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DERIVATION OF MACROSCOPIC EQUATIONS 
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INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS, 

TRIESTE, ITALY 

Since we shall be concerned with collections of large numbers of 
particles interacting with their self-created and/or externally imposed 
electromagnetic fields and since it is ln general a problem of prohibitive 
dirriculty to follow the detailed motion or all the particles we must rest con­
tent to describe the behaviour of the plasma system in some average or 
statistical sense. 

It is often desirable to be content to describe the plasma in terms or the 
crudest or statistical theories, essentially a hydrodynamic description in 
terms or mean number density, mean velocity, pressure, etc., modified to 
include electromagnetic effects. 

The value or working at this low level or description is that one can 
quickly get an insight into the behaviour or the plasma and obtain a large 
body of qualitative results which are, in general, only somewhat modified 
by more complete (and thus complex) statistical theories. 

We shall now suppose the totally ionized plasma to consist or electrons 
and positive ions (of one species), masses m· and m+, and charges e·(= -e) 
and e +, respectively. The generalization to more complex systems with 
ions in various stages or ionization is straightforward as long as the internal 
dynamics or an ion is negligible. 

For each particle or our system we have an equation or motion 

(la) 

(lb) 

(We have written down the non-relativistic equation or motion and indeed 
for most cases of interest this description is adequate. In some problems, 
however, e. g. synchrotron radiation, the relativistic description must be 
invoked and we shall write down for completeness the equation of motion 
of a single particle in relatiVistic form: 

d .. .. v .. ( .. v <Jt('l'11lv)= e E+c X B , (2) 

where "Y= (1- v2/c2)·1/2 and m is the rest mass, but we shall not pursue this 
equation further at this time.) 

* Permanent address: Plasma Physics Laboratory, Princeton Unlvenlty, Princeton, N. J. , United 
States of America. 

103 

"Plasma Physics", IAEA (1965)

cfdpla
Highlight



:.; .. 

104 C. OBERMAN 

The equations or motion for the electromagnetic field, Maxwell's 
equations, are 

.. ae.. .. .... af lr, t) = -cV X E(r, t), (3) 

.. 
SE .. .. .. .. ar= cVX B-41'J(r, t), (4) 

v· ii= o, (5) 

(6) 

These equations relate the development of the electromagnetic field intensi­
ties ~. a in terms of the sources, charge density a and current density :r. 
Notice that we have made no distinction between ~ and 6, ft and ft since we 
shall keep full track of our internal sources. It ls only when one abandons 
some of the sources appearing in Eqs. (4) and (6) that the distinction must 
arise. 

We now must relate the sources a, !to the dynamical motion of the 
plasma. Now instead of relating the electromagnetic fields to the exact 
dynamical motion of the particles, 

(7) 
n 

.... ~ ...... 
J(r,t)= L, envn6lr-rnltl] (8) 

n 

we shall embark on the statistical description. 
We presuppose the existence of a distribution function for each species 

f+('P, V. t) and t·(it, v, t). The distribution function has the meaning that 
f(r, v, t)d3rd3v tc:Pr=dx dydz and cPv= dv.dv.,dvz) represents the probable 
number of particles of each type in the voluine element d3r d3v at the point 
(r, v) in the six-dimensional phase space (µ-space). The particle mean num­
ber density and mean velocity of each type are defined by the zero•th and 
first moment of these distribution functions with respect to velocity: 

. .. J .... n (r,t)= f*(r,v,t)d 3v, (9) 

... .. 1 } t 
u (r,t)=n*(°#,t) Vf d3v. (10) 

We now take the sources a, t to be given t>y 
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a(~, t) = I en, (11) 

+,-

(12) 

+, • 

The fields l and B computed from these averages a, ! are called the self­
consistent, or average internal fields. Any sample particle is subject not 
only to the self-consistent and/or external fields but also to rapidly fluctuat­
ing micro-fields, i.e. forces due to encounters with .neighbouring particles 
in the configuration space. Let us for the time being ignore these mlcro­
fields and determine the laws of motion for f 1 (r, v, t). 

y 

r. 

Fig. l 

Motion or volume element In phase space 

Consider a small element of volume 60 = d 3r d3v in the phase space 
(Fig. 1 ). The number of phase points associated with particles of either 
species in this element is f • (r, v, t)60. During the course of time the par­
ticles corresponding to these phase points move over the phase space but at 
all times keeping the same number of particles in 60, in virtue of the fact 
that neighbouring particles execute neighbouring motions. (The external 
and/ or self-consistent fields are "smooth" over 6'1.) Thus, 

d~ lf'<?,v,t)aoJ = o, (13) 

or 

elf 60+fd(an) IZ 0 
dt dt • (13a) 

We shall now show d/dt(6n) = O. 
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We shall give this derivation of the law of conservation of extension in 
phase in more general terms, applicable also to the Liouville equation. 

