
Proc. Natl. Acad. Sci. USA
Vol. 88, pp. 483-486, January 1991
Physics

Stable configurations of confined cold ionic systems
(ion traps/crystallized ions)

ROBERT RAFAC*t, JOHN P. SCHIFFER*t, JEFFREY S. HANGST*t, DANIEL H. E. DUBIN4,
AND DAVID J. WALES§
*Physics Division, Argonne National Laboratory, Argonne, IL 60439; mThe University of Chicago, Chicago, IL 60637; tDepartment of Physics, University
of California, San Diego, La Jolla, CA 92093; and §Department of Chemistry, University of Cambridge, Cambridge CB2 lEW, United Kingdom

Contributed by John P. Schiffer, September 4, 1990

ABSTRACT The simple structures formed by charged
particles confined in a harmonic potential have been investi-
gated and the configurations ofminimum potential energy were
identified. For fewer than 12 particles these form polyhedrons
centered on the oriin. For structures with 13-22 particles one
sits in the middle, for 23-26 particles two are in the interior,
etc., until a third shell starts forming at 60. When the isotropy
of the trap is changed, distortions and discrete phase changes
are seen. These structures should correspond to ones formed in
ion traps at very low temperatures.

Systems of cold ions settle into stable configurations whose
shapes depend only on the confining potential and the inter-
ionic Coulomb forces. The nature of these configurations has
been considered previously, at least since the time of J. J.
Thompson's classical model of the atom (1, 2). With recent
advances in the techniques of trapping and cooling ion
clouds, such systems have become accessible to experimen-
tal investigation. At very low internal temperatures, the ions
arrange themselves into symmetric crystalline arrays, a pro-
cess that can be observed in laboratory ion traps of both the
Penning (3) and Paul (4, 5) types. This followed early studies
of charged Al particles suspended in a radio-frequency field
by Langmuir and coworkers (6).
A number of calculations have addressed the problem of

finding the configuration ofminimum potential energy (CME)
for various types of external confining potentials. In partic-
ular, several have published results on the CME for a small
cloud of ions (N < 30) stored in an isotropic harmonic
potential, but disagreements remain (7-9). The main purpose
of the present note is to identify these configurations and so
resolve some of the discrepancies in the literature. Further-
more, because some experimental work has also been per-
formed for nonisotropic harmonic potentials, we explore how
some of the minimum energy configurations change as the
symmetry of the external harmonic potential varies.
The problem is one of classical physics; the dimensions are

large compared to the wavelength of the ions. Since the
number of degrees of freedom in these "Coulomb crystals"
is large even for few ions, all but the most symmetrical
configurations are studied here using numerical techniques.
We apply several such methods, including molecular dynam-
ics and Monte Carlo simulations, as well as direct multidi-
mensional numerical minimization of the potential energy.
The minimum configurations from the various methods were
always consistent with each other.
The strengths ofconfining potentials commonly used in ion

traps produce ion clouds with interparticle spacings on the
order of a few to tens of micrometers, and the confining

potential is approximately harmonic (4, 5). The total potential
energy of a cold system ofN ions is then

U(rl, r2,. . . , rN) =

Ill]q2 {j _ + [Z2 + a(x? + y?)]
i=l j<Ir +j 2d'

where the positions of the ions are given by ri = (xi, yi, zd), (i
= 1, . . . , N), q is the ionic charge, d = (q2/mco2)'/3 is the unit
length in a spherically symmetric harmonic potential of
natural frequency c for charged particles of mass m. The
"trap parameter" a determines the symmetry of the external
harmonic potential. Although in general it is possible to have
different natural frequencies in the three directions, experi-
ments have so far concentrated on the spherically symmetric
(a = 1) and cylindrically symmetric (a # 1) cases.
Our molecular dynamics program is derived from that used

