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5
2-9 The damped harmonic oscillator. The equation of motion for a @rk_
particle subject to a linear restoring force and a frictional force proportional { l
to its velocity is [Eq. (2-85)] i °4

mi + bz + kx = 0, (2-124)

where the dots stand for time derivatives. Applying the method of Sec-
tion 2-8, we make the substitution (2-98) and obtain

mp? +bp +k = 0. (2-125)
The solution is
b b 2 I 1/2
P= " om E [(%) " a] ‘ Lol
We distinguish three cases: (a) [k/m . (b/»2m)2 ®) k/m < (b/2m)?, and
(c) k/m = (b/2m)2. 1% > 7

In case @, we make the substitutions

naec- &C&‘M@j@\- ]
3
&’ (2-127)

wWo =
=L (2-128)
= 2m’
A(u*)
w1 = (w§ — 7)Y, (2-129)

where 7 is called the damping coefficient and (wq/27) is the natural fre-
quency of the undamped oscillator. There are now two solutions for p:

p=—7=*x w1. (2—130)
The general solution of the differential equation is therefore

g = C1e7 " | Cpe T, (2-131)
Setting

Oy = 34e®, Cy = 347, (2-132)

F: A g ooyt 0)'J (2-133)

This corresponds to an oscillation of frequency (w: /2m) with an amplitude
Ae—"t which decreases exponentially with time (Fig. 2-4). The constants
A and 0 depend upon the initial conditions. The frequency of oscillation
is less than without damping. The solution (2-133) can also be written

we have

z = ¢ "By cos wit + By sin wit). (2-134)
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Fic. 2-4. Motion of damped harmonic oscillator. Heavy curve: z =
Ae " coswt,¥ = w/8. Light curve:z = £ Ae™""

In terms of the constants wy and v, Eq. (2-124) can be written
i+ 2v¢ + wizx = 0. (2-135)

This form of the equation is often used in discussing mechanical oscilla-
tions.

The total energy of the oscillator is
E = tmi? + kx2 (2-136)

In the important case of small damping, ¥ << wq, We can set w; = wo and
neglect ¥ compared with wg, and we have for the energy corresponding to
the solution (2-133), approximately,

E = 3kA% " = Boe™ ", (2-137)

Thus the energy falls off exponentially at twice the rate at which the ampli-
tude decays. The fractional rate of decline or logarithmic derivative of E is

1dE dln E
o TRl T

= —2v. (2-138)

We now consider case b , (wo < ’Y) In this case, the two solutions

{ are P
= 0vet-da mped
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2
AW )
p=—"=—v— (" — )’
(2-139)
p=—7=—7+ (¥’ — wp)'/%
The general solution is
g L (o 88 (2-140)

These two terms both decline exponentially with time, one at a faster rate
than the other. The constants C'; and Cs may be chosen to fit the initial
conditions. The reader should determine them for two important cases:
29 # 0, v9 = 0 and zyg = 0, vg % 0, and draw curves x(f) for the two
cases. \
In case c)’, (wo = 7), we have only one solution for p:
critieal cie’mﬂpi'mj p= —7. (2-141)
The corresponding solution for z is
z= e ", (2-142)

We now show that, in this case, another solution is

z = te~ " (2-143)
To prove this, we compute
B = e " — v,
(2-144)
= —2ve~"" + v

The left side of Eq. (2-135) is, for this z,
&4 278 4+ wiz = (0 — YAt (2-145)
This is zero if wg = ¥. Hence the general solution in case wy = 7 is
x = (C1 + Cat)e™™. (2-146)

This function declines exponentially with time at a rate intermediate be-
tween that of the two exponential terms in Eq. (2-140):

Wiy oW Vg (2-147)

