TRAPPED PLASMAS WITH A
SINGLE SIGN OF CHARGE

Despite their reputation,
not all plasmas are dif-

ficult to confine. In fact, one
kind of plasma can be kept
for long times in a simple
apparatus by means of static
electric and magnetic fields.
It is the kind of plasma that
consists exclusively of parti-
cles with a single sign of
charge. Examples include pure electron plasmas, positive
ion plasmas of one or more species, positron plasmas and
even electron—antiproton plasmas—all of which have been
realized in recent experiments.

These unneutralized collections of charge are called
plasmas because they behave in many ways like neutral
plasmas, but they are much easier to confine. Indeed, in
principle, plasmas with a single sign of charge can be
confined forever. In practice, confinement times of days
(and even weeks) are routinely achieved, which is one
reason why these plasmas provide research opportunities
that are not available with neutral plasmas.

A closely related reason is that these unneutralized
plasmas can be confined and also be in a state of global
thermal equilibrium. This property may sound like it is
trivial and shared by all plasmas, but it is not. In fact,
neutral plasmas cannot be confined by static electric and
magnetic fields and also be in a state of global thermal
equilibrium. The incompatibility between confinement
and global thermal equilibrium in the case of neutral
plasmas is fundamentally the reason why these plasmas
are hard to confine. When they are confined, they are
not in a state of maximum entropy (or minimum free
energy). There is always free energy available to drive
instabilities of the sort that have long plagued the con-
finement of neutral plasmas. By contrast, a confined
unneutralized plasma in a state of global thermal equi-
librium is guaranteed to be stable and quiescent.

For theory, the possibility of using thermal equilib-
rium statistical mechanics to describe the late-time plasma
state is a large advantage. In effect, Ludwig Boltzmann and
Josiah Willard Gibbs solved the complicated many-body
physics problem for us. For experiment, a system that is
near to thermal equilibrium is more predictable and control-
lable, and the effect of small controlled deviations from
thermal equilibrium can be studied with precision.

Unneutralized plasmas have proven to be excellent
subjects for well-controlled studies of a wide range of
plasma phenomena over a wide range of parameters. For
example, these plasmas can be cooled to the cryogenic
temperature range without any recombination, thereby pro-
viding experimental access to novel parameter regimes, such
as the strong correlation exhibited by Coulomb crystals.

Surprisingly, good confinement persists even if the
plasma is created in an initial state that is unstable, and
violent fluidlike turbulence ensues. This early-time tur-
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Plasma crystal is not a fanciful oxymoron,
but something you can actually make
with an easy-to-confine, long-lived
nonneutral plasma.

Thomas M. O’Neil

bulent evolution can lead to
another kind of crystal, in
which magnetic-field-aligned
vortical structures are an-
nealed by the turbulence to
form a regular pattern.

Although there are other
fascinating phenomena ex-
hibited by nonneutral plas-
mas, the focus of this article
is on Coulomb and vortex crystals. But we begin with a
historical outline of the field, followed by an exploration
of the physics of plasma confinement.

Early studies

Dating back nearly half a century, the history of research
on trapped clouds of unneutralized charges has roots in
both plasma physics and atomic physics.

In 1936, Frans Michel Penning invented the basic
confinement configuration for use as a vacuum gauge. A
few years later, research on nonneutral plasmas in Pen-
ning trap-like field configurations (magnetrons) became
part of the effort to produce high-frequency power sources
for radar in World War II.

In the late 1960s, nonneutral plasma physics devel-
oped rapidly, borrowing techniques and ideas from tradi-
tional plasma physics.! This development was driven
largely by the need to produce new high-frequency power
sources and to understand collective effects in intense
accelerators and storage rings. The name “nonneutral
plasma” was coined in that period.

By the late 1970s, John Malmberg and his collabora-
tors were carrying out experiments on trapped pure elec-
tron plasmas at the University of California, San Diego.
They made the theoretical proposition that these plasmas
with a single sign of charge have exceptionally good
confinement properties and might be cooled to a crystal
state.?