(10) in the investigation of possible order in heavy-ion storage
rings, where both two- and three-dimensionally confined
many-particle systems were studied. For a given number of
ions, each molecular dynamics calculation was started at a
high temperature, then the system was slowly damped until
a very low temperature was attained. In terms of the plasma
parameter F = (q2/a)/kT (where kT is the temperature of the
cloud and a is the interion spacing), all systems began with r
< 1 and cooled to I > 2 x 105; an infinite homogeneous
plasma has been shown to crystallize into a body-centered
cubic lattice (11-13) at r 178 (14).
At the end of a complete run, the total potential energy of

the system was stable to a few parts in 103 for the most flexible
systems and typically a few parts in 104 for the more rigid ones.
Initial configurations were varied to check that the final
ordering was indeed the lowest one and not a local minimum.
This procedure was found to be particularly important for N
> 19, where many ions must simultaneously change positions
to get from a local minimum to the global one, and the local
minima are very closely spaced in energy. Further, geometric
optimizations (constrained and unconstrained) were per-
formed on many of the structures to verify that the true
minimum in the potential energy was indeed achieved.
The Monte Carlo algorithm, used principally for N < 10

and a # 1, moves ions randomly with a given step size 6x and
keeps the move only if the energy of the configuration is
reduced. As a minimum in U is approached, Ax is reduced to
improve convergence until changes in the energy fall below
a critical value. Up to 50 randomly generated initial condi-
tions were used to make reasonably certain that all possible
local minima were found. A conjugate gradient algorithm (15)
was also employed in some cases to further improve the
accuracy of the minimum energy configurations found from

Abbreviation: CME, configuration of minimum potential energy.
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the Monte Carlo method; final accuracies in the minimum
energy were a part in 107 or better.

Finally, in some simple cases the minimum energy config-
urations were calculated analytically. In particular, we con-

sidered the cases N = 2, 3, and 4. Analytic results are

presented whenever they are available.
The minimum energy configurations for systems with 2 to 15

ions in a spherically symmetric confining potential are given in
Table 1 and shown in Fig. 1. It is evident that a number of the
configurations do not agree with intuitive expectations. For
example, when N = 8, the ions do not lie on the vertices of a

cube but form two squares rotated by 450 with respect to each
other (7), their respective centers separated by a distance 0.979
times their edge. Earlier publications incorrectly identified the
"centered" tetrahedron (i.e., a tetrahedron with afifth particle
at its center) as the global minimum for five particles (9), the
centered octahedron for seven (9), the cube for eight (8, 9), and
the centered cube for the system of nine ions (9). Once the true
minimum is known, it becomes fairly obvious that the other
configurations are saddle points on the potential energy sur-

face-some have been included in Table 1 with some config-
urations that correspond to local energy minima. Note that
shapes in which there is a rotational symmetry axis through
each atom are guaranteed by symmetry to be stationary points
of some order because there can be no resultant tangential
force on any atom (16, 17). Methods of constrained optimiza-
tion were employed to characterize these saddles, and some

transition states were explicitly optimized using the Ceran-
Miller eigenvector-following method (18, 19).

Searches for true transition states (with precisely one

negative force constant) were also conducted using the
Cerdan-Miller method. The energies and geometries of these
structures are important in interpreting the results of dynam-
ical simulations and also provided interesting comparisons
with the corresponding results for van der Waals clusters.
For example, we found that Lipscomb's diamond-square-
diamond process (20) was the predominant low-energy path-
way for single-shell rearrangements, just as it is in small
Lennard-Jones clusters and main group ligated clusters such
as borohydrides (19).

Table 1. Summary of configurations of simple systems

Number of Total potential Interparticle spacing
particles Geometric description energy Radius a b c

2 Dumbell 1.191 0.629 1.258 (1)
3 Equilateral triangle 3.120 0.833 1.443 (3)
4 Tetrahedron 5.670 0.972 1.587 (4)
5 Trigonal bipyramid 8.910 1.090 1.544 (6) 1.872 (3)
(4+1) Tetrahedron (+1)* 9.264 1.242 2.029 (4)

