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by’ monn, Mechawnics (V960 2) _

There ste many cases, however, in which a group of particles forms a
system which seems to have some identity of its own independent of other
particles and systems of particles. An atomic nucleus, made up of neutrons

d protons, is an example, as is an atom, made up of nucleus and electrons,
or » molecule, composed of nuclei and electrons, or the collection of particles
which make up a baseball. In all such cases, it turns out that the internal
forces are much stronger than the external ones, and the acceleration Ris
small, so'that the internal equations of motion (4-131) depend essentially
6nly on the‘nternal forces, and their solutions represent internal motions
which are nearly independent of the external forces and of the motion of
the system as a whole. The system viewed externally then behaves like
a single particle with coordinate vector R, mass M, acted on by the
(external) force F, bu'tha particle which has, in addition to its “orbital”
energy, momentum, and\angular momentum associated with the motion
of its center of mass, an intrinsic or internal energy and angular momentum
associated with its internal motion. The orbital and intrinsic parts of the
energy, momentum, and angular momentum can be identified in Egs.
(4-127), (4-128), and (4-129). Thq internal angular momentum is usually
called spin and is independent of tﬁ\e\position or velocity of the center of
mass relative to the origin about whic}}\t\he total angular momentum is to
be computed. So long as the external fO\I‘C‘QS are small, this approximate
representation of the system as a single particle is valid. Whenever the
external forces are strong enough to affect appreciably the internal motion,
the separation into problems of internal and of\orbital motions breaks
down and the system begins to lose its individualityy, Some of the central
problems at the frontiers of present-day physical theories are concerned
with bridging the gap between a loose collection of part’w@s and a system
with sufficient individuality to be treated as a single partic}e.\

4~-10 Two coupled harmonic oscillators. A very commonly occurring
type of mechanical system is one in which several harmonic oscillators
interact with one another. As a typical example of such a system, con-
sider the mechanical system shown in Fig. 4-10, consisting of two masses
my, mo fastened to fixed supports by springs whose elastic constants are
kq, ks, and connected by a third spring of elastic constant k3. We suppose
the masses are free to move only along the z-axis; they may, for example,
slide along a rail. If spring k3 were not present, the two masses would

_ob o) T) ¥ E.) M= o=
A7 el [z

7

Fre. 4-10. A simple model of two coupled harmonic oscillators.
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vibrate independently in simple harmonic motion with angular frequencies
(neglecting damping)

k k
w)y = -an wdy = \/m:i (4-132)

We wish to investigate the effect of coupling these two oscillators to-
gether by means of the spring k3. We describe the positions of the two
masses by specifying the distances z; and zo that the springs k; and ko
have been stretched from their equilibrium positions. We assume for
simplicity that when springs &y and kg are relaxed (z; = z5 = 0), spring
ks is also relaxed. The amount by which spring ks is compressed is then
(x1 + x2). The equations of motion for the masses mi, mo (neglecting
friction) are

mi¥; = —kixy — ks(xy + z2), (4-133)

moBs = —koxs — ka(xy + 29). (4-134)

We rewrite these in the form

mi&y + k1z1 + kazs = 0, (4-135)
maoty + kbxs + ksx; = 0, (4-136)
where
k1 = k1 + ks, (4-137)
k5 = ko + ks. (4-138)

We have two second-order linear differential equations to solve simul-
taneously. If the third terms were not present, the equations would be
independent of one another, and we would have independent harmonic
vibrations of z; and x5 at frequencies

K’

w10 = Elza (4-139)
s

Wyo = ;L?; (4-140)

These are the frequencies with which each mass would vibrate if the other
were held fixed. Thus the first effect of the coupling spring is simply to
change the frequency of inde e‘}'\‘ldfl’é& vibration of each mass, due to the
fact that each mass is now he%—é]—pesmeﬂ by two springs instead of one.
The third terms in Eqgs. (4-135) and (4-136) give rise to a coupling between
the motions of the two masses, so that they no longer move independently.
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We may solve Eqgs. (4-135), (4-136) by an extension of the method of
Section 2-8 applicable to any set of simultaneous linear differential equa-
tions with constant coefficients. We assume that

Ty = Clept, (4—141)

%y — 406", S locked ¢-142)

where (', Cs are constants. Note that the [same time ‘dependenceis as-
sumed for both z; and z,, in order that the factor e?t will cancel out when
we substitute in Eqs. (4-135) and (4-136):

(m1p® + K1)C1 + ksCa = 0, (4-143)
(mop® + k5)C2 + ksCy = 0. (4-144)

We now have two algebraic equations in the three unknown quantities
(4, Cs, p. We note that either Eq. (4-143) or (4-144) can be solved for
the ratio Cy/Cy:

