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That something besides light comes to the
earth from the sun has long been suspected,
but only in 1962, when Mariner Il made direct
measurements in space, was it established
beyond doubt that a steady flow of ionized
hydrogen particles sweeps out through the
solar system. Since that time the solar wind
has attracted the attention of increasing
numbers of theorists and has been the object
of many sophisticated space experiments,
including one performed by the first men on
the moon.

Introduction to the Solar Wind is the first
systematic introduction to the subject.

Written at an intermediate level, it covers all
aspects from the stellar structure required to
produce an extended atmospheric envelope, or
corona, to the impact of the solar wind on the
bodies of the solar system and the influence of
stellar winds on stellar structure and evolution.
All methods of observation are presented,
although emphasis is on broad principles,
which are treated as an integral and natural
part of solar physics and astronomy.

The solar wind is important in discussions of
topics as widely separated as the formation of
ionic comet tails and the theory of general
relativity and is therefore a remarkably unifying
subject. Because Introduction to the Solar
Wind treats all of the implications of the
phenomenon in detail, it will be useful in a wide
variety of courses for upper-division

undergraduate and first-year graduate students.

Such courses include those on the solar wind,
the solar system, solar-terrestrial physics,
solar physics, and others in departments of
astronomy, physics, and electrical and
aerospace engineering. Introduction to the
Solar Wind is also an excellent introduction to
the subject for scientists in other fields and for
technical and professional workers in
space-related research and engineering.
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The maxwellian velocity distribution for
T =2 x10° °K showing various escape
velocities.

neutral particle value is 616 km/sec. Appropriate values are shown in Figure
1.5, together with the maxwellian distribution for 2 x 10 °K. The particles
available for escape are shown in the shaded area. Treatments differ as to the
method of replenishing the escaping particles.

Contributions were made by Pikelner and Kiepenheuer, the subject of the
coronal mass balance was reviewed byvan de Hulst in 1953, and the evapora-
tive-exospheric theory was extended by Chamberlain in 1960. While none of
these early evaporative theories proved adequate, it is now possible to
construct an exosphere model of the solar wind (Section 3.6). The error
of the earlier treatments was in the use of a mean collision cross section in a
plasma.

Evidence possibly pertaining to interplanetary gas was also available from
study of the zodiacal light and whistlers. As noted above, for some years the
zodiacal light had been attributed to the scattering or reflecting of sunlight by
interplanetary dust. However, in 1953 Behr and Siedentopf published results
concerning the degree of polarization and the brightness of polarized light
in the zodiacal light. They found that the polarization was too high to be
explained by dust scattering. (Not everyone agreed with their conclusion e.g.,
Fessenkov.) Hence, Behr and Siedentopf considered the possibility of scatter-
ing by interplanetary electrons. They calculated that an electron density near



corona can be preserved perpendicular to the lines of force bec ause diffuston

- this direction is greatly inhibited by (he lield. No such restriction exists
along the lines of force; as a result, the long narrow features that were
observed were expected. If the atmosphere is in hydrostatic equilibrium (or a

close approximation thereto), the density gradients should be the same both
in and out of the rays. This is the case because the pressure gradient is balanced
by the gradient of the potential, and no magnetic term appears in the potential.
The behavior of equal density gradients is predictable and apparently
observed.

The density in a polar plume is about four to five times that of the immediate
surroundings. This figure was reached after an analysis of tracings of polar
regions on eclipse plates. For the 1900 eclipse, van de Hulst noted that single
rays increased the coronal brightness by 10 percent and that the rays were
about 7,000 km in diameter. Van de Hulst determined an effective path length
of the polar corona and found that an individual ray diameter constituted
some one-fortieth of the total. Therefore, the density must be enhanced by
a factor of about four to produce a 10 percent increase in brightness. Similar
enhancements were deduced from studies conducted during other eclipses.
Enhancements of the same general amount over the normal coronal densities
are found for streamers and helmets.