Meanwhile, atomic physicists were also trapping
charged particles. In the 1960s, Hans Dehmelt pioneered
the use of Penning traps for fundamental studies of
individual particles—work for which he received the 1989
Nobel Prize in Physics. Gradually, as the use of Penning
traps became widespread in atomic physics and chemistry,
some brave investigators began trapping larger and larger
numbers of particles. Their experiments left behind the
individual particle regime, where atomic physicists had
traditionally been comfortable, and moved into the more
perilous territory of plasmas and collective effects.

In the 1980s, collaborations began and progress (par-
ticularly experimental progress) accelerated. David
Wineland and his collaborators at the National Institute
of Standards and Technology (NIST) in Boulder, Colorado,
who were laser-cooling trapped clouds of ions with the
goal of producing accurate atomic clocks, produced small
pure ion crystals.® Also, antimatter plasmas became avail-
able—a development that was stimulated, in part, by
efforts to produce antihydrogen at CERN.* Indeed, much
of the work described here derives from fruitful collabo-
rations between atomic and plasma physicists.
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FIGURE 1. A SCHEMATIC DRAWING of a Malmberg-Penning trap. The wall is a conducting cylinder that is divided axially into
three sections. The central section is held at ground potential, while the two end sections are held at positive potential (to confine a
plasma of positive charges). A uniform axial magnetic field B is also present. The plasma (shown in violet) rotates at angular frequency

 in the region of the central grounded section and is confined radi

ally by the magnetic field and axially by the electric fields E.

The physics of confinement

Figure 1 shows a schematic drawing of what is now called
a Malmberg—Penning trap. Also present is a uniform axial
magnetic field B=Bz. Here, (r, 6, 2) is a cylindrical coor-
dinate system in which the z-axis coincides with the axis
of the trap.

Because the plasma is unneutralized, its space charge
electrostatic field exerts a large force radially outward.
To balance this force and the other radially outward forces
(pressure and centrifugal), the plasma rotates about the
axis of symmetry of the trap, giving rise to the inwardly
directed Lorentz force (evx B/c), where v is the rotational
velocity. In a sense, therefore, rotation through a magnetic
field is like neutralization by a background charge—a
useful way to think about these systems, and one that we
return to below.

To come to grips with the physics of confinement, we
start by considering an ideal trap that is characterized by
time-independent trap fields and perfect cylindrical sym-
metry. Let H be the N-particle Hamiltonian (which is
equal in value to the total particle energy) for a system
of nonrelativistic, classical charges that interact electro-
statically and move in the trap fields. Since it does not
depend explicitly on time, H is a constant of the motion.
And since H is invariant under rotation, the total canonical
angular momentum, Py, is also a constant of the motion.

Of course, H and P, are not exactly constant for a
real plasma in a real trap. Not only do charges slowly
radiate energy and angular momentum, but there are also
neutrals, which collide with the charges and change their
energy and angular momentum. Most important of all,
a real trap has small field and construction errors that
break the cylindrical symmetry and apply a small torque
to the plasma. Nevertheless, by maintaining a good vac-
uum and by constructing the trap with a high degree of
cylindrical symmetry, H and P, can remain nearly constant
on the timescale required for Coulomb collisions to bring
the plasma particles into thermal equilibrium. Thus, we
first discuss the confinement and thermal equilibrium
states under the assumption that H and P, are exact
constants, and then discuss the effect of slow changes in
these quantities.

To the extent that H (total energy) is conserved, the

axial confinement of the particles can be guaranteed
simply by placing a high enough potential on the end
cylinders. To understand the radial confinement, we in-
voke the constancy of canonical angular momentum,

P,= z me + %Ae(rj)rj :
J
where the quantity muv,r; is the mechanical part of the
angular momentum for the jth particle, and the quantity
(90)Ay(r))r; is the vector potential part. The sum runs over
all N particles in the plasma.

For a uniform axial magnetic field, the §-component
of the vector potential is Ay(r) =Br/2. (Diamagnetic cor-
rections are negligible for the low densities and velocities
that we have in mind here.) And for a sufficiently large
magnetic field, the vector potential part dominates, and
the total angular momentum reduces to the simple form

eB 2 eB 2
Py~ 2crj_2(rzrj'
J J
Thus, the constancy of P, implies a constraint on the
allowed radial positions r; of the particles—a key concept
in the physics of confinement.