2 ’
gg el ity mip + kl ALK 53 g (4_145)
Cy ks mep” + kb

The two values of C3/C; must be equal, and we have an equation for p:

mp A B _ ks
k3 mop® + K

which may be rearranged as a quadratic equation in p?, called the secular
equation:

(4-146)

mimaop* o (mok + miks)p® + (kiks — k3) = 0,  (4-147)

whose solutions are

Bl o 1(_k__ 1c_) [1(k_ k_> _ Mk K ]”2
p= 2m1+m2 :!:4m1+m2 m1m2+m1m2
1 1 e
= — 5 @i+ wdo) = [; (@lo — wio)® + ﬁ;] fir, 1 148)
It is not hard to show that the quantity in brackets is less than the square
of the first term, so that we have two negative solutions for p% If we
assume tha@ w1p > wao,)the solutions for p? are

P’ = —oi = —(ofo + 3A0"),

T R N V)

(4-149)
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where

. 2 3 4ic 1/2_ B
&V — (oo —w) {1+ ——5 1|,  (4-150)

(w%O Sl w§0)2
with the abbreviation
2 ks

= ) (4-151)
V'mimsg - Uﬂssmﬁs
where k is the coupling constant. Eq. (4-150) reduces to
Aw® = 2% ~ ;LK; (4-152)
The four solutions for p are
p = iwy, +iws. (4-153)

@bpz = —w?, Eq. (4-145) can be written

Oy _ M2 _ 2y — A [ 2
Cl = kg ((JJl (.010) = K2 m2! . (4: 154:)\
A o™ \
and(if)p® = —wj, it can be written ‘\“\)&(s '
Ci_maa oy _ _ Ao [mp y
A (w2 wzo) = 2«2z \\'m, (4-155)

By substituting from Eq. (4-153) in Elqs. (4-141), (4-142), we get four
solutions of Eqs. (4-135) and (4-136),provided the ratio C'2/C; is chosen
according to Eq. (4-154) or (4-155). Each of these solutions involves one
arbitrary constant (C'; or C5). Since the equations (4-135), (4-136) are
linear, the sum of these four solutions will also be a solution, and is in fact

the general solution, for it will contain four arbitrary constants (say
G €L Co, CF): :

; L Aw? [m 7 Aw? /m =t
Ty = Clewlt + C’le il L —2? Wi02el 2t EKTZ- m—?(];e : 2t,
(4-156)

2 Aw? . : b
; w m ok = t
Aw mi tw1t 1 0’16 iw1t C2ezw2t C’g@ dugt

Lo = ——= A |—
o 2k2 2 g 2K2 mo

(4-157)

In order to make x; and x, real, we choose
Cr = 34:e™, O = 347", (4-158)
Cy = 3Aze™,  Ch= 34 ™, (4-159)
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so that
sz meo
r1 = Al CcoS <w1t 4+ 01) — —2? ;'1«—1 As cos (wgt + 02), (4*160)

2
e e /% Ay c0s (01t -+ 67) + Ag cos (wat + 02).  (4-161)
2

2k2

This is the general solution, involving the four arbitrary constants

Ay, As, 01, 02. We see that the motion of each coordinate is a super-

position of two harmonic vibrations at frequencies w; and we. The os-

cillation frequencies are the same for both coordinates, but the relative
amplitudes are different, and are given by Eqs. (4-154) and (4-155).

If A; or A, is zero, only one frequency of oscillation appears. The re-

2 sulting motion is called a normal mode of vibration./'/l‘he normal mode of

(“/a highest frequency is given by :

r, = Al CcOoS (wlt —[— 01), (4—162)
sz mi

Tg = E_K‘Z— A '%“ Al CcoS (wlt -} 01), (4—163)

k w? = wiy 4= FAw> (4-164)

The frequency of oscillation is higher than wyo. By referring to Fig. 4-10,

we see that in this mode of oscillation the two masses m; and mg are oscil-

lating out of phase; that is, their displacements are in opposite directions.
i /The mode of oscillation of lower frequency is given by

A
w Aw?

ma
Ty — = 5;5 E Az COS (wzt -+ 02), (4—165)
X9 — A2 COS (wgt + 02), (4—166)
w2 = wiy = 1Aw’. (4-167)

In this mode, the two masses oscillate in phase at a frequency lower
than wso. The most general motion of the system is given by Eqgs. (4-160),
(4-161), and is a superposition of the two normal modes of vibration.