Besides the radial, fine structure associated with density fluctuations, there
are other structural details often distinguished by enhanced intensity in
certain emission lines. First, there are the fans or helmets, as noted earlier,
which dominate the gross form of the corona. These are associated with
quiescent prominences (Section 2.5); immediately above the prominence is a
very dark region which is succeeded by a bright coronal arch system. Kiepen-
heuer has described the overall appearance of this entity in cross section
1s resembling the Eiffel Tower. The tip of this structure usually extends one or
wo solar radii above the limb ; the base is usually about one-half a solar radius
n width.

Streamers are extensions of the corona over active solar regions. They can
e distinguished out to many solar radii and are fairly structureless; their
hickness (or cross section) remains fairly constant with increasing radial
listance.

Coronal or sporadic condensations are found only over very active or
laring groups. Usually they are found at the top of the active or sunspot
Tominences and in white light appear with an extent of a few times 10* km.
‘heir density exceeds that of the surrounding medium by one or two orders of
1agnitude. These condensations have lifetimes of hours, or, at most, days
ecause this is the length of maximum activity associated with a sunspot group
see Section 2.5). Coronal condensations generally show the coronal yellow line
f Ca XV at 5,694 A; this line generally indicates a very high temperature.

Coronal enhancements or permanent condensations have base dimensions

A Phvsteal Properttes of the Coronag w

comparable to plages (Section 2.5) and in many respects appear (o be an

extension ol the plage activity into the corona, ‘Their density is higher than the
background corona but lower than the condensations. The enhancements can
last for several solar rotations. During the time of maximum activity associated
with a spot group, the innermost dense part of the enhancement may be
described as a condensation. The coronal enhancements are often called

coronal green patches because they are bright in the coronal green line of
Fe XIV at 5,303 A.

The terminology in studies related to solar activity is often quite confusing,
even to active workers in the field. Sometimes, for example, the same word is
used to refer to two entirely different phenomena.

The coronal light may be divided into three components:

1. The K corona. This is continuous radiation resulting from photospheric
radiation that is Thomson-scattered by free electrons in the corona.

2. The F corona (or false corona or inner zodiacal light). This is photo-
spheric radiation diffracted by interplanetary dust. This radiation is not
physically connected with the corona but must be accurately determined
in order to separate it from the desired K corona.

3. The E or L corona. This is the total light of the coronal emission lines
(optical region), such as the coronal green and yellow lines previously
mentioned.

The brightness of the various components and other pertinent information
are shown in Figure 2.8. The corona is often divided into the inner corona
(r/Rg < 1.3), the medium corona (1.3 < r/Rgy < 2.5), and the outerv corona
(r/Rg > 2.5); the latter region merges into the solar wind at large distances.

Densities. Coronal electron densities are calculated from photometric
determinations of the brightness of the K corona. Often such measurements
are presented in the form of isophotes. The K corona is presumed to originate
by Thomson-scattering of photospheric radiation with cross section ¢ =
6.6 x 1072°> cm?. The standard treatment assumes an optically thin corona.
Thus, the coronal intensity at a particular frequency is simply the integral of
the source function per unit volume along the line of sight, viz.,

+

4nl,=Ro [ g(y)dy (2.8)

Here y is in units of solar radii. The geometry is shown in Figure 2.9.
In order to continue, one must make some assumptions concerning sym-
metry which allows for the determination of three dimensional structure
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Schematic of the variation of the K, F, and E
components of coronal light and other bright-
nesses of interest.

Tom a two-dimensional light distribution. Spherical symmetry is often
issumed and is adopted here. The assumption that Thomson-scattering is not
sotropic involves very little error and is also used here. The source function
per unit volume is then

Idw

g =oNL) | —— 2.9
T
g(r) = oN (r)J(r) (2.10)

where J(r) is the mean intensity of radiative transfer theory. It is determined
by an integration of the emergent intensity over the solar disk taking account
>f limb-darkening; J(r) varies approximately as 1/r? and can be taken as
known. Equation (2.8) can be written as

4nl, =2Ro | “LoN. (DI dy (2.11)
0
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The geometry and nomenclature for comput-
ing the coronal electron density from
observed brightnesses.