Note that this relationship remains valid even if the
plasma undergoes complicated turbulent and collisional
dynamics, the reason being that the collisions and other
internal interactions conserve Pj.

A simple example illustrates the power of the con-
straint. Suppose that all the plasma particles initially
reside inside a cylindrical region of radius 1 cm—that is,
rj<lcm when t=0 for all j—and that the conducting
cylindrical wall is located at 7 =10 cm. To the extent that
the sum of rJZ(t) is conserved, less than 1% of the particles
can ever reach the wall at r=10cm; more than 99%
remain confined forever.

By contrast, for a neutral plasma, it is the sum of
ejrjz(t) that is constant, which means that an electron and
an ion can move to the wall together while preserving the
sum. This is precisely what happens in electron—ion
collisional transport and in many instabilities.

Thermal equilibrium states

When plasma particles remain confined, they must come
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FIGURE 2. HOW A PURE ELECTRON PLASMA
settles into a state of thermal equilibrium, as
observed experimentally. On the left-hand side,
the density n(r,?) is plotted as a function of  for a
cut through the plasma mid-plane (z = 0) for the
three times =0, 3 and 10s. On the right-hand
side, local rotation frequency at the midplane
o(7,t) is plotted for these same three times. By
t=10's, the rotational flow has become nearly
shearfree, and the density profile has evolved to
the expected thermal equilibrium form.
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into thermal equilibrium with each other. For
a weakly correlated plasma in which H and
P, are both conserved, the Boltzmann distribu-
tion takes the form
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where h = mv?/2 + ed(r,z) is the single-particle
energy, p, =mugr + eBr?/2c is the single-parti-
cle canonical angular momentum and ¢(r, z) is
the mean-field electric potential.l:2

The combination

h + wp, :%[vj + vf + (v + wr)2]

eBw 2
+=—r
2c

is the single-particle energy as viewed in a frame that
rotates with frequency —w. (Positively harged plasmas
rotate in a negative sense relative to Bz.)

The velocity distribution is Maxwellian in the rotating
frame, so, from a fluid perspective, the flow is shearfree
(rigid rotor flow). If the flow were not shearfree, viscous
forces would produce entropy, which is impossible in a
state of maximum entropy.

The density distribution is determined by three po-
tentials—namely, the electric potential ¢(r,z), the cen-
trifugal potential -mw?r2/2, and the potential eBwr2/2c.
This last potential is associated with the electric field
induced by rotation through the magnetic field. It is this
potential that provides the radial confinement.

To see that the distribution, in fact, does correspond
to a confined plasma, note that ¢(r, z) forces the distribu-
tion to be exponentially small at each end (assuming that
the potential on the end electrodes is turned up sufficiently
high) and that the potential eBwr?/2c forces the distribu-
tion to be exponentially small at large r (assuming that
B is sufficiently large). Of course, the conducting wall is
assumed to be outside the radius where the distribution
becomes exponentially small. Note, too, that such thermal
equilibrium distributions do not correspond to confinement
for a neutral plasma. The sign of the charge enters
ed(rz) and eBwr?/2c, so confinement of electrons means
nonconfinement of ions.

The density normalization n,, temperature 7 and
rotation frequency w are determined by the three quanti-
ties N, H and P, Because effects such as radiation,
collisions with neutrals and interaction with small field
errors produce a slow evolution in the values of H and
Py, the values of ny, T and o will slowly change with time.

2
+ed(r,z) - _m2£ r2

FIGURE 3. SIDE VIEW OF A PLASMA that consists of 8 x 10*
beryllium ions in a quadratic trap potential, together with the
best-fitting elliptical envelope.
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If no countermeasures are taken to oppose the ambient
torque and heating (or cooling), ny, T and w will evolve
in such a way that the plasma will escape.

However, counteracting torques and heating (or cool-
ing) can be applied using laser beams (or rotating field
asymmetries) to keep H and P, constant.” In this way,
the plasma can be maintained in steady state for weeks
at a time, or be put into some new thermal equilibrium
state that is more convenient for a particular experiment.