Hence the solution (2-146) falls to zero faster after a sufficiently long time
than the solution (2-140), except in the case C3 = 0in Eq. (2-140). Cases
(a), (b), and (¢) are important in problems involving mechanisms which
approach an equilibrium position under the action of a frictional damping
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Fre. 2-5. Return of harmonic oscillator to equﬂibrium. (a) Underdamped.
(b) Overdamped. (c) Critically damped.

force, e.g., pointer reading meters, hydraulic and pneumatic spring returns
for doors, etc. In most cases, it is desired that the mechanism move
quickly and smoothly to its equilibrium position. For a given damping
coefficient 7, or for a given wy, this is accomplished in' the shortest time
without overshoot if wg = 7 [case (¢)]. This case is called critical damping.
If wy < 7, the system is said to be overdamped; it behaves sluggishly and
does not return as quickly to x = 0 as for critical damping. If wg > 7,
the system is said to be underdamped; the coordinate x then overshoots the
value 2 = 0 and oscillates. Note that at critical damping, w; = 0, so
that the period of oscillation becomes infinite. The behavior is shown in
Fig. 2-5 for the case of a system displaced from equilibrium and released
(zo # 0,09 = 0). The reader should draw similar curves for the case
where the system is glven a sharp blow att = 0 (i.e., xg = 0,09 # 0).
~ daw ped n S WM shjre

2-10 The forcndAharmomc oscillator.{ The harmomc oscillator subject
to an external applied force is governed by Eq. (2-86). In order to sim-
plify the problem of solving this equation, we state the following theorem:

TureoreM 1II. If 2;(t) is a solution of an inhomogeneous linear equation
le.g., Eq. (2-86)], and x4(t) is a solution of the corresponding homogeneous
equation [e.g., Eq. (2-85)], then x() = x;(t) + xn(t) vs also a solution of
the tnhomogeneous equation.

This theorem applies whether the coefficients in the equation are constants
or functions of . The proof is a matter of straightforward substitution,
and is left to the reader. In consequence of Theorem III, if we know the
general solution x;, of the homogeneous equation (2-85) (we found this in
Section 2-9), then we need find only one particular solution z; of the in-
homogeneous equation (2-86). For we can add x; to a3 and obtain a solu-
tion of Eq. (2-86) which contains two arbitrary constants and is therefore
the general solution.
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The most important case is that of a sinusoidally oscillating applied
force. If the applied force oscillates with angular frequency w and ampli-
tude Fy, the equation of motion is

d?z dx
m =5 + b + kz = Fo cos (e + ), (2-148)

where 6, is a constant specifying the phase of the applied force. There are,
of course, many solutions of Eq. (2-148), of which we need find only one.
From physical considerations, we expect that one solution will be a steady
oscillation of the coordinate = at the same frequency as the applied force:

x = A, cos (wt + 65). (2-149)

The amplitude A, and phase 6; of the oscillations in z will have to be de-
termined by substituting Eq. (2-149) in Eq. (2-148). This procedure is
straightforward and leads to the correct answer. The algebra is simpler,
however, if we write the force as the real part of a complex function:*

F(t) = Re(Foe™?), (2-150)
Fo = Foe™. (2-151)
Thus if we can find a solution x(f) of

m@i§+b@+k = Foe'™* (2-152
de AP R e 2)

then, by splitting the equation into real and imaginary parts, we can show
that the real part of x(¢) will satisfy Eq. (2-148). We assume a solution of
the form

X = Xg eiwt’
so that

% = dwxge™!, X = —w’xee™. (2-153)

Substituting in Eq. (2-152), we solve for Xo:
Fo/m

o= (2-154)
,w(z) — w? + 2w
The solution of Eq. (2-152) is therefore
Twt
x = xoe™! = (Fo/m)e . (2-155)

w% — w? 20

* Note the use of roman type (F,x) to distinguish complex quantities from
the corresponding réal quantities (£, %)



52 MOTION OF A PARTICLE IN ONE DIMENSION [crap. 2

We are often more interested in the velocity
. Tl
ol 'LwFo e 1 (2—156)
m wi — w? + 207w