Consider the laws of motion for a system of n degrees of freedom in 
their first order form 

where z1 may be a co~rdinate or a velocity. Consider the extension in phase 

Then 

= l ~ + higher order terms 

I 

= vn. g +higher order terms. 

For Hamiltonian systems Vn • g = O. 

In our present case. since~= v, ~= ::i (E+~ x a). 
8 ... ~ ~ [E + ! x a] = V. . f +!a · (V. x ;, _ .! ; · v x a= o at . v = O; av c v c v c v , 

where the three terms of the last expression are equal to zero. We thus 
have 

(14) 

or 

Sf * ... Sf t e 
1 ~... ; ... ) 8f 1 

- +v·- +=t E+-XB ·-=O. at ai' m c a\f (15) 

If we now reconsider the fluctuating micro-fields, i.e. collisions be­
tween particles, then particles are continually transferred from one element 
6x 6v to another element in the same strip 6x, so that a term must be added 
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to the right-hand side of Eq. (15) to record the balance between particles 
entering and leaving a given volume element of the phase space because of 
collisions. We then write our kinetic equation for either species as 

Bf+; .Ms+..!. (E+!xa)· Bf c (") • at ar m \: c 8' 6t c 
(16) 

The detailed structure and properties of the collision term is discussed in 
other lectures and we shall merely posit at this time any properties of this 
term that we shall need. 

Let us now take moments of this equation with respect to velocity, i.e. 
multiply by 1, v, vv, vvv, etc., and integrate over velocity space. For the 
zero'th moment 

(17) 

f ... ar aJ ......... d3v v · fff. = al! · d3v vf = V ·(nu), ( 18) 

(19) 

where we have assumed f vanishes sufficiently strongly for large velocities 
so that all surface integrals in velocity space vanish. Since individual col­
lisions conserve number, the collision term has no zero'th moment. 

We thus arrive at the equation of number continuity for e~~h species 

• 
:~ + v·tn*tt*1= o. (20) 

The equation of charge continuity, 

8a ...... at+ v. J = 0 (21) 

and mass continuity, 

!E. ... ... at + Vo(pUo) = o (22) 

follow from Eq. ( 20) by multiplying by the charge of each species and summing 
over species, and by multiplying by the mass of each species and eumm~ng 
over species, respectively. Here 

p= Imn (23) 
•,. 
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108 C. OBERMAN 

- 1 l -U = - mnu 
0 p 

(24) 

+,. 

a r c the mass de nsity a nd ve locity of centre of mass, respectively. 
To a rrive at the macroscopic equations of motion we take the fi rst mo­

ment, i. c. multiply by mv and integrate over velocities: 

(25) 

f 3 -- ac - r. 3 --m d vvv-~= 'V·(mjd vvvf), 

- u -( -
= -en E+c xs) ( 27) 

m fa3v ~(:~~ =. Pss· . mome ntum transferred per unit time by 
c collisions with opposite s pecies. (28) 

(Like-like collisions produce no net m o me ntum change i n virtue of Newton's 
third Jaw.) 

If we now define the stress dyadic (or t ensor) for ea ch species as 

I r 3 -- - - t t - ..., t I - -=m'Jd vvv f 1 -m 1n1 u 1 U0 -m n Uou +m n UoUo (29) 

we then have 

;t <mnul+ v. Im 1 n' (~'iio + iio~· - u oilo>l + v. i>• = e' n' (E+~~ a). 1301 

If we sum over both species we have, using E q. (24), a nd with P = p+ + :P-, 

-a - .... - - -- .... J .... at(PUo)+ 'V · P+ 'V · (pUoUJ =crE+cX 8, (31) 

where again we have used the third law, Pu'= - Ps's . If we note 

(32) 

and employ the equation of mass continuity (22), we have 

.......................................................... _~~ 
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diio - - - J -P(it = -'V· P + crE+ c X 8, (33) 

where 

(34) 

If there are external body forces, or other average inte rnal for ces (e .g. 
gravity), they appear naturally on the r ight-hand side of Eq. (33) . 

(The definition (29) of the stress tensor is not universal, but is ap­
propriate when both spe c ies a r e very closely Maxwellian r elative to the 
centre of mass velocity and at the same tempe rature.) Often in p lasmas 
macr oscopic phenomena take place on a t ime scale fast compared to that on 
which any significant altera tion of the distribution function due to collisions 
can take place and another d efinition of pressure is often appropriate. 

