Electric fields are endemic to plasmas, and are often concentrated in Sheaths, resulting in particle acceleration. Here, electric effects are calculated for the Solar interior, photosphere, and corona, based on standard 1-D radial models by Bahcall (2005) and Fontenla (1993) and Avrett (2015).

Energetically, these electric fields can accelerate protons out of the 2keV gravity well and up to the 1.3 keV energies observed in the Solar Wind. As with Earth lightning, this acceleration occurs within an "avalanche breakdown" of resistivity, here modelled as $\sim 10^7$ filamentary "Lightning Jets", each of ~ 5 minutes duration, each charge-neutral overall.

The spatial average of these Lightning Jets provides light scattering measured for the K-Corona, and the satellite-measured characteristics of the Solar Wind.

The inevitable small charge imbalances and plasma polarization will generate strong local magnetic fields, as observed on the solar surface and in the heliosphere.

ESA / NASA Solar Orbiter and Parker Solar Probe mission statements:
Big Question #1: What heats the Corona and energizes the Solar Wind?
This Answer: gravito-electric and photo-electric fields of the Solar Plasma, with $Q_{\text{sun}} \sim 235$. Coulombs.

Supported by UCSD and AFOSR
NPN.ucsd.edu/Solar/
A gravitating plasma of electrons and positive ions necessarily develops charge separation and strong electric fields. The heavy ions are contained by gravity, but the light electrons are mainly contained by the positive radial electric field.

In the collisional fluid regime of the Core, simple $e-/p+$ momentum balance then requires $eE(r) \sim \frac{1}{2} m_p g(r)$. When several ion species are present, radial stratification by q/m alters this equation somewhat.

For the Sun, the Bahcall 2005 model (24% He) develops an electric potential drop ($0 \rightarrow R_s$) of 5.1 kV and a charge displacement of $Q \sim 75 \text{ Coulombs}$. The gravitational potential drop is 8.1 keV/m. The Bahcall 2005 model (24% He) develops an electric potential drop ($0 \rightarrow R_s$) of 5.1 kV and a charge displacement of $Q \sim 75 \text{ Coulombs}$. The gravitational potential drop is 8.1 keV/m.

Over the 2.1 Mm of the Photosphere, there is a rapid transition from plasma to neutral Hydrogen, and from photo-opaque to transparent.

Here, the solar energy flux Γ provides the dominant outward force on electrons, balanced by $eE \sim \Gamma \sigma \gamma e / c$. We model $\sigma \gamma e = 3 \times 10^4 \sigma_f$.

This generates $\sim 10^3 \text{ eV/Mm}$, levitating "runaway" protons in episodic pinched "lightning jets", spatially averaging to the Flux $\sim 10^{17} \text{ /s.m}^2 \ (r/R_s)^{-2}$ observed by spacecraft.

The 235 C of net charge then gradually accelerates the protons to velocity $V_w \sim 500 \text{ km/s}$ and kinetic energy $KE \sim 1300 \text{ eV}$, accompanied by neutralizing electrons.

The solar light scattered from the $p+/e$- Wind is observed as the K-Corona, replacing the model of a hydrostatic atmosphere at $\sim 200 \text{ eV}$ (van de Hulst, 1950).
Electric "Lightning" Jets form as "pinched p+ current" in breakdown channels

The strong outward Solar energy flux \(\Gamma_e \) induces weak electric fields \(E \), by displacing a small fraction \(\sim 10^{-36} \) of the plasma electrons outward.

As with Earth lightning, the electrical energy is released in episodic filamentary Jets, by an avalanche breakdown of resistivity in the weakly ionized plasma sheath of the Photosphere.

This breakdown occurs most readily along the cool edges of surface Convection Cells \(\# \sim 10^7 \), \(A_{cell} \sim (0.5 \text{Mm})^2 \), which continuously re-form every \(\sim 5 \text{ minutes} \).

