our previous expressions.· 
Hence when we consider these parts of the integral alone and carry out the 
integration with respect to dg, we obtain the result 

- j j (F.t)g dS dg, 

referring to the particles t entering the surface Z or, as we can say, enter­
ing into a collision process with the particle s. On the other hand, when we 
consider the part of :Z for which cos (n, g) is po8'itive and carry out the 
integration with respect to dg, we obtain the result 

+ j j (F.1)'g dS dg, 

referring to the particles t leaving the surface L:, that is, coming out of a 
collision with the particle s. Thus the result of the integration can be 
written 

ff (Fst)' g dS dg - ff CF st) g dS dg, (5-86) 

corresponding to the two terms in the standard formula (5-2) for binary 
collisions. There is the difference that in (5-2) we considered the particles 
t and s as completely independent before they entered into a collision, 

5-20] AN EXPRESSION OF THE FOKKER-PLANCK TYPE 173 

whereas here the use of the function Fst instead of the product F.Ft allows 
for the existence of a correlation produced by the influence of the particles 
in the regio~ surrounding our present domain of integration. 

· There remain the terms with derivatives with respect to the time and to 
x.h for fixe,d r in (5-85). These terms introduce corrections relat~d to 
changes in the function F.1 occurring during the transit of the particle t 
through the space enclosed by 2;, that is, changes of F.t occurring within 
the duration of a single collision. We may expect these corrections to be 
small, although they can be of some importance with nonuniform fields 
or with changes of the field occurring in time. Attention to these corre~­
tions is given by Green in reference [48], but we shall not pursue this 
point here. 

5-20 Reduction of the right side of Eq. (5-83) to an expression of the 
Fokker-Planck type. We shall now consider the integral with respect to 
dx1 occurring in (5-83) over the region of grazing deflections. The :xp?si~ 
tion in the following lines is patterned mainly after Tchen's contnbutrnn 
to the discussion (49]. 

For this purpose we need the first two equations of the set ~enti~ned at 
the beginning of the previous section, that is, Eq. (5-83) given 111 that 
section, and the following equation for the function F.t: 

aF. 1 aF.1 + 1: aF.1 + fsh aF.t +!th aF.1 = 
Tt + ~sh ax.h <;th axth m. a~.h m1 d~th 

The normalization used here is similar to that introduced in connection 
with Eq. (5-83). The coordinate dependence of the functions Fs1 and 
Fstr is mainly through the differences X8 - X1, x. - Xr, ~tc., alt~ough 
the coordinates themselves will enter if the state of the gas is not umform 

49. C. M. TcHEN, Kinetic equations for a plasma with unsteady correlations, 
Phys. Rev. 114, 394-411 (1959). Tchen's treatment in part fo~lows a paper by 
S. W. TEMKO,. On the deduction of the Fokker-Planck equation for a plasma 
(Russian text), Zhur. Eksptl. i Teort. Fiz., 31, 1021-1026 (1956); Ar;i. Inst. 
Phys. translation in Soviet Physics JETP 4, 898-903 (1957). Tchen s paper 
clears up several points which were left rather vague by Temko. 
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in space. In several papers the momenta Pak = m.~sh, etc. are used as 
variables in place of the velocities ~sh; then q.k is written for x:.k, etc. 

The treatment of the equations is still in a stage of development. It is 
usually assumed that the effect of the exterior forces upon the two- and 
more particle distribution functions may be neglected; we shall drop the 
terms containing these forces from {5-87). In that case, we can consider 
Fst and Fstr to be functions of the coordinate differences, with the coordi­
nates of the particle 8 as a slowly varying parameter. 