6 Octahedron 12.639 1.185 1.676 (12)
(5+1) Trigonal bipyramid (+1)* 13.049 1.319 1.866 (6) 2.279 (3)

7 Pentagonal bipyramid 17.024 1.273 1.508 (5) 1.790 (10)
(6+1) Octahedron (+1)* 17.2% 1.386 1.960 (12)

8 Square skew-prism 21.864 1.350 1.581 (8) 1.738 (8)
Cube*t 21.913 1.351 1.560 (12)

9 3-Capped triangular prism 27.214 1.419 1.742 (12) 1.989 (6) 2.477 (3)
(8+1) Square skew-prism (+1)f 27.448 1.512 1.771 (8) 1.947 (8)
(8+1) Cube (+1)* 27.492 1.513 1.748 (12)

10 2-Capped square skew-prism 33.058 1.484 1.600 (8) 1.621 (8) 1.898 (8)
11 Polyhedron 39.404 1.545
12 Icosahedron 46.088 1.600 1.682 (30)

(11+1) Polyhedron (+1)f 46.234 1.674
13 (12+1) Icosahedron (+1) 53.312 1.721 1.810 (30)

(13) Polyhedront 53.364 1.654
14 (13+1) Polyhedron (+1) 60.959 1.768
15 (14+1) 2-Capped hexagonal skew-prism (+1) 68.958 1.812 1.616 (12) 1.851 (12) 1.884 (12)
16 (15+1) Polyhedron (+1) 77.382 1.855
17 (16+1) 2-Capped hexagonal skew-prism (+1) 86.201 1.895
18 (17+1) 7-Capped pentagonal prism (+1) 95.418 1.934
19 (18+1) Polyhedron (+1) 105.022 1.973
20 (19+1) Polyhedron (+1) 115.042 2.009
21 (20+1) Polyhedron (+1) 125.381 2.044
22 (21+1) Polyhedron (+1)§ 136.120 2.079
23 (21+2) Polyhedron (+2) 147.202 2.152
24 (22+2) Polyhedron (+2) 158.624 2.183
25 (23+2) Polyhedron (+2) 170.415 2.214

(22+3) Polyhedron (+3)¶ 170.426 2.249
26 (24+2) Polyhedron (+2) 182.512 2.243
27 (24+3) Polyhedron (+3) 194.955 2.307

Unless otherwise noted, all values pertain to the configuration of minimum energy. Units of distance and energy are as discussed in the text.
Under number of particles, some configurations suggested by others as having minimum energy are indented, and where some particles are in
the center, the parentheses give the number in the outer polyhedron + the number in the center. Under geometric description, the number of
particles in the interior is given in parentheses. For interparticle spacing, the number of times a particular spacing occurs in the structure is given
in parentheses.
*Configurations erroneously assigned as the configuration of minimum energy in ref. 9.
tConfigurations erroneously assigned as the configuration of minimum energy in ref. 8.
tRefers to a configuration that is a local minimum.
§We are indebted to R. Hasse for pointing out to us the correct configuration of minimum energy for 22 ions.
$Configuration with a different radius incorrectly assigned as the configuration of minimum energy in ref. 7.
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FIG. 1. Configurations of some of the simplest ionic systems in isotropic confinement. The lines are drawn to emphasize groups of ions that
form simple geometrical shapes. The letters refer to distances that are shown in Table 1.

Ref. 8 reported no definite minimum-energy configuration
for systems of seven and nine ions; however, we do not find
this to be the case. The minima for these systems do not
appear qualitatively different from the others, these systems
are not particularly flexible or in unusually shallow minima,
nor did repeated heating/cooling cycles in the molecular
dynamics method change the final configurations.
Table 1 also lists the energies and mean nearest-neighbor

distances for some systems with N > 15.
In the simulation of large ionic systems, it had been found

(10, 13, 21, 22) that cold ion clouds arrange themselves in
layered structures, and for isotropic confinement these take
the form of concentric spherical shells. Such shell structure
has been confirmed experimentally (3). We have investigated
the onset of the formation of shells in small systems. As can
be seen from the tables, the polyhedral structure of the ionic
configuration evolves in a straight-forward fashion until N =