The effect of coupling is thus to cause both masses to participate in the
oscillation at each frequency, and to raise the highest frequency and lower
the lowest frequency of oscillation. Even when both frequencies are
initially equal, the coupling results in two frequencies of vibration, one
higher and one lower than the frequency without coupling. When the

/coupling is very weak, i.e., when

K% K Hwio — wio), (4-168)
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then Eq. (4-150) becomes
2

Aw? = Es & ot
W10 — W20

(4-169)

For the highest frequency mode of vibration, the ratio of the amplitude of
vibration of mass ms to that of mass m is then

2 e 2
Tz _ Aw” ymy . KT fma .
21 22 Nmy My =120

w%o - wgo
Thus, unless me << my, the mass my oscillates at much smaller amplitude
than m;. Similarly, it can be shown that for the low-frequency mode of
vibration, m; oscillates at much smaller amplitude than m,. /If two oscil-
lators of different frequency are weakly coupled together,“there are two
normal modes of vibration of the system. In one mode, the oscillator of
higher frequency oscillates at a frequency slightly higher than without
coupling: and the other oscillates weakly out of phase at the same fre-
quency./In the other mode, the oscillator of lowest frequency oscillates at
a frequency slightly lower than without coupling, and the other oscillates
weakly and in phase at the same frequency. /At or near resonance, when
the two natural frequencies w;( and wsq are equal, the condition for weak
coupling [Eq. (4-168)] is not satisfied even when the coupling constant is
very small. Aw? is then given by Eq. (4-152), and we find for the two nor-
mal modes of vibration:

g L (4-171)
T1 ma
WF = @iy ek (4-172)

The two oscillators oscillate in or out of phase with an amplitude ratio
depending only on their mass ratio, and with a frequency higher or lower
than the uncoupled frequency by an amount depending on the coupling
constant. o

An interesting special case is the case of two identical oscillators
(my = mg, by = ky) coupled together. The general solution (4-160),
(4-161) is, in this case,

x; = Aqcos (wit + 0;) — Aj cos (wat + 03), (4-173)
zg = Aqcos (wit + 0;) + Az cos (wot + 65), (4-174)

where w; and ws are given by Eq. (4-172). If A, = 0, we have the high-
frequency normal mode of vibration, and if A; = 0, we have the low-fre-
quency normal mode. Let us suppose that initially mg is at rest in its
equilibrium position, while m; is displaced a distance A from equilibrium

Wip F

Wep

W=
UJZ 9
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and released at ¢ = 0. The choice of constants which fits these initial
conditions is

AT (4-175)
A= —Ap = %A;
so that Eqs. (4-173), (4-174) become
x; = %A (coswit + coswsl), (4-176)
zy = LA (coswit — €os wot), (4-177)
which can be rewritten in the form :
‘ i w:’o t
x1 = A cos <u—)1——2—ﬂ t) cos <‘0—1—?ﬁ t) ) (4-178)
[} T ; !wl—wz . (w1 we
z9 = —A sin ——2——t sin —2——15 . (4-179)

If the coupling is small, w; and w, are nearly equal, and x; and x oscillate
rapidly at the angular frequency (w1 + wg)/2 = w1 = wy, with an am-
plitude which varies sinusoidally at angular frequency (w3 — ws) /i2meThe
motion of each oscillator is a superposition of its two normal-mode motions,
which leads to beats, the beat frequency being the difference between the
two normal-mode frequencies. This is illustrated in Fig. 4-11, where 0s-
cillograms of the motion of xy are shown: (a) when the high-frequency
normal mode alone is excited, (b) when the low-frequency normal mode
is excited, and (¢) when oscillator m; alone is initially displaced. In Fig.
4-12, oscillograms of x; and zo as given by Eqgs. (4-178), (4-179) are
shown. It can be seen that the oscillators periodically exchange theil
energy, due to the coupling between them. Figure 4-13 shows the same
motion when the springs k; and ko are not exactly equal. In this case
oscillator m, does not give up all its energy to mg during the beats. Figure
4-14 shows that the effect of increasing the coupling is to increase the bea’
frequency w; — we [Eq. (4-172)].

Tf a| frictional force |acts on each oscillator, the equations of motior

"o (4-135) and (4-136) become
Pt
V- mla'c'l + bljll + k’lil/l + ]C3CC2 = 0, (4—180

??12.’,.152 —I— b2£i52 + ](2121132 + ](33331 = 0, (4:—181
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Fra. 4-11. Motion of coupled har- Fia. 4-12. Motion of two identical
monic oscillators. (a) High-frequency coupled oscillators.
normal mode. (b) Low-frequency nor-
mal mode. (¢) m; initially displacegv/ ™

(@

F1a. 4-13. Motion of two nonidenti- Fic. 4-14. Motion of two coupled
cal coupled oscillators. oscillators. (a) Weak coupling. (b)
Strong coupling.
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where b; and b, are the respective friction coefficients. The substitutior
(4-141), (4-142) leads to a fourth-degree secular equation for p:

m1m2p4 -+ (mgby + mlbg)p3 + (mokh + mikh + blbz)p2
+ (bikh + boki)p 4+ (Kiks — k3) = 0. (4-182]

This equation cannot be solved so easily as Eq. (4-147). The four root:
for p are, in general, complex, and have the form @In and by are not toc
large)

b — —71 £

p= —73 =% iw. (4-183

That the roots have this form with ¥; and v, positive can be shown (thougl
not easily) algebraically from a study of the coefficients in Eq. (4-182)
Physically, it is evident that the roots have the form (4-183), since this wil
lead to damped vibrations, the expected result of friction. If by and bs ar
large enough, one or both of the pairs of complex roots may become a pai
of real negative roots, the corresponding normal mode or modes bein
overdamped. A practical solution of Eq. (4-182) can, in general, be ob
tained only by numerical methods when numerical values for the constant
are given, although an approximate algebraic solution can be found wher
the damping is very small.