The main problem is how to cope with the three-particle function Fstr· 

Tchen made the suggestion that it be approximated by the expression 

(5-88a) 

When we write 

which is always possible, Eq. (5-88a) is equivalent, with 

(5-88b) 

Equations (5-83) and (5-87) can then be transformed into two equations 
containing only functions of type F. and F~1• Certain terms drop out in the 
integrations, and the results are 

aF. + ,,, aFa + !sh aF. _ 1 "•N JJd d,,, oil!.i oF~i 
t;;sh - - - - - L.i t Xt st -- -- ' at . OXsh m. a~.h m. t OXsk a~.h (5-89) 

(5-90) 

We thus have arrived at a closed system of equations. In the case of a 
simple plasma there will be two single-particle functions and three two­
particle functions; also there are two equations of type (5-89) and three 
equations of type (5-90). The equations are nonlinear and require the 
introduction of various approximations, which cannot yet be made fully 
satisfactory. Here we can indicate only a bare outline of the method of 
treatment and refer the reader to reference [49]. 
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When provisionally the right side of (5-90) is considered as a given 
quantity, the equation can be formally integrated along the characteristics 
of the differential operator on the left side. Since in practically all cases 
the distance between two particles can be considered as infinite for 

· t = - oo, we integrate. from t = - oo to the cum.~nt value of t with 
initial condition F~1(- oo) = 0. 

Fourier transforms are introduced to describe· the dependence of the 
functions F~t upon the coordinate differences Xs - xi. The dependence 
upon the velocity components is not subjected to any transformation. 
We write 

(s--'.91) 

and 

{5-92) 

It is necessary to observe that the application of Fourier integrals makes 
it less easy to take account of the limits of the domain we are considering, 
both on the interior side and on the exterior side. With regard to the latter 
point, it will appear later· that we can arrive at integrals converging for 
.,, = O which means that the results obtained are independent of phe-

' nomena happening at large distances. The form of.. the integrals in the 
neighborhood of v = O will automatically lead to expressions containing 
the Debye screening effect. It is different with the behavior of the integrals 
·for large values of v. Here we shall make use of the following artifice: what 
actually happens to the function F.1 on the occasion of close encounters 
between the particles s and t must be treated by a method of tb:e type indi­
cated in the preceding sectfon and will lead to the appearance of a binary 
collision term to be applied for close encounters ohly. In treating the 
cooperative effect of the wider surroundings, we shall therefore exclude 
the'effects which appear at close encounters; we can do this by _assuming 
that !the potential function if! takes a constant value in the interior do­
main, so that no forces.will be operating there. When the coulomb poten­
tial. function has been altered in the appropriate way, we extend the 
integration over the full space and can make use of the Fourier expressions 
without difficulty. 

To assure that iJ!81 shall take a constant value within a domain of radius 
a, we replace the fraction 1/27r2v2· occurring in (5-91) by sin va/27r2v3a. 
Instead. of working with this ·somewhat complicated formula, we can- just 
as well keep to Eq. (5-91), provided we cut off the integration with respect 
to·.,, at a maximum value of the order 1/a. This.gives a slightly different 
behavior of the potential in the interior domairi, but again there is a 
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finite maximum value and to the order of accuracy that can be obtained 
in this type of calculation the result is quite sufficient. Since it has been 
mentioned before that the radius of the interior domain should be of the 
order e2 /KT, we use a cutoff value for v equal to KT /e 2 [50]. 

Equation (5-90) can now be transformed into an equation for the func­
tion 'Pst(P). It is convenient to introduce an integration with respect to 
dl;1 and to write · ' 

J dl;t 'Pst(v) = H!(v). 

Equation (5-90) then is transformed into an equation for the function H~. 
At the same time, the right side of Eq. (5-89) becomes transformed into 

(5-93) 

We shall not write out completely the transformed equation (5-90), 
but observe that on the right sid.e it will contain three groups of terms, 
corresponding to the three groups of Eq. (5-90). These three groups play 
different parts. The first group, depending directly upon the functions F8 

and Ft, is the most typical. When suitab~e approximations are introduced, 
it leads to an expression of the Fokker-Planck type and thus fulfills the 
first objective of the calculation. It appears, however, that some of the 
necessary integrations with respect to dv become divergent for v --? 0 
(corresponding to large distances in'physical space) and for v--? oo (cor­
responding to very small distances in physical space). An approximation 
for the third group of terms coming from Eq. (5-90) (the term with the 
double integral over the coordinates and the velocity components of the 
third particle r) introduces a correction term, which ensures. the con­
vergence of the integration for v = 0. This correction at the same time 
introduces the Debye screening effect, ensuring a finite value for the effec­
tive collision cross section. Finally, the second group of terms introduces 
a correction which is of some importance at the larger values of v, although 
it may vanish when all particles have unit charges, so that there are as 
many positive as there are negative charges in the plasma. The correction 