(35) 

The a nalogue of Eq. (30) with this definition of the stress tensor is 

(- ~ au .... --m'n' - +u·'Vu = e 1n 1 

at :; Q - ) - u - - -E+cXB -'V·P 1 +Pu'. (36) 

We now not ice that 

!P 1 : I= 2Trace P 1 =t m d 3 v(v - tJo)( v - Uo)f 1 --.i - f ---- (37) 

represents t he mean kinetic ener gy of the system r elative to t he centre of 
mass and may be referred to as the internal e nergy of the system o r the 
thermal energy of the gas. We may define a generalized temperature through 

tTr aceP' = :!N'0, · ( 38) 
2 

where 0= kT (k i s here Boltzmann's constant) . Again, it is possible and 
sometimes desirable to use two separate temperatures for the separate 
species. 

There are two important points to notice at this stage. Equations (22) and (33) 
together with Maxwell's Eqs . (3)-(6), although in some sense exact, do not form a 
closed set of macroscopic equations. The Maxwell equations governing the 
time evolution of the electromagnetic fields involve the charge and current 
densities. To find the time evolution of these quantities we could use 
Eqs. ( 20) and (30) for each species but Eq. (30) involves the knowledge of p11• , 

!. e. pr operties of the collision term . Equations (21), (22), and (33) are not 
e nough since we a re still one vector equation short. We could write an 
equat ion for aj/at (the so- called generalized Ohm's law) but this involves 
t he Pu· again. 

cfdpla
Highlight



110 C. OBERMAN 

The second point is that we still have no equations for P. If we compute 
the equation of motion for P by ascending the moment ladde r further we find 
for each species 

aP - - - - .. -- - ..... - .. .. --at +VJ. IQ+ UoP)+ P · V'Uo+ (P · V'U0)T + mn!!!!l U+ mnUdUo 
dt dt 

where 

- C3 - - - - - -Q= m Jd v(v- UoHv- U0)(v- U0 )r (40) 

is the heat flow triadic, and 

- 1; 3 .. -U=~ d v(v -U0)f (41) 

is the mean velocity of each species relative to the centre of mass, and 

is the transpose or the dyadic (P · '1u0). In this last equation we have om itted 
the species label+ or - . If we now sum over species we have 

.. 
ap .. ... .. ... ... .... ... .... T 
at+ 'V • (Q+ U0 P )+ P · 'VU0+ (P · 'VU0) 

(42) 

where we have m ade use of the fact that 

l mnU = 0 (43) 

and 

\ ...... 
L.,enU = J-aU0 . (43a) 

By taking one-half the trace of Eq. (42) we obtain the equation of energy 
balance 

a (3 ) .. (- 3 . -) - .. .. .. .. ( u -) at 2ne +'V·\q+2 n6Uo +P:'VUo-(J-aU0) E+~XB =O. (44) 
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Here 

(45) 

... 
is the heat flow vector and represents the flow of internal energy relative 
to the centre or mass. The term involving (l'J X P-i3X9) has zero trace. 
Here n is the sum of the number densities. The collision term gives no 
contribution because collisions preserve e nergy. 

We see from Eq . (42) that the equation governing the time rate of change 
involves the heat flow t e nsor . There is no rigorous way to close the mo­
ment hierarchy. 

There a r e two important limiting situa tions whe r e the moment scheme 
may be closed: 

(a) The first is where collis ions dominate. This situation is most often 
realized in weakly ionized gases, where collisions with neutrals dominate, 
but som etimes even in totally ionized gas this situation obtains. Here one 
can make a development along the lines of the Chapman-Enskog theory . One 
arrives at a set or t ransport coeffi cients, res istivity coefficients, coefficient 
of thermal conductivity, coefficient of viscosity, et c., which relate the 
fluxes s uch as current field, thermal gradients a nd mass velocity gradients. 
This will be discussed in other papers. 

(b) In these situations where to lowest approximation collisions are 
negligible (see chart), and if the characteristic frequencies are high and/or 
wave numbers a r e small such that, crudely, L/T t!fw/k » v,h (the so-called 
"Low Temperature Approximation"), then to lowest approximation the 
pressure m ay be dropped from the equation of motion. The next approxi­
mation taking into account thermal corrections consists in dropping the heat 
flow te rm from the equation for the pressure development (E q . (42)) which 
l eads in interesting situations to certain adiabatic laws for the pressure 
development. 