The electric potential ¢(r, z) is determined largely by
the plasma charge density itself, so Poisson’s equation
must be solved with the charge density given by the
thermal equilibrium density distribution. Fortunately, the
self-consistent solutions for potential and density have a
simple universal character.’? The density is nearly con-
stant out to some surface of revolution, where it drops to
zero in a few Debye screening lengths. That length is
given by Ap = (kgT/4mne?)", where n is the density (by
definition, plasma is a collection of charges that is large
compared to the Debye length).

This general picture of the plasma is easy to under-
stand physically. In the thermal distribution, the two
potential energy terms due to rotation are both quadratic
in r. Suppose that the radial confinement is provided not
by rotation through a magnetic field, but by the electro-
static field from an imaginary cylinder of uniform negative
charge. The potential energy of a positive charge e in
such a field would also be quadratic in r, so the two terms
due to rotation can be interpreted as such a potential
energy. The electric potential for a cylinder of uniform
charge density —en_is ¢_= wen_r? so the required choice




for the density is -mw?/2 +eBw/2¢c. For this choice, the
thermal equilibrium distributions for the two systems
differ only by a velocity shift due to rotation—that is,

v, = vy +wr. Otherwise, the density distributions are
identical.

This equivalence is useful because we know what will
happen if we put a collection of positive charges into a
potential well produced by a cylinder of uniform neutral-
izing charge (and by the positively biased end cylinders).
The positive charges will go to the bottom of the well,
matching their density to that of the negative charge—that
is, n(r,z)=n_. And they will fill the well out to some
surface of revolution where the supply of charges is ex-
hausted and where the density will drop to zero.

Figure 2, from the UCSD neutral plasma group, shows
how a pure electron plasma settles into a state of thermal
equilibrium through collisional transport.® A signature of
thermal equilibrium is shear-free rotational flow, but, for
an arbitrary initial equilibrium, the rotation frequency is
not uniform in r. The shears in the rotational flow give
rise to viscous forces (due, microscopically, to collisions)
that drive the plasma into a state of rigid rotation. We
can see in figure 2 that, by ¢=10s, the density profile
has evolved to the expected thermal equilibrium form, and
that the rotation frequency has become nearly uniform.

Detailed studies of collisionally driven transport
across magnetic fields led the UCSD group to the discovery
of a new transport theory.” Nonneutral plasmas typically
exist in a parameter regime where the cyclotron radius
for a particle is small compared to the Debye length. In
this regime, the new theory predicts particle and heat
fluxes that are much larger than those predicted by
traditional theory, but that are in good agreement with
measurement.

For an important class of experiments, the surface of
revolution at which the plasma density drops to zero is a

FIGURE 4. TIME-RESOLVED BRAGG DIFFRACTION
PATTERN obtained by scattering laser light from a trapped
plasma of N=8 x 10* Be* ions. The effect of plasma
rotation was removed by stroboscopically imaging the
scattered light. A body-centered cubic lattice aligned along
the <100> axis would generate a spot at each intersection
of the grid lines overlaid on the image.

spheroid (an ellipse of revolution).® Except at the
thin surface sheath, the plasma density is uniform
within the spheroid. In these experiments, which
atomic physicists favor, the plasma cloud is small
compared to the size of the trap, and the Taylor
expansion of the trap potential is nearly quadratic
over the region of the cloud. It is not too surprising,
therefore, that the quadratic trap potential gives rise
to a quadratic surface of revolution like an spheroid.

Figure 3, from the NIST ion storage group,
shows a side-view image of a plasma that consists
of about 8 x 10* beryllium ions in a quadratic trap
potential, together with the best-fitting elliptical
surface envelope. The aspect ratio of the fitted
ellipse (length + diameter = 1.763) is in good agree-
ment with the aspect ratio 1.75 predicted by theory
for the measured rotation frequency and known trap
parameters.