50. The author found that several features of Eqs. (5-83) and (5-87) can be 
investigated almost equally well by integration in ordinary coordinate space, 
instead of introducing Fourier transforms. Such integration in particular makes 
it easier to separate the contributions of close encounters from the grazing 
deflections which are taken together in the Fourier integrals.. A short account 
has been given by J.M. BURGERS, Some aspects of particle interaction in gases, 
Inst. for Fluid Dynamics and Applied Mathematics, U. of Maryland, Technical 
Note BN-176, pp. 13-21(June1959). · 
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does not materially influence the results when we introduce a cutoff for 
the integration with respect to v at a limit of the order KT/ e2 , as was 
proposed before. 

5-21 An expression of the Fokker-Planck type. 
restrict to the terms deriving from the first group 
Eq. (5-90) the transformed equation has the form 

(Cont.) When we 
on the right side of 

· . t ivh f '° f [Ft aF. Fs 8Ft] (. ) (H.)r = -2 2 2 dr dl;t - a~ - - a~ exp ivhghr . 
7r v o ms c;sh mt <;th t-' · 

(5-94) 

Here r is an auxiliary variable arising from the integration with respect 
to the time performed upon (5-90) along the characteristics. The subscript 
t - r after the expression within [ ] indicates that its value must not be 
taken for the instant t, but for the instant t - r. However, we shall sup­
pose that the quantity within the [ ] varies very slowly with t and that 
the combined effect of the integrations with respect to dr and to dl;t will 
ensure a sufficiently rapid convergence to prevent that a serious error 
would arise from this approximation (51]. 

As another approximation, we shall replace the unknown function Ft 
in the [ ] expression by a simple Maxwellian expression of the type indi­
cated in formula (5-13), with Csh = hh - Ush, so as to allow for different 
flow velocities of the constituents of the plasma. For simplicity, we assume 
that there is only one temperature T. 

These approximations reduce (H~)I to a linear function of F 8 and of its 
first derivatives with respect to the velocity components ~sh· When this 
result is substituted into formula (5-93) .an expression of the Fokker­
Planck type is obtained, which can be written 

(5-95) 

or, alternatively, 

(5-96a) 

51. When it is desired to take account of the subscript t - r added to the 
bracketed expression in Eq. (5-94), use can be made of a series development of 
this expression with respect to powers of r. The further reduction will then lead 
to a more complicated result than the usual Fokker-Planck formula, in which 
successive derivatives of F. and 8F,/8~.h with respect to the time play a part. 
See TcHEN, Ref. 49. 
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where 

(5-96b) 

The expressions for the coefficients A and B will be given in the next 
section. 

If we introduce Maxwellian expressions for both Fs and Ft into (5-94), 
both referring to the same mass flow velocity and to the same temperature, 
we obtain 

(5-97) 

When this is substituted into (5-93), the integrand becomes an odd func­
tion of vh and the integral vanishes. This proves that a Maxwellian equi­
librium distribution for the velocity components of all constituents of the 
mixture will not change in the course of time through the interactions 
considered here. The approximation (5-97), nevertheless, is convenient 
in the reduction of the terms deriving from the third group on the right 
side of Eq. (5-90). These tetms assume the form 

Again we neglect that the expression between { } should be taken at the 
time t - T. The whole expression must be added to the right side of 
(5-94). Since the expression has an extra integration in it, it seems possible 
to make use of a further approximation for its reduction. When it is 
assumed that we may replace 

'Ptr(-v) by 

it is found that the whole expression passes into 

(27r) 3 I: Nre; ~~ (II!)I, 
T S 

and when we replace (H!)r by the approximation {5-97), it becomes 

We now replace (5-94) by 

( t t 471""°' 2r H.)n = (H.)r - JJ 2KT LJ NrerH •. 
T 

(5-98) 
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We assume that the H~ occurring on the right side can be read as (H~)rr. 
Then it is easy to obtain the result 

(5-99) 

where we have made use of the definition of rn given in Eq. (5-20). 
. In view of Eq. (5-93) it follows that the expressions (5-95) and (5-96a) 
retain their general forms, with second approximations to the coefficients 
A and B obtained from the first approximations by multiplication with 
the factor (v2r1)/(1 + v2r1) . . This at once guarantees the convergence 
of all integrals at the limit v = 0, as will be seen from Eqs. (5-101). 