It is found by observation that the intensity of the K corona can be accura-
tely expressed by a few terms of a sequence in inverse powers of r. Thus, one is
led to consider a source function composed of inverse powers of r, or

g=a =0 (2.12)

The quantity r can be expressed in terms of y by considering the geometry as
shown in Figure 2.9, and equation (2.11) can be rewritten for one term of
equation (2.12) as

dy
[(x + Rp)* + y?J 7 112

4nl, = 2a, R f (2.13)
(0]

AT R e e
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n

Hence, an observed density component that varies as r~" results from a
source function component that varies as r~"*1_If the intensity varies as a
few terms of such a sequence, then it is a simple matter to determine the
source function producing it; thus, g(r) can be determined directly from
observation. Note that there is no particular physical significance to these
interpolation formulas.

If g(r) is known, then N,(r) can be determined from equation (2.10) because
J(r) is known. Sample determinations of N, (r) are shown in Figure 2.10. The
determination of the proton concentration requires the specification of the
helium concentration; a hydrogen to helium ratio of 10:1 gives N, = 0.83 N, .

The assumptions involved in the determination of coronal densities must
also be kept in mind. The corona is assumed to be spherical and homogeneous,
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ind the scattering is assumed to be isotropic. While all these assumptions
roduce some error, the assertion of homogeneity of the corona is probably
he most serious. Some measure of the distribution of densities at a given r
vould be desirable; consider the function

R

UG
\n entirely homogeneous corona has 1/X = 1, and this function decreases for
corona with inhomogeneities. A simple interpretation follows from con-
ideration of a sequence of n 1 cm?® boxes, only one of which contains N,
lectrons. The quantity {(N,»* becomes {(N,/nd> while (N2> becomes
NZ/n)y. Thus, 1/X = 1/n and leads to a simple interpretation of 1/X as the
raction of space occupied by matter. The densities determined from eclipse
bservations and the assumption of homogeneity are mean values, {N,»>. A
st step toward introducing the effects of the fine structure is to think of the
nean density at a given r as determined by a combination of vacant regions

(2.14)
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and so-called “model rays,”” which occupy only 1/X of the space but which
have a density of X <{N,). The function X can be estimated from eclipse photo-
graphs (recall the discussion above concerning the determination of the
density enhancement in the polar plumes) and the interpretation of radio
observations. Allen has compiled the pertinent data, which may be approxi-
mately represented in the corona by

X 1.6(R—r®) 0.7 (2.15)

Thus, at r = 2R we have 1/X = 0.4, and this value decreases with increasing
r. Such considerations are important in determining the coronal temperature
from the gradient of electron densities.

Individual features, such as streamers, have been studied with the aid of an
assumption concerning the depth of the feature—usually that the depth and
breadth are comparable. A direct attack can be made on this problem by
taking balloon observations with a sufficient time delay to allow the solar
rotation to produce a stereoscopic effect. Reduction of such observations
involves the assumption that the corona or feature under study is constant in
time. The ultimate solution would involve simultaneous observations from a
near-earth and a deep-space probe. This structural problem is very important
because fans or streamers may mark the locations of the corona’s prime con-
tribution to the solar wind (see Section 7.1).

Temperature. The temperature of the corona is now well established as
~10° °K, but this is a relatively recent event. Prior to 1945, many exotic ideas
were put forward to explain the existence of the coronal ions, which were
ultimately identified by Grotrian and Edlén as highly ionized atoms of com-
mon constituents (e.g., Fe X). In 1945, Waldmeier summarized several
different lines of argument, all of which required million-degree temperatures.
It was from this time that a high-temperature corona was generally accepted.
Billings has noted that ““it is remarkable how many phenomena that had
puzzled astronomers during the preceding century were explained by this
concept.”