DYFUZV\

The problem of the motion of a system of two coupled harmonic oscil
lators subject to a harmonically oscillating force applied to either mass cax
be solved by methods similar to those which apply to a single harmoni
oscillator. A steady-state solution can be found in which both oscillator
oscillate at the frequency of the applied force with definite amplitudes anc
phases, depending on their masses, the spring constants, the damping, an
the amplitude and phase of the applied force. The system is in resonanc
with the applied force when its frequency corresponds to either of the twi
normal modes of vibration, and the masses then vibrate at large amplitude
limited only by the damping. The general solution consists of the steady
state solution plus the general solution of the unforced problem. A super
position principle can be proved according to which, if a number of force
act on either or both masses, the solution is the sum of the solutions wit]
each force acting separately. This theorem can be used to treat the prob
lem of arbitrary forces acting on the two masses.

Other Types of coupting between the oscillators are possible in additio;

to coupling by means of a spring as in the example above. The oscillator
may be coupled by frictional forces. A simple example would be the cas
where one mass slides over the other, as in Fig. 4-15. We assume that th
force of friction is proportional to the relative velocity of the two masses
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Fie. 4-15. Frictional coupling. F1a. 4-16. Coupling through a mass.

The equations of motion of m; and my are then

\
mi&; = —ki>y —\]b(ﬁh —m (4-184)
maks = —kaws —[b(&s + xl)) (4-185)
or — {
myEy + b2y + kyxy + by = 0, (4-186)
MmoZy + by + koo -+ by = 0. (4-187)

The coupling is expressed in Eqs. (4-186), (4-187) by a term in the equation
of motion of each oscillator depending on the velocity of the other. The
oscillators may also be coupled by a mass, as in Fig. 4-16. It is left to the
reader to set up the equations of motion. (See Problem 26 at the end of
this chapter.)

Two oscillators may be coupled{in such a way that the force acting on
one depends on the position, velocity, or acceleration of the other, or on
any combination of these. In general, all three types of coupling occur to
some extent; a spring, for example, has always some mass, and is subject
to some internal friction. Thus the most general pair of equations for two
coupled harmonic oscillators is of the form

miEy + bity + kizy H meds + by + keza(= 0, (e18s)
mols + boy + kaxs 4 meky 4 bty + kexy = 0. (4-189)

These equations can be solved by the method described above, with similar
results. Two normal modes of vibration appear, if the frictional forces
are not too great.

Equations of the form (4-188), (4-189), or the simpler special cases con-
sidered in the preceding discussions, arise not only in the theory of coupled
mechanical oscillators, but also in the theory of coupled electrical circuits.
Applying Kirchhoff’s second law to the two meshes of the circuit shown in
Fig. 4-17, with mesh currents 7, 75 around the two meshes as shown, we
obtain

. 1
(L + Li)§: + (R + R1)d1 + (é%‘(}{){h + L. + Rqo +EQ2 = 0,
(4—190)
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Fig. 4-17. Coupled oscillating circuits.

and

@ + (B Babts At Vaa + Bk Bis + S =0,
2
(4-191)

where ¢; and ¢, are the charges built up on C'; and C'; by the mesh currents
71 and 75. These equations have the same form as Eqs. (4-188), (4-189),
and can be solved by similar methods. In electrical circuits, the damping
is often fairly large, and finding the solution becomes a formidable task.

The discussion of this section can be extended to the case of any number
of coupled mechanical or electrical harmonic oscillators, with analogous
results. The algebraic details become almost prohibitive, however, unless
we make use of more advanced mathematical techniques. We therefore
postpone further discussion of this problem to Chapter 12.

All mechanical and electrical vibration problems reduce in the limiting
case of small amplitudes of vibration to problems involving one or several
coupled harmonic oscillators. Problems involving vibrations of strings,
membranes, elastic solids, and electrical and acoustical vibrations in trans-
mission lines, pipes, or cavities, can be reduced to problems of coupled
oscillators, and exhibit similar normal modes of vibration. The treatment
of the behavior of an atom or molecule according to quantum mechanics
results in a mathematical problem identical with the problem of coupled
harmonic oscillators, in which the energy levels play the role of oscillators,
and external perturbing influences play the role of the coupling mechanism.