13, where it becomes energetically favorable to have a single
ion inside the shell. For 22 < N < 27, there are two ions inside
the outer envelope, etc. Near the transition from n to n + 1
ions inside the shell, there are local minima that may have one
extra or one fewer ion within the outer shell. For instance, the
case of N = 25 was erroneously reported (7) to have three
ions in the center with energy U = 170.426; the actual global
minimum has two central ions and U = 170.415.
For large N, the multitude of possible orderings makes it

more difficult to unambiguously locate the configuration that
represents the true minimum in potential energy. However,
we have found that the local minima fall into classes that are
qualitatively similar in appearance and that have very closely
spaced energies; they may be classified according to the
number ofions in each shell. For instance, we find that for the
60-ion system the minimum energy is for a configuration
consisting of an icosahedron surrounded by a 48-ion outer
shell, having total potential energy U = 774.511. It also
appears that the N = 61 system is the first with a particle
appearing in the middle of the inner shell-the beginning of
a third shell with the outer two shells in the same shape as
found for 60 ions and a total potential energy U = 796.721.
The pattern continues; the 62-ion system has a 13-ion inner
shell with 1 central ion, 63 ions have a 14-ion inner shell with
1 central ion, and 64 ions have a 15-ion inner shell with 1
central ion. These three configurations seem to be the true
minima with energies of 819.236, 841.942, and 864.937,
respectively; however, there are a number oflocal minima all
within a few parts in 105 of each of the quoted values.
The inner-shell structures obtained are analogous in shape

to those for the corresponding number ofions confined alone.

The configurations of inner-shell ions, however, have slightly
larger radii than the same free structures-they are slightly
attracted to the "holes" in the next shell. Table 2 gives a
comparison of these configurations for a few such systems.
ForN = 100 (a case studied in ref. 22), all ofthe local minima

were qualitatively similar to those observed previously: there
were three concentric shells with 4, 26, and 70 ions, and the
lattice structure within the outer shells was the distorted
two-dimensional hexagonal lattice that is the characteristic
arrangement on the layered surfaces oflarger systems (10, 22).
These observations can be explained using idealized models
for the cloud's lattice structure (23). The models lead to an
estimate that up to 60 concentric shells may be required before
the interior of the cloud takes on a body-centered cubic lattice
structure (i.e., the structure of an infinite system).
The radius of the configuration changes relatively

smoothly with the total number of particles, as may be
noticed in Fig. 2 where the mean radius divided by the
arbitrary factor NO`4"7 is displayed. Some discontinuities are
evident. For instance, the emergence of an inner ion in the
13-ion configuration increases the radius of the outer icosa-
hedron by 7.6%. Analogously, more than 1 ion inside the shell
volume causes the outer shell to become deformed by a small
amount along the symmetry axis of the internal structure.
The two ions in systems with 22 < N < 27 deform the outer
shell along the dumbbell axis causing it to be 4-5% larger
along the axis than perpendicular to it. For the 27-particle
configuration, which has an equilateral triangle within the
shell volume, the radius is ==4.5% larger in the plane of the
triangle than perpendicular to it.
For an anisotropic confinement (a #A 1 in Eq. 1), it is

evident that the configuration of lowest energy will change.
We find that as the trap parameter a is varied continuously,
the CME also changes continuously except at specific a
values at which jumps in the symmetry of the CME occur.

Table 2. Comparison of some simple structures with the
analogous structure surrounded by an outer shell

Number of Radius of same
Number of particles in configuration
particles in surrounding Radius of when surrounded
structure shell configuration* by a shell*
3 24 0.833 0.997
12 48 1.600 1.607
12 + 1 48 1.721 1.733
14 + 1 48 1.812 1.823

*Units of distance are as discussed in the text.
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FIG. 2. Mean radius of ions in the outer shell for isotropic
confinement plotted as a function of the number of ions N in the
cloud. This radius is divided by N04".7 (the power that approxi-
mately compensates for the average increase with ion number). The
discontinuities at 13 and 22 ions correspond to the appearance of 1
and 2 ions in the interior of the cloud, respectively.