There is much evidence now on the temperature of the corona. It can be
determined from the variation of electron density with r and the assumption
of hydrostatic equilibrium; the simplest case also assumes an isothermal
corona. Such anatmosphere with spherical symmetry has a density distribution
given by

N GM 1 1l
e exp[_gﬁf_ﬂ (_ __)] 2.16)
- N,,o RokT \r rg
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vhere G is the constant of gravitation, M, the mass of the sun, p the mean
molecular weight, my the mass of the hydrogen atom, R, the solar radius, k
he Boltzmann constant, 7 the temperature, r the heliocentric distance in
jolar radii, and the subscript zero denotes a reference level. Equation (2.16)
mplies a linear variation between log N, and (1/r) with the slope determined
oy the temperature and the mean molecular weight. If we take logarithms of
quation (2.16), differentiate, and solve for the temperature, we find

1.00 x 107y

= T10810 NJA(AD) Gl

Hor a composition of 10 hydrogen atoms to 1 helium atom, x = 0.608. Plots of
og N, versus (1/r) for the equatorial region show a straight line behavior out
o about 3Ry with a slope dlogyo N,./d(1/r) =4.0. This simple approach
letermines a temperature of 1.5 x 10° °K. Slightly lower temperatures are
ometimes quoted for the polar corona, but they should be treated with
saution because it is difficult to obtain data which unambiguously refer to the
yolar regions.

Equation (2.17) ignores any possible expansion of the corona (as implied by
he solar wind) and the effects of fine structure. The equation of motion for a
spherically symmetric expanding corona is

d dln (N
g G g
dn dn kT,

(Rogon_2+wiv—v) =0 (2.18)
dn

where © = T/T,, T, the temperature at a reference level, § = /Ry, w the
xpansion velocity, g, the acceleration of gravity at the solar surface, and
(N,> the average electron density as determined from eclipse studies. The
ybserved electron densities can be fitted with a sequence of inverse powers of 5
ind equation (2.18) solved for the temperature; the solution requires the
pecification of 7, and the determination of w dw/dn. The solar wind flux and
he constant in the equation of continuity, N, wr® = const., are assigned by
juantities observed directly near the earth. The known densities and the
>quation of continuity determine the term w dw/dy. The integration constant
[, is determined by the form of the equation and the unstable nature of the
olutions; T}, is very well determined simply by insisting that the temperature
be neither negative nor infinite in the range 1.1 to 7Ry . Sample results are
shown in Figure 2.11.

The effects of the fine structure can be included by noting that part of the
ybserved or apparent decrease in the coronal electron density is actually due
o the steady decrease in the fraction of space occupied by matter, as shown in
>quation (2.15). Only the physical decrease in the “model rays” is relevant to
he temperature determination, and the temperature is calculated by replacing
(N,» in equation (2.18) with X{N,». These temperatures are also shown in
Figure 2.11.
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The temperature distribution as computed from electron densities under various
assumptions including a flux (N.w) at earth of 1 x 108 particles/cm?-sec where applicable.
(A) Inhomogeneous expanding model, H:He =5:1.

(B) Inhomogeneous static model, H:He =5:1.

(C) Inhomogeneous expanding model, H:He =10:1.

(D) Inhomogeneous static model, H:He =10:1.

(E) Homogeneous expanding model, H:He =10:1.

(F) Homogeneous static model, H:He =10:1.

(After J. C. Brandt, R. W. Michie, and J. P. Cassinelli.)

The calculated temperatures for r < 4R, are not greatly changed by the
expansion;they are, however, significantly changed by the inclusion of the fine
structure. A coronal temperature of about 2 x 10° °K would follow from
these curves. The values are entirely consistent with the other methods of
determining 7 (as discussed below) except for the region just above the transi-
tion zone: the spectroscopic evidence for that region appears to require a
much steeper gradient.

Spectroscopically, the temperature can be determined from measurements
of the profiles of the coronal emission lines. If the line is broadened only by the
Doppler effect and the corona is optically thin, the profile follows the law

(2.19)

where I is the intensity, 4 is the wavelength, and the subscript zero refers to
the line center. The Doppler width is given by

A (2kT\/?
= (—) (2.20)
c \umg
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he raw observations must be corrected for the effects of the instrumental
rofile to determine the full width at half intensity, 4 = 1.67 4,. The tem-
erature is then

hZ
T =1.95 x 10'2 H,TZ (2.21)

)bservational results often quoted for the red line of Fe X (u = 55.85) at
375 A are h = 0.89. Equation (2.21) gives a temperature of 2.1 x 10° °K. A
ariety of temperatures from 1.2 to 4.5 x 10° °K are found for different
oronal regions; the majority of determinations fall in the range 2.0-2.5 x
06 °K. Billings has estimated the effect of turbulent control motions on the
erived temperature and finds that the physical temperature is about 0.25 x
06 °K lower than the value calculated from equation (2.21).