The simplest way to write Eq. (2-156) is to express all complex factors in
polar form [Eq. (2-109)]:

7: = 67;#/2’ (2_157)
wd — w? + 27w = [(w§ — w?)? + 4720?12 exp <7, tan~! %)
Wy — W
(2-158)
If we use these expressions, Eq. (2-156) becomes
. wFo i(W1+00+8)
e e 2-159
ml(wd — w?)? + 4720?12 : ( )
where
% .2
B = L tan—? %}: <can“1 u}; (2-160)
2 Wy — W 2Yw
2 2
. wyg — w
sin 8 = ) (2-161)
[(w§ — ®)® + 47%%"?
27w
cos B = . (2-162)
(@] — )? + %12
By Eq. (2-159),
& = Re(x)
Fy w

B [(w§ — &®)? + 47%0%M? KOt gt i\ Galiny
and
2 = Re(x) = Re (X/iw)
Fq 1 ;
= — sin (wt + 6y + B). (2-164)

w [(of — w?)® 4 4y e "

This is a particular solution of Eq. (2-148) containing no arbitrary con-
stants. By Theorem III and Eq. (2-133), the general solution (for the
underdamped oscillator) is

sin (wt + 09 + B). )
(2-165)

Fo/m

x = Ae " cos (wit + 6)
: (@] — &) + 4757

)
vz o R A s & A'l— et X “’))!l A
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This solution contains two arbitrary constants A, 6, whose values are de-
termined by the initial values x¢, vo at ¢ = 0. The first term dies out ex-
ponentially in time and is called the transient. The second term is called
the steady state, and oscillates with constant amplitude. The transient de-
pends on the initial conditions. The steady state which remains after the
transient dies away is independent of the initial conditions.

In the steady state, the rate at which work is done on the oscillator by
the applied force is

2
F() w

oF(t) = cos (wt -+ 6¢) cos (wt + 6o +
O = 2 e 008 (00 008 ok + 8
_ E_%_ w cos B cos? (wt + o) i F_(z) w sin B sin 2(wt + 0)
m [(® — od)? + 4% 2m [(o® — wd)® + 47772
(2-166)

The last term on the right is zero on the average, while the average value
of cos? (wt + 6y) over a complete cycle is 4. Hence the average power de-
livered by the applied force is

- F?) cos B W

Pow= @GP =" = o oD e (2-167)

or
P,y = 1Fyin cos B, (2-168)

where #,, is the maximum value of &. A similar relation holds for power
delivered to an electrical circuit. The factor cos 8 is called the power
factor. In the electrical case, 8 is the phase angle between the current and
the applied emf. Using formula (2-162) for cos 8, we can rewrite Eq.

(2-167): o peals @ =9,

2 2
& i (2-169)

Pav’—

\

m (w® — wg)? - 47%w? = (?
Tt is easy to show that in the steady state power is supplied to the oscillator
at the same average rate that power is being dissipated by friction, as of
course it must be. The power P,, has a maximum for w = wo. In Fig.
2-6, the power P,y (in arbitrary units) and the phase of 8 of steady-state
forced oscillations are plotted against w for two values of v. The heavy
curves are for small damping; the light curves are for greater damping.
Formula (2-169) can be simplified somewhat in case ¥ < wo. In this case,
P, is large only near the resonant frequency wo, and we shall deduce a
formula valid near w = wq. Defining

Aw = w — wop, (2—170)
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Poy, (v = §w0)

/2

Py, (v =wo)

@wo

—7/2

F1a. 2-6. Power and phase of forced harmonic oscillations.