These jumps are due to competing local energy minima,
which become lowest energy at these a values. The transi-
tions are similar to the structural phase transitions of charges
confined to move on simple surfaces (24). They can be
classified according to the type of discontinuous change in a
symmetry parameter (the mean cloud radius (r), for exam-
ple): some behave like first-order transitions ((r) has a dis-
continuity) and some behave like phase transitions of the
second kind (derivatives of (r) with respect to a are discon-
tinuous). Furthermore, as was previously noted for the
spherical case, there can be more than one stable local
minimum at a given a value. Stability of a given equilibrium
has been studied by numerical determination of the spectrum
of normal mode frequencies. When one or more of the
frequencies becomes imaginary, the equilibrium is no longer
stable. In the following cases, the range of a values over

which a given configuration is stable is the same as the range
over which the configuration is the CME, except where
specifically stated otherwise.
The case ofN = 2 is trivial; for a < 1 the ions sit on opposite

sides of the origin in the x-y plane; the distance between the
ions is (2/a)1/3. For a > 1 the ions are aligned along the z axis;
the distance between them is 21/3. These are the only stable
configurations. The point a = 1 is special in that any rotation
of the configuration around the origin is allowed; this rota-
tional symmetry occurs for all N values.
For N = 3, three configurations are stable, again with

nonoverlapping regimes of stability. For a < 1, the ions form
an equilateral triangle in the x-y plane with sides of length
(3/a)1/3. For 1 < a < 12/5, the ions form an isosceles triangle
with the long side parallel to the z axis; for a > 12/5, the ions
are squeezed onto the z axis; the distance between the ions
is (5/4)1/3.
As N increases the observed minimum energy structures

become ever more complex. For example, for N = 4, six
distinct symmetries are found; they have nonoverlapping
regimes of stability except in configurations ii and iii, which
are both stable in the range 1.40 < a < 1.63.

(i) For 0 < a < (1 + 233/2)/25/2 = 0.677 all four particles are
in the x-y plane, forming a square.

(ii) For 0.677 < a < 1.4705 (stable for 0.677 < a < 1.6279),
the configuration is no longer coplanar; it becomes a tetra-

hedron with two equal-length edges that are perpendicular to
and bisected by the z axis.

(iii) For 1.4705 < a < 2 x 33/2/(1 + 33/2) = 1.677 (stable
for 1.4019 < a < 1.677), the tetrahedron now has one edge
parallel to the z axis and one perpendicular.

(iv) For 1.677 < a < 2.8468, the configuration becomes a
coplanar parallelogram with two ions on the z axis and two in
the x-y plane.

(v) For 2.8468 < a < 4.1542, the parallelogram is squeezed
so that the ions previously in the x-y plane move out of the
plane, one falling above and the other below.

(vi) For 4.1542 < a <0, the ions are squeezed onto the z
axis with the spacing between the inner pair 0.9250 times that
between the outer ones.
For larger values ofN the CMEs become more numerous

and complex as a function of a. They have been determined
numerically for N s 10; an interactive graphics representa-
tion of the CMEs for 3 N s 10, which can be run on a
Macintosh computer, is available upon request.¶

In general as a --
00, the configuration becomes a line along

the z axis with the number of ions per unit length scaling for
large N as 1 (Z/ZO)2 (where zo is half the length of the line
of charges). As a O-0 the cloud settles into the x-y plane and

forms a distorted two-dimensional hexagonal lattice with the
number of ions per unit area scaling for large N as [1 -

(r/ro)2]1/2 (where ro is the radius of the cloud).
To summarize, the symmetrical shapes seen for cold ionic

systems in an isotropic harmonic well go through a variety of
simple shapes that change when the confining well deviates
from isotropy. Many aspects of the symmetries and the
dynamics of ions in ion traps are likely to be influenced by
more detailed study of these configurations.
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