By using laser beams to manipulate the values
of H and P,, the experimenters were able to lead
the plasma through the full range of thermal equi-
librium states (consistent with the constraint of
small Debye length). The measured plasma shape
was in quantitative agreement with theory over the
full range.®

Theoretical analysis yields accurate, analytic
descriptions of not only the equilibrium shape of these
small spheroidal plasmas, but also the linear modes of
oscillation about the equilibrium state (including all
plasma modes, upper hybrid modes and cyclotron modes).?
The theory for the modes, like that for the equilibrium
shape, assumes that the Debye length is small. For the
low-order modes checked so far, both the predicted fre-
quencies and the spatial structure of the eigenmodes are
in excellent agreement with measurement and simula-
tion. These small spheroidal plasmas are possibly the
best understood and best controlled plasmas currently in
existence.

Coulomb crystals

Small spheroidal plasmas have been laser cooled to tem-
peratures in the range of a few millikelvins. As the
temperature is reduced, the random kinetic energy of a
particle becomes smaller than the Coulomb interaction
energy between neighboring particles, and interparticle
correlation becomes important. First, the system of par-
ticles enters a state with the short-range order charac-
teristic of a fluid; then it suffers a phase transition to a
state with long-range order—that is, to a crystal state.
A measure of the correlation strength is the coupling
parameter I' = e2/akyT, where the Wigner—Seitz radius a,
which is defined as (3/4wn)"s, is essentially the interpar-
ticle spacing, and where I' is the ratio of the Coulomb
interaction energy between neighboring particles e?/a to the
random thermal energy for a particle 25T, so the Coulomb
interactions can establish strong correlations when I' > 1.
To develop a theory for the crystal structure, we return
to the equivalence between the thermal distribution for a
magnetically confined plasma and a plasma that is con-
fined by a cylinder of uniform neutralizing charge. Pre-
viously, we established this equivalence for the Boltzmann
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FIGURE 5. A SEQUENCE OF
EXPERIMENTAL images that illustrate

vortex merger, with intensity of
vorticity (z-integrated electron density)
indicated by color. The large red circle
in the first image indicates the location
of the wall.

distribution, but the argument is eas-
ily extended to the Gibbs distribution.?

As an N-particle distribution, the
Gibbs distribution includes all infor-
mation about spatial correlations, so
we may conclude that the microscopic
order is the same for the two systems.
A system of point charges in a uniform
neutralizing background charge is
called a one component plasma (OCP)
and has been a favorite theoretical
model for the study of correlation ef-
fects. For a plasma large enough that
bulk properties predominate, we can
simply adopt the well-known results
for a homogeneous OCP and apply them to the magneti-
cally confined plasma. For example, it has been known
for many years that the lowest energy state of such a
plasma is a body-centered cubic (BCC) crystal. The lattice
spacing is set by the density, which again is equal to that
of the imaginary neutralizing charge—that is,
n=n_=Bw/2cme — mw?/2me?.

Figure 4 shows a time-resolved Bragg diffraction pat-
tern, which Wayne Itano (NIST, Boulder) and his collabo-
rators obtained by scattering laser light from a spheroidal
plasma of 8 x 10* Be* ions.l® The pattern from a crystal
that rotates about the laser beam would appear as nested
rings, but here the effect of the rotation was removed by
stroboscopically imaging the scattered light (with a CCD
camera). The diffraction peaks all lay on the intersections
of a square grid, which is consistent with a single BCC
crystal oriented so that the incident laser beam is along
the crystal’s <100> axis. An angular calibration was made,
and the agreement between the observed and calculated
grid spacing was within the uncertainty of the meas-
urement (about 1%). Other crystal structures (for ex-
ample, face-centered cubic) were occasionally observed,
but the BCC structure predominated for sufficiently
large plasmas.

In earlier experiments with smaller plasmas, the ions
were observed to lie on nested surfaces of revolution.?
Numerical studies by various groups showed that this
shell structure is the thermal equilibrium state for smaller
plasmas in which surface effects predominate.’’ One can
think of a given shell as a lattice plane that has been
deformed to follow the spheroidal surface of the plasma.