There is one a dditiona l comment preparatory to the mutilation of the s e 
equations as we begin our study of plasma properties, that le their non­
linearity. A few Idealized situa tions have been s tudied which capture this 
feature. The usua l procedure Is to examine small departures .from some 
known equilibrium or steady flow. Unfortunately, fa r too often these situ­
ations prove to be unstable, a nd to examine their fate (turbulence of "hash") 
the non-linearity must be invoked. Only very recently have we come to get 
even the slightest grip on these proble ms, and finding suitable t echniques 
for handling them Is one of the outstanding current problems In plasma phy­
sics and will be discussed l ater. 

We have just outlined the two essential difficulties In closing the macro­
scopic m oment equations: 

(a) If we think in terms of the .two m acroscopic ve locities ii•, ii· or 
equivalently in t erms of J". Oo, there r e m ains something to do with the term 
Pu· , the momentum transferred per unit time by collisions with opposite 
species. 

(b) How shall the pressure be determined, when, perhaps, neither the 
"Low-Temperatu r e" nor collision-domina ted situation prevails? 

*_____________
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Let us return to Eq. (36) for each species. divide by m*. multiply by 
e•. and sum over species. With e•= Ze. e·= - e. we then have. utilizing 
Eqs. (11), (12), (23), and (24), 

(z .. ... 1 .... \ Gz 1) - e -. V • p••--- V · p•-} + e -.+-: P+-· m m , m m. 
(46) 

Now, under the assumptions (1) m·«m•, (2) all terms quadratic in the ii1 and 
their derivatives may be neRlected (~enerally valid if IU1I « (p / p)l/2. (B2 / 4'rp)l/2, 
i. e. if macroscopic velocities are « sound speed or hydromagnetic speed), 
(3) n•..,.n· /Z. and (4) p•-- p••. then this equation reduces to 

- .. .. .. .. 1 
~ SJ = E + .!!n x B - J x B + ..!.. v. p .. - -- p - • 
e2n" at c en· en· en + 

(47) 

The real difficulties are now concentrated on the last two terms on the right­
hand side or Eq. (47). The term involving P+-• if the deformations of the 
distribution function from local Maxwellian are small, should be proportional 
to the relative velocity of the two types of particles. We shall take this 
term equal to -rrJ where rr is defined by 

(48) 

Actually rr is frequency and magnetic field dependent. and not even scalar, 
effects which will be discussed in other papers. 

The term involving the stress tensor is troublesome. We may take 
this scalar and isotropic only in a collision dominated theory. where there 
are many collisions during a characteristic time, in which case 

(49) 
and 

d ( ·5/3, _ 0 
dt PP - • (50) 

For rapid changes in which the internal kinetic energy changes in only 
one or two directions the appropriate "Y is 3 or 2. respectively. Actually 
in the presence or thermal gradients heat fiow terms appear in Eq. (47) but 
this point will not be discussed further at this time. 

The equation or motion under these approximations is 

du" j .. .:t .. Pdf =c~B-v· P. (51) 
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(The charge neutrality condition n.""' Zn. has been invoked to throw out the 
term al!! that should appear in Eq. (51).) 

Let us now try to estimate the size of the terms appearing ln the 
generalized Ohm's law, to see under what situation certain terms oranother 
might be omitted from these equations. 

If we let L and T measure typical spatial and temporal variations. 
then 

4,,j..., :E+ Uo XB+ .!!_ i _ jx8 _ 4111c j. 
l&>PT c eL L en· w:- (52) 

We can simplify this equation further by eliminating the term involving JxtJ 
in Eq. (47) via the equation of motion. Thie yields 

In terms or characteristic frequencies and speeds this becomes 

where 

c, = sound speed - (8/m•}112 , 

C&>cl 11 ion gyro-frequency= eB/m•c • 

act :: ion gyro-radius :: (8/m+)ll2/wcl. 

(53) 

(54) 

(55) 

(56) 

(57) 

In Eq. (54) we have performed a very dangerous simplification in annihi­
lating the vectorial nature of the equation. It so often happens, especially 
in the presence of a strong magnetic field. that terms which are large in 
one direction may vanish in another, so that for every particular problem 
one must respect the vectorial character in performing estimates on the 
size of the various terms. 

BIBLIOGRAPHY 

SPITZER. L. , Jr. , Phydc1 of Pully Ionized Gue1, lntcnclencc PubUlhen, Inc. , New Tork (1956). 
BERNSTEIN, I. 8. an'd TREHAN, S. K. , Nucl. Puslon .!• IAEA. Vienna (1960). 

cfdpla
Highlight

cfdpla
Highlight

cfdpla
Highlight

cfdpla
Highlight