We shall not go into the reduction of the second group of terms of Eq. 
(5-94), but refer the reader to reference [49]. 

5-22 Coefficients of the Fokker-Planck expression. Mean loss of 
momentum. Debye potential field. We introduce the following auxiliary 

' funCtions of ~sh: 

f 00 [-v2KT 2 • J E = 0 dr exp ~ T - ivh(~.h - Uih)T ' 

(5-100) 
* 1 aE Ei =--· 

mt a~.i 

The second approximations to the coefficients A and B of the Fokker­
Planck expression can then be written: 

(5-101) 

It follows from (5-96b) in connection with (5-101) and the second line of 
Eq. (5-100) that 

A _ m. +mt A-
h - h· 

ms 
(5-102) 

When the integrals are worked out, we find 

Ah = _ 47re: ln A* I: Nte~ w; {erf w _ ~ w exp (-~2)}, 
m 8 t µ.t w at v'7i at at 

(5-103) 
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where 
and 

Further,. µ.t = msm1/(m. + m1), while A* is approximately the quantity 
. defined m Eq. (5-21), apart from a correction term connected with the 
second group of terms of Eq. (5-94) for which we refer the reader to 
reference [49]. · 

It is well known that the quantity A,., occurring in the form (5-96a) 
of the Fokker-Planck expression, measures the mean gain of momentum 
experienc~d by a particle 8 of given speed ~8 in its collisions with particles t 
of all possible speeds. This quantity is now given by Eq. (5-103). As will 
be seen, ~ts direction is opposite to that of the. vector ~. - ui, that is, 
the ~elocity vector of the particle s with respect to the mean speed of all 
partic!es t. For small values of w/a1 Eq. (5-103) reduces to an expression 
linear.in w, whereas for large values of w/a1 the loss of momentum becomes 
proportional to w /w3 • This is similar to the result obtained in the discus­
sion of the runaway phenomenon in Section 5-15. A complete agreement 
with Eq. (5-75a) is reached when we calculate the value 

N.J d~.F.A11 • 

Another point of interest is to observe that the correction deduced from 
the result (5-99) permits us to replace the first approximation for Ht given 
in (5-97) by the better one • 

(Ht) _ _:_ • r~F. 
. • II - 21r2(1 + P2rJ)KT (5-105) 

Evidently this still is a "static" approximation, not containing any refer­
ence to the relative velocity vector w = ~. = Ut. Nevertheless by apply­
ing the inverse Fourier transform, this expression can be used to obtain 
an interesting approximation for F~1 and for F.1• If the result is divided 
by F., the quantity F.1/Fs = Ft + F~tfF. gives the. probability that a 
particle t with arbitrary velocity components ~th will be found at a location 
Xt, when it is known that a particle s is present at x.. We can use this 
result :o calculate the electrostatic potential at an arbitrary point x in 
the neighborhood of x. due to all particles t in the neighborhood of the 
particle s. The outcome of the calculation appears to be · 

-e. {~_exp (-;r/rt>)}, (5_106) 

where r represents the absolute value of the distance of the point x from 
the point x.. The result means that around the particle s we have obtained 
the Debye potential field. 
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In principle, it should be possible to use a more sophisticated expression 
for the function H~, in order to arrive at a potential field which brings into 
evidence the effect of the relative speed of the particle s. There must be 
a distortion of the Debye cloud connected with this speed and, as Gross 
remarked, at very high relative speeds the particles appears to "shake off" 
the cloud. 

It must be observed that in the deduction of Eq. (5-106) it has been 
assumed that. the mean charge density over the volume of the Debye 
sphere is zero; if this had not been done, it would have been found that 
there remains a term connected with the mean space charge. Such a space 
charge, however, requires other methods for its proper handling. 