The existence of highly ionized atoms also provides a means for deter-
1ining temperatures. Recall that the principal coronal emission lines in the
aditional wavelength region are the green line (5, 303 A) of Fe X1V, the
ellow line (5,694 A) of Ca XV, and the red line (6,375 A) of Fe X; the
ynization potentials of these ions are 355, 820, and 235 ev, respectively. The
mple observation of species with such high ionization potentials immediately
1ggests a very high temperature.

The circumstances that permit the direct observation of the optical coronal
mission lines may be somewhat fortuitous. Ions expected for temperatures
210% °K have large energy differences between the lower states, and transi-
ons between them would fall in the extreme ultraviolet region of the spect-
1m. However, the ground terms of these ions are split into levels which have
nergy differences lying in the optical range. These levels are metastable, and
1e Einstein A’s referring to transitions between them are ~10%sec™;
ontrast this with Einstein A’s ~107sec™! for typical permitted transitions.
his fact requires a low density medium for the lines to be visible. A high
ensity medium would de-excite the upper level by collisions during the rela-
vely long time spent there. Fortunately, the coronal density is low enough
y satisfy this condition.

The population of ions in the various stages of ionization as a function of
mperature is determined by a balance of loss-and-gain processes for a given
age of ionization. The relevant processes in the corona are collisional
ynization, and radiative and/or dielectronic recombination between adjacent
ages of ionization and a balance is necessary for a steady state. Denote the
age of ionization by p, the collisional ionization coefficient by C, and the
>combination coefficient by R. The balance between adjacent stages gives

NeNpR(p—)p_ l)zNeNp—IC(p— lﬁp) (222)

“there are N ions in the (p — 1) and p-th stages of ionization, then we can
itroduce the degree of ionization x such that there are N(1 — x) in the (p — 1)
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stage and Nx in the p-th stage. Then,

Xeene C(DG S Liiae )

= Ro=n—1) €2

Note that the degree of ionization is a function only of temperature and atomic
parameters and not a function of the electron density.

If the coefficients needed in equation (2.23) are available, the distribution of
a given element in the various ionization stages can be computed as a function
of temperature. The ratios of ionic stages must be extracted from the observa-
tions of the optical lines and from a careful discussion of the excitation
conditions. Both collisional and radiative excitation are important, and a
detailed calculation is required; low in the corona (=1.1 Ry), collisional
excitation dominates, but radiative excitation must still be included for
numerical accuracy.

Until rather recently, the observations and available rate coefficients yielded
temperatures close to 0.8 x 10° °K. However, in 1964 Burgess re-examined
the calculations of the recombination coefficient and concluded that an
alternate process, dielectronic recombination, was important and would
change temperatures that were inferred from studies of line intensities. The
older, radiative recombination coefficients were derived on the basis of the
continuum electron’s energy (kinetic energy + binding energy) upon recom-
bination being given up in a photon of the same total energy. If, however, a
continuum electron has an energy equal to the excitation energy of two
bound states, it can excite a bound electron to one of these states and occupy
the other. This yields a recombined atom with two excited electrons which
cascade to lower states and emit radiation. Thus, two electrons are involved
in this process, and, hence, the name, dielectronic recombination. In very hot
plasmas, such as the corona, dielectronic recombination is more efficient than
ordinary radiative recombination, and the recombination rate is increased by
about one order of magnitude. To produce the same observed degree of
ionization, the ionization rate (which increases with increasing temperature)
must also increase. The analysis indicates a temperature of about 2 x 10° °K.

The ionic temperatures can be estimated directly with the aid of mass
spectrometer determinations of the composition of the solar wind obtained by
the Vela group (Section 5.4). Several different ionization stages of oxygen
were observed, and it was easily established that the ionization balance was
fixed in the corona at r &~ 1.5 R, . The temperature was found to be 1.7 x
106 °K, but this value may be representative of relatively cool solar wind
plasma at the earth.