Ming Aw K wg, we have

(02 — wd) = (0 + wo) Aw = 2wg Aw, (2-171)
w? = Wi (2-172)
Hence y
2
gl uls 47 (2-173)

im (Aw)? + 72

This simple formula gives a good approximation to P,, near resonance.
The corresponding formula for 8 is

Y 5 —Aw

COS 6 = m ) Sin 6 [(AMFWE P (2—174)

Vhen o < wg, 8 = /2, and Eq. (2-164) becomes

iU

T (2-175)

2= —IZO cos (wt + 0p) =
wom

This result is easily interpreted physically; when the force varies slowly,

the particle moves 1n such a way that the apphed force is just balanced by
the restormg force. /When w > wy, B = —m/2, and Eq. (2-164) becomes

@)

l
|
1
{
|
w?m {

g Fo
x = — 5 008 (wt + 6g) = — (2-176)
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‘ The motion now depends only on the mass of the particle and on the fre-

| quency of the applied force, and is independent of the friction and the

\ restoring force. This result is, in fact, identical with that obtained in Sec-

| tion 2-3 [see Eqgs. (2-15) and (2-19)] for a free particle subject to an

' oscillating force.

“~"We can apply the result (2-165) to the case of an electron bound to an
equilibrium position # = 0 by an elastic restoring force, and subject to an
oscillating electric field:

E, = Eqycosot, (2-177)
F = —eF{cos wt. (2-178)

The motion will be given by

ey sin (wt + B)
0P —ed)? o vt

z = Ae " cos (wit + 0) — (2-179)

The term of interest here is the second one, which is independent of the
initial conditions and oscillates with the frequency of the electric field.
Expanding the second term, we get

Fuwea ello sin (8 cos wit L eBg cos B sin wit
m (@ — o)+ 2% [0 — wd)? 4 4777
_ —elljcoswit W —of ' '
. [(w2 il w%)z i 4’)’2w2] /Po U(\/lgofﬁm’\
__eFy sin wi 27w — . /3((055{ P . oA (2-180)
m [ — wd)? 4 4% of Tweve
7 |

The first term represents an oscillation of  in phase with the applied force
at low frequencies, 180° out of phase at high frequencies. The second term
represents an oscillation of z that is 90° out of phase with the applied force,
the velocity & for this term being in phase with the applied force. Hence
the second term corresponds to an absorption of energy from the applied
force. The second term contains a factor ¥ and is therefore small, if
v & w, except near resonance. If we imagine a dielectric medium con-
sisting of electrons bound by elastic forces to positions of equilibrium, then
the first term in Eq. (2-180) will represent an electric polarization propor-
tional to the applied oscillating electric field, while the second term will
represent an absorption of energy from the electric field. Near the resonant
frequency, the dielectric medium will absorb energy, and will be opaque
to electromagnetic radiation. Above the resonant frequency, the dis-
placement of the electrons is out of phase with the applied force, and the
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resulting electric polarization will be out of phase with the applied electric
field. The dielectric constant and index of refraction will be less than
one. For very high frequencies, the first term of Iq. (2-180) approaches
the last term of Eq. (2-18), and the electrons behave as if they were free.
Below the resonant frequency, the electric polarization will be in phase
with the applied electric field, and the dielectric constant and index of re-
fraction will be greater than one.

Computing the dielectric constant from the first term in Eq. (2-180), in the
same manner as for a free electron [see Egs. (2-20)—(2-26)], we find, for N elec-
trons per unit volume:

ArN & 5 2
e=14 Tt W0 Y (2-181)
m  (wo — )"+ 4V w

The index of refraction for electromagnetic waves (u = 1) is

L % G e il iz (2-182)

For very high or very low frequencies, Eq. (2-181) becomes

4rNe®

ex 1+ T, oK w, (2-183)
mwo
4rNé’

ex 1 — T8, W (2-184)
mw

The mean rate of energy absorption per unit volume is given by Eq. (2-169):

dE _ Né’Ep Yoo
dt m (w2 - wg)2 A dryPe®

(2-185)