In the discussion, Gross asked where the irreversibility has come into 
the treatment, since the equation which lies at the basis of Eqs. (5-83) 
and (5-87} is a Liouville equation which in itself describes reversible phe­
nomena. In reply Tchen pointed out that in working with these equations 
we do not start from precisely defined initial conditions, but assume initial 

\ conditions described by random data, as, for instance, F~1 ( - oo) = 0. 
This introduces irreversibility, since we cannot make the same assumption 
fort= +oo.· 

5-23 Plasma oscillations. Collective coordinates. Next, we turn ou~ 
attention to the problem of oscillations occurring within a plasma. (See 
Sections 1-5, 2-3, 3-4, 4-8, 4:--9, and 4-10.) From papers which have 
appeared in recent literature [52] it will be. seen that various aspects of 
this subject have been investigated, often to great depth, but there is not 
to be found so far a comprehensive treatment which brings all features 
into proper perspective. Several of these features need the application 
of the Boltzmann equation for their treatment; they cannot be treated 
satisfactorily from the continuum equations alone. It is in particular 
the anisotropic character of the pressure tensor which is involved. An­
other point is the trapping of electrons by waves. 

52.. From the many papers referring to plasma oscillations the following may 
be mentioned: 

D. BOHM and E. GRoss, papers mentioned in Ref. l3. 
D. BOHM and D. PINES, A collective description cif electron interactions I. 

Magnetic interactions, Phys. Rev. 82, 625-634 (1951); IL Collective vs. indi­
-vidual particle aspect of the interactions, Phys. Rev. 85, 338-353 (1952). 

N. G. VAN KAMPEN, On the theory of stationary waves in plasmas, Physica 
21, 949-963 (1955). 

I. B. BERNSTEIN, J. M. GREENE and M. D. KRUSKAL, paper mentioned in 
Ref. 16. 

I. B. BERNSTEIN, Waves in a plasma in a magnetic field, Phys. Rev. 109, 
10-21 (1958). 
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Franz Kahn.mentioned the possibility of describing plasma behavior in 
ter:r;n.s of Foune: comp?n~nts of the charge density. Consider a single 
charge e1 at a pomt a1 w1thm a rectangular volume V with sides X y z 
It "b · ' 01 o, O· contn utes a charge density 

P1(r) = ei o(r - ai) = ~ + 2; 1 I: cos k,. (r - a 1), 
8 

the summation being made over all lattice points in half of the wave-
number space. A typical lattice point is · . 

where 81, 82, 83 are integers. With N _charges e1, ••• , eN in the volume, 
the charge density becomes 

where 

µ,cos a8 = Len cos (k, · %), 
n 

µ. sin a, = I: en 'sin (k •. an). 
n 

If the chargt=;s were randomly distributed, the expectation value of each 
µ'; would be ·fi::e;;,. But in thermodynamic equilibrium the electrostatic 
interactions between particles do not allow the charge distribution to be 
entirely random. We find that (µ';)is less than iI:e; for wave numbers 
smaller than about 2n/Xn, where An is the Debye wavelength. 

Knowing the different µ's, one can work out correlation functions for 
the positions of the charges in the gas. The effect described here leads to a 
dec~e~se in the_ scattering cross section of the electrons for electromagnetic 
rad1at10n. This result has an application in astrophysics: the reduction 
in the cross section entails a decrease in the opacity of the material near 
the centers of the hotter main sequence stars [53]. 

53. A. I_. AKHIEZ~R, I. G. PROKHODA, and A. G. SrTENKo, Scattering of elec­
tromagnetic waves m a plasma (Russian text), J. Zhur. Eksptl. i Teort. Fiz.; 
Am. Inst. Phys. translation in Soviet Physics JETP 33: 6, 576--'582 (1957); 
F. D. KAHN, Long range interactions in ionized gases in thermal equilibrium 
Astrophys. J. 129, No. 1, 205-216 (Jan. 1959). ' 

.1 
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In connection with these remarks, Thompson referred to some problems 
treated by Edwards (54] concerning the evaluation of the equilibrium 
properties of a plasma. In this work it was necessary to calculate the 
partition function 