Sometimes ratios of lines from different elements or widely separated stages
of ionization are used to infer a temperature or a change in temperature with
heliocentric distance. The ratio of the green line (Fe XIV) to red line (Fe X)
intensities is often used. Unfortunately, the ionization potentials of the two
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FIGURE 2.12

Ray paths in the corona at 18 Mc/s. (After
R. N. Bracewell and G. W. Preston.)

onic species differ by 120 ev. Thus, possible coronal fine structure suggests
aution; from observation, the fine structure seems clearly to be present
ecause the widths of the red line consistently correspond to lower tempera-
ures than do the widths of the green line. Apparently there are different
emperature regions on a scale too fine to be resolved by present observational
echniques. Information obtained from line ratios (such as the green line:red
ine) must be regarded as primarily qualitative.

Another indication of the coronal temperature is the widths of the Fraun-
ofer lines in the scattered K corona. The Fraunhofer lines are generally
ndetectable, with thie possible exception of the H and K lines of CaIl.
‘quation (2.21) can be solved for the full width at half intensity 4 for T =

x 10° °K and for the atomic weight of the electron, u = 1/1,836. These
umbers give h &~ 170 A. The observations are very difficult, and present
esults are consistent with any temperature greater than about 10° °K.

The ﬁi{metermmmg the coronal temperature is the
olar radio brightness temperature for frequencies of about 18 Mc/sec.
\ssuming a homogeneous corona and using Snell’s law, one can calculate, the
ay paths through the corona for a medium with a varying index of refraction.
‘he index of refraction varies according to

2 1/2
=[1 e Nei} (2.24)

mm, f?

vhere e is the electronic charge, N, is the electron density, m, is the mass of
he electron, and f'is the frequency of the radio wave. The plasma frequency is
efined by f, = (¢2N_/m m,)'/2.

The behavior of the ray paths in the corona is especially interesting. The
ay which approaches closest to the sun is the one toward the center of the
isk ; this ray approaches to a distance such that n = 0 or f = f,. Other rays
rom a given observing location do not penetrate farther into the solar
tmosphere (see Figure 2.12). If one chooses to keep the wavelength close to
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ten meters, the ray path can be confined entirely to the corona. If the assump-
tion of a homogeneous corona is essentially correct, then radio observations
of the corona can be carried out in the radio wavelength range without the
contaminating ““ glare” of the photosphere. Thus, radio observations are a
potentially valuable source of observations of the corona against the solar
disk. Some complications are expected from the existence of the solar magnetic
field, but these should be important only over large sunspots where a sub-
stantial magnetic field could be present.

The equation of transfer for radio wavelengths is derived with consideration
of the change of intensity caused by the varying index of refraction. Thus,
(I/n?) is constant if there are no absorbing or emitting processes. The standard
equation of transfer can be integrated to yield the emergent intensity, or

1= “e~*B(T) dr (2.25)

The integration is carried out along the ray path which is computed as des-
cribed above. The opacity is also given by a line integral

= f K ds (2.26)

where K is the absorption coefficient.
The emission per unit frequency in the corona is given by the Planck

function,

2hy? 1

B(T) = oz T ]

. (2.27)

2 i
The Planck function 1s\perm1551ble in the corona because only a maxwellian
velocity distribution is required, not an approach to local thermodynamic
equilibrium. The physical interpretation of equation (2.25) gives the emergent
intensity as the emission from each point along the trajectory reduced by the
intervening opacity.