"Current pinch" effects will favor small Jets \(\sim 5 \text{km} \) with energies \(>10 \text{eV} \), glowing in the neutral background gas as "spicules" and "campfires".

Each Jet has \((p+/e-) \) currents \(I \sim (+/-) 5 \times 10^9 \text{ Amps} \), giving \(B < (+/-) 0.2 \text{ T} \), depending on species overlap.

"Failure to Launch" would result from too much neutral mass entrained in an accelerating Jet, causing an extended atmosphere of hot plasma.

Satellite-observed magnetic field fluctuations represent temporal fluctuations, dynamical intertwining, and electrical polarization of currents in the p+/e- Jets.
Jet P+ e- Avg.Wind

\[\Gamma_e \sim 64.\text{MW}/\text{m}^2 \]

E ~ 4. V/Mm

\[Q \sim 235.\text{C} \]

K-Corona as hydrostatic gas

\[\sigma_{\gamma e} \sim 3 \times 10^4 \sigma_T \text{, where} \]

\[\sigma_T \sim 10^{-28}\text{m}^2 (=1 \text{ barn}) \]

Differences from prior models:

1. The traditional "hydrostatic gas at 200.eV" model of the K-corona is replaced by light scattering from the (correlated) p+/e- Wind with \(\sigma_{\gamma e} \sim 3 \times 10^4 \sigma_T \), as inferred from standard Core/Photosphere models.

The Avrett semi-empirical model fits wide-ranging spectral data, extending \(n_B \) past the Photosphere to merge with "static gas" models, apparently invoking "turbulent pressure" to support the protons.

2. The pesky "temperature" jump" at \(\sim 2.\text{Mm} \) zHeight is replaced by the coherent flow energy, which follows directly from electric minus gravitational energy.

3. The "non-thermal velocity" and "reduced gravity" in the Photospheric models may represent "Failure to Launch" (returning mass), due to too much neutral gas entrained in a Jet or bundle of Jets.
Equilibrium Stellar Fluid Eqns:

\[\text{mass charge photons} \]
\[
m_p m_e e^- p^+ \gamma
\]

1a \[\nabla^2 \Psi(r) = G m_p n_p(r) \]

Gravity \[m_p \Psi' \approx 2.8 \text{eV} / Mm \quad @ R_S \]

1b \[\nabla^2 \Phi(r) = -k_1 e (n_p - n_e) \]

Electric Potential \[G m_p^2 \sim 10^{-36} k_1 e^2 \quad !! \]

2 \[\nabla \cdot \Gamma_e(r) = \frac{d}{dt} \epsilon(r) \]

Fusion Energy Flux \[\Gamma_{\epsilon \gamma} \sim 65. \text{MW} / m^2 \quad @ R_S \]

3 \[-(4aT^3) T'(r) l_\gamma = \frac{4}{c} \Gamma_e \]

Thermal Energy Diffusion

4a \[\left[n_p T\right]' + n_p m_p \Psi' + (+e)n_p \Phi' = 0 \]

Proton Fluid Momentum

4b \[\left[n_e T\right]' - \frac{\Gamma_{\epsilon \gamma}}{c l_{\gamma e}} + n_e m_e \Psi' + (-e)n_e \Phi' = 0 \]

Electron Fluid Momentum

4a + 4b \[\left[(2n)T\right]' - \frac{\Gamma_{\epsilon \gamma}}{c l_{\gamma e}} + n m_p \Psi' = 0 \]

Total (Fluid) Momentum

4a - 4b \[\frac{\Gamma_{\epsilon \gamma}}{c l_{\gamma e} n_e} + m_p \Psi' + (2e) \Phi' = 0 \]

Electric Field (Particle)

\[-\frac{1}{2} m_p g(r) \approx eE(r) \]

Gravito-Electric A. Pannekoek

in high-density collisional S. Rosseland (1924)

Core A.E. Eddington

Photo-Electric: When "photon drag" dominates gravity, i.e. when \(\gamma/e \)-cross-section is large due to correlated e-/p+ (\(1 < \sigma_{\gamma e} < 10^8 \)) \(\times 10^{-28} \text{ m}^2 \)
In wires, Ohm's "law" expresses the balance between an "external" electric force on the electrons and the average collisional drag on the flow.