Z = f · · · f dxi dvi · · · dx1 dvh exp(-;;{!), 

where 

The integration with respect to the velocities is trivial and we are left 
with integrals over the configuration space. If the potentials were short 
range, this could be treated by a cluster expansion, as is used by Mayer 
and others. Edwards' technique is to split the potential effectively as 
follows: 

<P = .!. = exp (-r/h) +{.!._exp (-r/h)} = </>s + <Pz, 
r r r r 

and to use the Mayer expansion for q,,. For <Pz he uses the collective co­
ordinates of Bohm and Pines, that is, the quantities 

Pk= L exp (iR: · Xj). 
j 

This requires the introduction of the Jacobian J(pk, Xj), which is found 
to be proportional to 

exp (-pp*/2N), 

after which the integrals can be obtained. There remains the problem of 
determining the correct value of h, which is so far an arbitrary parameter. 
This is done by using a minimum principle. The free energy is calculated, 
and Edwards insists that one must have aF /ah = 0. This leads to an 
integral equation for h, which gives the result that h ...., An, the Debye 
length. 

Then Gross took up the subject, referring to work he did with Bohm, 
described briefly in reference [6]. Here a completely collective approach 
was used. A few of the equations are given below. 
· The Hamiltonian for the motion of the electrons is taken in the form 

JC = I: (p~)/2m + ! I: V(xi - x;) (5-107) 
i ij 

54. S. F. EDWARDS, A variational calculation of the equilibrium properties 
of a classical plasma, Phil. JJ1 ag. (8th ser.) 3, 119-124 (1958). 
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where V is t.he ~otential energy of two particles at the positions Xi, Xj. 

The summa~10n 1s o:e~ all i, j, from 1 through N, with i ~ j. A contact 
transformation [55] is mtroduced as described by the equations 

with 

aG 
Pi=-, 

OXi 

G = L: 7rk exp ( -i"k · xi) · 
i,k 

(5-108a) 

(5-108b) 

H~re k (and similarly 1 in later equations) is summed over all integral 
pomts ~lei,. ~7c2, ±ks, with the exception of le = O (which is necessary in 
connect10n with the compensating background charge of opposite sign). 
From Eqs. (5-108a) we obtain · 

Pk = L: exp (-i"k ·xi), 
i 

Pi = -i L k7rk exp (-i"k ·xi). 
k 

(5-108c) 

The t.ransformation has the property that the Hamiltonian form of the 
equat10ns of motion is retained. When expressed in the new variables 
Pk, 7rk, the Hamiltonian becomes 

(5-109) 

By making t~e ~ransformation (5-108a), the difficulties of the N-body 
pro~lem are split m two parts. One is that of solving the equations of 
mot10n for the new variables, which have the form 

. 1 """ Pk = - - L..J (k · h)7rhPk+h, 
m h 

(5-110) 

. 1 ""°' {( 47re2 1rk = 2m 7' k - h) . h}7rh-1,7rh - 7f,2 P-k· 

;t'he sec~nd part is to solve the implicit equations (5-108c) to get back 
~nf~rrr:at1on about the particles in terms of the xi and the Pi· This division 
lS s1m1la: to that of the general transformation theory of dynamics. There 
by makm~ ~he transition to angle and action variables, the first part 
becomes trivia~ and t~e second part hard. But many properties of systems 
can be ascertamed without analysis of the second part. For the plasma 

55. See, e.g., E. T. WHITTAKER, Analytical Dynamics, Cambridge Univ. Press 
England, 1917, pp. 292-296. ' 
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the :firs.t part, i.e., solving the equation for Pk and 7rk, is not easy. But 
again many questions do not require inverting Eqs. (5-108c). The collec­
tive response of the plasma can be discussed entirely in terms of the 
quantities built up from the Pk and 7rk· One then deals with variables 
particularly appropriate for correlation and turbulence theory. 