In the radio wavelength range, the Planck function can be replaced by the
Rayleigh-Jeans approximation, B(T') = 2kT/A*. Similarly, the intensity in the
radio region is related to the brightness temperature 7}, through I = 2kT, iz
Hence, equation (2.25) can be written as

Ei = fo Te " dr (2.28)

If the temperature 7, is constant in the corona, then
T,=T,( —e ™) (2.29)

The observations would appear to determine the coronal temperature, and
values close to 1 x 10° °K are cited in the literature. However, the situation is
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complex, especially for the optically thin case. The optical depth for thermal
emission (free-free transitions) is proportional to N2/T3/2, and, hence, the
emission is proportional to N2/T"/2. Thus, the problem of the coronal radio
temperature is closely coupled with the problem of determining the opacity
along the ray path. Most radio workers quote coronal temperatures of about
1 x 10° °K (for an optically thick corona), although considerable uncertainty
exists. If such temperatures are correct, a bona fide discrepancy exists between
them and coronal temperatures that have been inferred by other means. This
possible discrepancy has led to a questioning of the basic equation of transfer.
The problem has been hotly discussed, but the present consensus is in support
of the traditional equation of transfer and holds that it is not the source of
the discrepancy. Perhaps, the cause is inherent in the analysis or the result of
coronal irregularities. Very recent results with greatly improved resolution
give higher temperatures in essential agreement with other methods.

" Finally, the temperatures can be inferred from the decay times of Type 111
radio bursts on meter wavelengths. The Type 111 bursts appear to be plasma
oscillations at the plasma frequency excited by a fast group of particles
(electrons) traveling through the solar atmosphere at speeds of about ¢/3 to
¢/2. The plasma frequency can be computed as a function of height in the
corona from an assumed model, and thus the frequency drift with time gives
the velocity of the exciting disturbance. Plasma oscillations will damp out due
to collisions between ions and electrons, as e~ where v is the collision
frequency in the plasma; the collision frequency is proportional to N,/T /2.
The density can be obtained because the oscillation is at the local plasma
frequency [see equation (2.24)]. Hence, measurement of v determines the
temperature. Values of T'near 2.5 x 10° °K are generally quoted although there
are uncertainties and exceptions. The value that was quoted is entirely com-
patible with the temperature expected for the corona over an active solar region.

In summary, most available evidence indicates a coronal temperature near
2 x 10% °K. No serious conflict exists at the present time.

Composition. The composition of the corona influences many other coronal
investigations and is an interesting topic in itself. The temperature inferred
from density gradients [equations (2.17) and (2.18)] is directly proportional to
the mean molecular weight in the corona, which is determined entirely by the
relative abundance of helium in the corona. Exactly the same observed gradient
gives a 22 percent higher T for H:He = 10:1 (1 = 0.608) than for a pure hydro-
gen corona (u = 0.5). Commonly accepted values of H: He are near 10:1, and
the temperature thus derived is compatible with values obtained by other
means. However, the coronal helium abundance cannot be determined
directly because helium is completely ionized in the corona.

An indirect determination can be attempted by fitting the relative abundance
of He in solar cosmic rays onto the photospheric (spectroscopic) abundances
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of the other elements. A detailed analysis gives the ratios of C, N, and O to
H for the photosphere; a specific result is log [N(O)/N(H)] = —3.23. Cosmic
ray results for He, C, N, and O are available. The charge to mass ratios of
these nuclei are the same, and their relative abundance should remain
constant through the flare process. Their relative abundances are reasonably
constant from event to event, and the relative abundances of the C, N, and O
nuclei are in reasonable agreement with the spectroscopic results. The cosmic
ray ratio is N(He)/N(O) = 107, and the combination gives N(He)/N(H) =
0.06. This number is some sort of average between the photosphere and the
flare location. The coronal density of helium could be higher (see Section 5.4).

An abundance of heavier elements, such as iron, can be determined from
analyses of the optical lines from the ion. The absolute line intensity gives the
total number of ions in the appropriate upper level along the line of sight, and
a detailed calculation is involved in determining the total iron abundance.
The uncertainties in such a calculation cannot be minimized, but for more
than two decades many calculations have indicated an overabundance of the
heavy elements relative to the photospheric abundances. Typical values show
that iron is some ten to twenty times more abundant (relative to hydrogen in
the corona as compared with the photosphere). This result could involve a
process of diffusion or a mass dependent solar wind. This subject is discussed
further in Section 5.4.