In the Core of a gravitating hydrostatic plasma like the Sun, force-balance on light electrons and massive ions requires a static Electric field. For the Core of the Sun, this arises from a net charge $Q \sim 75.\text{Coulomb}$. [Eddington 1924; Spitzer 1966; Krall & Trivelpiece 1967]

In contrast, the solar Photosphere is a low-temperature plasma sheath (aka "double layer"), with a mega-meter transition from plasma to neutral gas, and from photo-opaque to transparent. Here, the solar energy flux $\Gamma_\gamma \sim 64.\text{MW/m}^2$ causes an additional outward displacement of electrons, generating a static outward electric field strong enough to "levitate" surface protons, limited by neutral gas "drag".

A simple 1-D force model suggests that high velocity (thermal-tail) protons could accelerate as "runaways", when the electric force exceeds the initial drag force, as commonly happens in laboratory plasmas.

In a 3-D model, filamentary "lightning jets" will occur due to localized "breakdown" of the partially ionized photosphere, as occurs with Earth lightning. Current "pinch" forces may concentrate the protons into filamentary "jets", on scales of $5.\text{km}^2$.

The NASA/ESA Solar Orbiter EUV images showing episodic "campfires" suggest that this breakdown ionization occurs on the down-welling (cold) edges of surface convective cells with sizes $\sim (0.5\text{Mm})^2$ and lifetimes $\sim 5.\text{min}$.

The spatially-averaged proton jets (accompanied by low energy electrons) then constitute the K-Corona and Solar Wind. The satellite-observed magnetic field fluctuations reflect temporal fluctuations, dynamical intertwining, and electrical polarization of these Jets.
Photon-electron scattering cross-section $\sigma_{\gamma e}$ increases with plasma density & correlation.

1. e- p+ Strongly Corelated "atomic" $10^{-28} \text{m}^2 \equiv \text{barn}$

 - Rydberg Hy
 $\sigma_a(\gamma, H^*) \sim \pi a_0^2 = 0.6 \times 10^8 \text{ b}$
 - Hy neg Ion
 $\sigma_a(\gamma, H^-; \text{bf}) \sim 0.5 \times 10^8 \text{ b}$
 - Hy free-free
 $\sigma_a(\gamma, H + e^-; \text{ff}) \sim 0.5 \times 10^8 \text{ b}$

 $\sigma_M \equiv 3.4 \times 10^4 \text{ b}$

2. e-/p+/\Gamma_\gamma$ Bremsstrahlung collisions

 $\sigma_{\text{Brems}} \sim \frac{n_p}{3 \times 10^{23}} E_e^{-1/2} \sigma_M$

3. isolated e-

 Thomson cross-section $\sigma_{\text{Thomp}} = 0.7 \text{ b}$

The photon-electron absorption/scattering cross-section $\sigma_{\gamma e}$ varies by about 8 decades, depending on the electron correlation with more massive charges.

Atomic cross-sections, including Hy Rydberg and Hy Negative Ion, dominate throughout the lower photosphere.

Bremsstrahlung photon scattering occurs during particle collisions, increasing with the density of ions, and increasing as the electron energy E_e decreases (towards recombination).

The modelled σ_M represents an average over density clumping, current filamentation, and recombination/heating processes, which are outside the simple 1-D radial model.
"Runaway" proton beams are endemic to "confined" plasmas, when the electric force accelerating a fast proton exceeds background drag. Since the drag forces generally decrease with velocity \(v^{-3} \), the proton velocity increases linearly with time or distance.

When the energetic particles decrease the background drag (or resistivity), more energetic particles are formed, leading to "breakdown of resistivity" and strong flows.