In related experiments conducted by Herbert Walther
and his collaborators (Max Planck Institute for Quantum
Electronics, Garching, Germany), even smaller numbers
of charges were confined and laser cooled in Paul (radio
frequency) traps, and Coulomb clusters with a rich variety
of structures were observed.!? The structures and phase
transitions between the structures were understood by
calculating the minimum energy states.!?

Vortex dynamics and turbulence

Trapped nonneutral plasmas, like neutral plasmas, exhibit
a rich variety of collective dynamics. Here, we focus on
a particularly simple form of collective dynamics that has
been studied with long columns of pure electron plasma.

When a typical electron’s cyclotron and axial bounce
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frequencies are high, the associated oscillations are aver-
aged over in low-frequency motions. (Axial bouncing is
the movement of electrons back and forth in the trap
parallel to the magnetic field.) In this case, we can think
of the plasma as consisting of long rods (bounce-averaged
electrons) that move across the, magnetic field with the
E x B drift velocity, vy=c V¢ xz/B. The density n(r,0,f)
evolves under this flow field according to the continuity
equation, and the bounce-averaged potential ¢ = ¢(r,0,t)
is determined, in turn, by the density through Poisson’s
equation.

An interesting feature of these two-dimensional drift
Poisson equations is that they are identical to the equa-
tions for the two-dimensional flow of an ideal—that is,
incompressible and inviscid—fluid. The electric potential
corresponds to the stream function and the density to the
vorticity. Thus, the plasma can be used to model the
two-dimensional flow of an ideal fluid. Surprisingly, ex-
periments with a pure electron plasma offer advantages
over experiments with a tank of water!

For example, the vorticity (electron density) can be
measured directly by dumping the plasma out along the
magnetic field lines to a phosphorus screen that is imaged
by a CCD camera. This operation is accomplished simply
by switching the confinement voltage on the appropriate
end cylinder to ground potential. Another advantage is
that the plasma is well separated from the ends and walls
during the two-dimensional flow, so there are no boundary
layers at the ends and edge to complicate the flow. More-
over, the effective viscosity of the plasma is very low.

Figure 5, from the UCSD nonneutral plasma group,
shows a sequence of experimental images that illustrate
vortex merger, with vorticity (z-integrated electron den-
sity) indicated by color. The image labeled # =0 us was
obtained by dumping the plasma almost immediately after
two adjacent vortices (electron columns) were created.
This image encapsulates the initial conditions for the evolu-
tion. The large red circle indicates the location of the wall.

The other images were obtained by starting from the
same initial condition, but then allowing the two-dimen-
sional evolution to proceed for 10, 20, 40, 80 and 200 us
before executing the dump. The measurement destroys the
plasma, so each image was obtained with a different plasma.
However, the shot-to-shot reproducibility was sufficiently
good that a movie of the merger process could be made.

The time to merge was studied as a function of the
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ratio S/D, where S is the separation between the centers
and D is the diameter of the two nearly identical vortices.'?
For values of S/D up to about 1.5, the time to merge was
about the time taken by the two vortices to orbit one
another (the case for figure 5), but as S/D was increased
through the narrow interval from 1.5 to 1.7, the time to
merge increased by nearly five orders of magnitude.
Above this transition, merger was delayed until viscous
effects broadened the vortices. The timescale separation
of five orders of magnitude illustrates the advantages of
using the plasma to model the flow of ideal fluids.

In similar experiments, Joel Fajans and his Berkeley
collaborators have studied the stability of a single vortex
against distortion.’® In the language of fluid dynamics,
the distortion away from circular cross section is produced
by subjecting the vortex to external shear flows. In the
plasma experiment, these flows are produced by applying
different voltages to azimuthally separated sectors of the
cylindrical wall.

Recently, the UCSD group observed a surprising and
novel state called a vortex crystal.l® Two turbulent evo-
lutions are illustrated by the vorticity images in the two
top rows of figure 6. Highly filamented vorticity distri-
butions (spirally wound sheets of electrons) were produced
by trapping electrons from a spiral electron source. The
spiral vorticity structure can be seen in the initial images,
which were obtained by dumping the plasma shortly after
trapping, when ¢ = 0.06 5 (1 is the rotation period of the
column). By the time of the second images (¢ = 0.6 1g),
local Kelvin—Helmholtz instabilities had produced an ir-
regular field of many small and intense vortices (red
regions). The subsequent chaotic advection caused many
vortices to merge, so that, by the time of the third images
(t = 6 7g), there were fewer but larger vortices. Further-
more, parts of vortices were sheared into long filamentary
tails, the remnants of which formed a patch of low-inten-
sity background vorticity (the green region in figure 6).