The resulting diélectric constant and energy absorption versus frequency
are plotted in Fig. 2-7. Thus the dielectric constant is constant and
greater than one at low frequencies, increases as we approach the resonant
frequency, falls to less than one in the region of “anomalous dispersion”
where there is strong absorption of electromagnetic radiation, and then
rises, approaching one at high frequencies. The index of refraction will
follow a similar curve. This is precisely the sort of behavior which is
exhibited by matter in all forms. Glass, for example, has a constant dielec-
tric constant at low frequencies; in the region of visible light its index of
refraction increases with frequency; and it becomes opaque in a certain
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Fra. 2-7. Dielectric constant and energy absorption for medium containing
harmonic oscillators.

band in the ultraviolet. X-rays are transmitted with an index of refrac-
tion very slightly less than one. A more realistic model of a transmitting
medium would result from assuming several different resonant frequencies
corresponding to electrons bound with various values of the spring con-
stant k. This picture is then capable of explaining most of the features in
the experimental curves for € or n vs. frequency. Not only is there qualita-
tive agreement, but the formulas (2-181)—(2-185) agree quantitatively
with experimental results, provided the constants NV, wg, and ¥ are properly
chosen for each material. The success of this theory was one of the reasons
for the adoption, until the year 1913, of the “jelly model” of the atom, in
which electrons were imagined embedded in a positively charged jelly in
which they oscillated as harmonic oscillators. The experiments of Ruther-
ford in 1913 forced physicists to adopt the “planetary” model of the atom,
but this model was unable to explain even qualitatively the optical and
electromagnetic properties of matter until the advent of quantum mechan-
ics. The result of the quantum-mechanical treatment is that, for the inter-
action of matter and radiation, the simple oscillator picture gives essentially
correct results when the constants are properly chosen.*

We now consider an applied force F(¢) which is large only during a
short time interval 8¢ and is zero or negligible at all other times. Such a
force is called an‘ impulse,_land corresponds to a sudden blow. We assume
the oscillator init aTTest at « = 0, and we assume the time 8¢ so short
that the mass moves only a negligibly small distance while the force is
acting. According to Eq. (2-4), the momentum just after the force is
applied will equal the impulse delivered by the force:

myy = Po = /F dt, (2-186)

where v, is the velocity just after the impulse, and the integral is taken
over the time interval & during which the force acts. After the impulse,

* See John C. Slater, Quantum Theory of Maiter. New York: McGraw-Hill
Book Co., 1951. (Page 378.)
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the applied force is zero, and the oscillator must move according to Eg.
(2-133) if the damping is less than critical. We are assuming 6 so small
that the oscillator does not move appreciably during this time, hence we

choose § = —(m/2) — wito, in order that = 0 at ¢ = o, where o is
the instant at which the impulse occurs: w\?._ﬁ NOL’ b,?.
x = Ae " sin [wi(t — to)]. (2-187)

The velocity at t = o is

vo = wide ", (2-188)
Thus

A =20 gt (2-189)

w1

The solution when an impulse pg is delivered at ¢ = ¢y to an oscillator at
rest is therefore

0, t < to,
T = 1 Po  —vi—to) ol (2-190)
L e sin w1 (t — o)), t >ty

Here we have neglected the short time & during which the force acts.

We see that the result of an impulse-type force depends only on the total
impulse po delivered, and is independent of the particular form of the func-
tion F(t), provided only that F(¢) is negligible except during a very short
time interval 6f. Several possible forms of F(¢) which have this property
are listed below:

O; t < tO;
F(t) = {po/dt, to <t =< 1o+ ot (2-191)
0, t >ty + 6,
bix Po ot 1 $ o w
__Po = t0)2] " 0
Ft) = rﬁeXp[ ez’ w <t < . (2-193)

The reader may verify that each of these functions is negligible except
within an interval of the order of 8¢ around ¢y, and that the total impulse
delivered by each is po. The exact solution of Eq. (2-86) with F(¢) given
by any of the above expressions must reduce to Eq. (2-190) when 6 — 0
(see Problem 23).