It may be interesting to add an approximate treatment of Eqs. (5-110), 
following Bohm and Pines [56], although here a mixed representation is 
used and not the approach emphasized by Gross. From the two equations 

(5-110) we obtain 

Pk = ~ 2: (k · l)[(k + 1) · h]7rz1rhPk+z+h -
m lh 

, - 2
1

2 2:(k·1)[(1 - h) · h}1ri-h7rhPk+l + 
m Z,h 

47re2 ""°' (k · 1) + -- L..J -l2- Pk+zP-l· 
m z 

(5-llla) 

The single sum occurring in the last line of this formula can be written 

47re2 ""°' (k · 1) . ] - L..; ~ exp [-i(k + l)xi p_z. 
m i,Z 

Bohm and Pines, in treating a problem of this type, assume that the only 
contributions of importance in this sum are those with 1 = -k. The sum 

tlien reduces to 

The double sums .can be taken together and reduced to 

L (k · l)(k · h)7rz1rhPk+l+h, 
l,h 

which can be transformed into 

- 2: (k · Pi) 2 exp (-i"k ·xi)· 
i 

Here -Bohm and Pines assume that we may replace (k · p.;) 2 by a mean 
value. If we take this to be (7c2 /3) (pf) mean = lc2KTm, we arrive at the 

following equation: 
.. {47rN e2 + 7c2 KT} (S-ll lb) 
Pk = - --;;- m Pk· 

56. See BoHM and PINES, paper II mentioned in Ref. 52, pp. 340-341. 
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This leads to oscillations with a frequency 

(CHAP. 5 

. w .. =· (47rNe2 + k2 KT)112 .. 
. m m (5-112) 

As ~swell known, ~his .is an .approximation for space-charge waves (Ion i-
tudmal plasma osc11Iat10ns) m the elementary theory [57]. . g 

57. An accurate tr~atment leads to a factor 3 before k2(KT/m) s . B 
and PINES, paper mentioned in Ref. 13, p. 1867; P. L. BHATNAGAR. M e~R~= 
and?· H. MENZEL, Preliminary report of the committee on dynamlcs ~f ionized 
media, Harvard College Observatory (1952) p 25· J M B 
tioned in Ref. 50, p. 32. . ' . ' . . URGERS, paper men-

CHAPTER 6 

CONTINUUM PLASMA DYNAMICS 

HANS W. LIEPMANN and JULIAN D. COLE, Editors 

6-1 Introduction (based on remarks by George Batchelor). The people 
who are interested in the physics of gases and plasmas can be divided, 
broadly speaking, into two groups. The first group constitutes the contin­
uum or field specialists who like to think of gases, ions, and electrons as 
smeared.over the.whole of space. They are in their element when the mean 
free path is small compared with all other lengths occurring in the plasma. 
The other group comprises those who are equally in their element when the 
opposite situation holds. These people come with the point of view that 

! space is mostly vacant and the occurrences of particles are such special 
events that they must be treated with the individual respect that is their 
due. In the present chapter, we shall be concerned with the accomplish­
ments and aspirations of the first group. 

As a matter of fact, the distinction between the two points of view is not 
so clear as was once supposed. Aerodynamicists have become quite famil­
iar with phenomena like shock waves, where large changes occur in one or 
two mean free paths. They have also learned to handle the problems of 

· flight at low densities, where the mean free path is comparable to the thick­
ness of the boundary layer. The word "continuum" is now being used in 
an extended se.nse to describe not only the physical model that is being 
used, but also the approach or the attitude toward the problem. If the 
problem is formulated in terms of a relatively small number of dependent 
variables, then the continuum approach is being used. If the number of 
dependent variables is large, the particle approach is being used. Since 
only a reasonable amount of information can be digested from a given 
problem, the dependent variables of the particle approach must finally be 
condensed by some averaging process. Thus the distinction ultimately 
resides in whether the average occurs before or after the analysis, i.e., 
whether statistics precede or follow mechanics. 

Obviously there exist regimes for which one of the approaches becomes 
particularly simpler than the other. For example, one would hardly think 
of dealing with water waves from the particle point of view, or with 
continuum mechanics in. molecular beam experiments. In the dynamics of 
conducting gases there does exist, however, a broad realm of conditions 
whe~e both approaches can be applied and where the choice is often a 
matter of taste or of previous experience and skill. The continuum equa-
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