The presence of the background vorticity is important,
because the system of vortices was effectively cooled by
stirring the background vorticity. Indeed, there was a
competition between the cooling and the tendency of the
vortices to merge.

In the second row of images, the merger processes went
to completion and left a single large vortex at the center of
the background vortex patch. In the top row of images,

FIGURE 6. EXPERIMENTAL
IMAGES of the vorticity
distribution are shown for two
turbulent evolutions (two top
rows). In the second row of
images, vortex merger processes
led to a single large vortex at
the center of a patch of lower
intensity background vorticity,
similar to the last panel of
figure 5. In the top row,
cooling of the vortex system
through interaction with the
background vortex patch
annealed the vortices into a
local energy minimum (vortex
crystal), thereby arresting
further evolution and merger.
The bottom row of images is a
selection of observed vortex
crystals.

cooling annealed the vortex system into a local energy
minimum (vortex crystal) that arrested further mergers.

Once formed, the vortex crystals survived as rigidly
rotating patterns until viscous effects became important
when ¢ was about 10%rg. Although the initial images for
the two evolutions look similar, they are, in fact, slightly
different as a result of different settings used for the
electron source. The settings for the top row of images
systematically produced a vortex crystal, but the number
of vortices in the crystal varied from shot to shot. The
bottom row of images in figure 6 is a selection of some of
the vortex crystals that have been observed.

Similar vortex crystals have been observed in rotating
superfluids, where the energy loss from the vortex system
occurs through friction on the normal fluid.!” Of course,
the vortex crystals are two-dimensional cousins of the
three-dimensional crystals discussed earlier, since the vor-
tices can be thought of as charged rods that interact
through a logarithmic potential, rather than the usual
Coulomb potential for point charges.

The free decay of two-dimensional turbulence has
engaged the interest of many theorists, and the unex-
pected discovery of vortex crystals in the final state shows
that the problem is richer than originally thought.

Vortex crystals prompt many questions. For instance:
What sets the number and size of the surviving vortices?
What is the cooling mechanism—that is, the mechanism
by which energy is transferred from the intense vortices
to the background vorticity? Can vortex crystals appear
in the final state of a flow in which both signs of vorticity
are present?

At first glance, the organization of the intense vortices
into a regular array that starts from a random-looking
turbulent state may seem to contradict the second law of
thermodynamics. However, one must remember that the
entropy of the background vorticity is increasing.

A recent theory put forward by De-Zhe Jin and Dubin
maximizes the entropy of the system, which consists of
background vorticity plus a specified set of intense vortices.'®
The number and profile of the intense vortices are specified,
and the entropy is maximized subject to constraints that
include the incompressible nature of the flow. The theory
successfully predicts the final shape of the background vor-
ticity profile and the locations of the intense vortices.
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A broader perspective

The above discussion focuses on two opposite limits of
research with trapped nonneutral plasmas: the late-time
thermal equilibrium states and the early-time turbulence.
These two topics were chosen to illustrate the range of
such research, but many other interesting topics could
have been discussed—the linear modes of oscillation for
the trapped plasmas, the novel nature of the collisional
relaxation to thermal equilibrium, centrifugal separation
of multispecies plasmas, the late-time dynamical control
of the plasma temperature and rotation frequency, use of
the plasmas in high-precision atomic clocks and efforts to
produce antihydrogen.

The range of physics that is being explored with these
simple plasma systems is surprisingly broad and touches
on issues of interest to plasma physics, atomic physics,
condensed matter physics and fluid dynamics. And a
growing number of researchers are using these remarkable
plasmas for a widening variety of purposes.
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the Office of Naval Research and the National Institute of Stand-
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