The Magnetic Field. A general magnetic field in the corona can be inferred
from the results of a variety of indirect methods. Recall the previous discus-
sion of coronal fine structure and the polar plumes. The field is apparently
required for support of prominences, channeling of moving prominence
material, and the form of coronal material around solar-active regions. The
magnetic field is assumed in many calculations concerning the theory of the
corona, suchas the problem of mechanical heating. The indirectevidence and the
attempts to measure the coronal magnetic field have been reviewed by Billings.

Despite the prima facie nature of considerable traditional evidence, the best
evidence comes from space probe measurements of B near the earth. This
near-earth field is apparently the photospheric field which is convected by the
solar wind. This fact is established by evidence of a close correlation between
the solar and interplanetary field with a time delay of about five days
(Section 5.6). The quiet-time interplanetary measurement gives a radial field
B, =35y(1y=10""° gaqurs&?t}‘Um variation of this component
with distance implies a (surface field of 1.5 gauss) a value in excellent agree-
ment with the surface measurements. Thus, an inverse square law with a
surface field of 1.5 gauss gives a good typical value for the field in the corona.
Much higher fields can be expected in the corona over centers of solar
activity. (see Section 7.1 for discussion of the possible configurations of the
field in the corona.) -

= =

\}{ = |0 C‘{"P \O Ted\a



3

Basic Theory

This chapter covers the development of the theoretical approach to the solar
wind, beginning with the original hydrodynamical model of E. N. Parker.
The evolution of theoretical models is traced, with some attention being paid
to the inclusion of the magnetic field. Finally, the extent of the solar wind into
space is discussed in terms of its interaction with the interstellar medium.

3.1 Parker’s Hydrodynamic Theory (1958)

Parker began his paper by developing two points: (1) there was considerable
evidence from studies of comet tails and from geomagnetic studies that favored
a continuous expulsion of solar matter at speeds of hundreds of km/sec, and
(2) Chapman’s static model had a much larger pressure at infinity than could
be balanced by the pressure of the interstellar medium; hence, it was postu-
lated the interplanetary medium must expand. (This point has been discussed
in Section 1.3.)

Parker proposed that the expansion was a natural result of the high
temperature of the corona, and to illustrate this he worked out the first
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hydrodynamic model, based on a scalar pressure. The corona is a}ssumed to
be spherically symmetric, inviscid, and in a steady state; thﬁ? sun is assume.d
to be nonrotating and to have no magnetic field. The basic hydrodynamic

equations are: (1) the equation of motion

dw d GNumy M g
W — = — — (NkT) — ———> (3.1)
Ny dr dr ( ) 2
and (2) the equation of continuity
N(@r)w(r) r> = Nowoa® = C 3.2)

Here,

N = the total particle density,
my = the mass of the hydrogen atom (1.67 x 10~%%g),

u == the mean molecular weight,

w = the radial expansion velocity,

r = the heliocentric distance,

k = Boltzmann’s constant (1.4 x 10~ '®erg/°K),

T = the temperature,

G = the gravitational constant (6.67 x 10~% cm?/g-sec?),
M = the mass of the sun (1.99 x 10*%g).

The notation introduced by Parker was

e (3.3)

v =T()/Ts 62

s G,umH MO i (I/esc)z (35)
akT, Uiz

_ umy w? i ﬁ T 3.6

In all of the above equations, the subscript zero refers to the quantity evalu-
ated at the base of the corona r = a; and U = (2kT,/my)"/? is the most
probable velocity of protons in a maxwellian distribution at temperature Ty .
The density can be eliminated from equation (3.1) using equation (3.2) .and
the resulting equation written in terms of the variables defined by equations
(3.3) through (3.6). This gives

R L
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Although the detailed nature of the solution requires the specification of
TI(r), the basic form is evident from inspection of equation (3.7). Equation
(3.8) shows that the right-hand side of equation (3.7) has a zero. The left-hand
side can become zero either by having di/dé = 0 or by having © = . This
feature suggests a dual nature of the solutions. Low in the corona, diy//d¢
is positive as the plasma accelerates. Hence, if the equation is satisfied by
dy/dE = 0, the velocity will decrease thereafter. If the equation is satisfied
by 7 =y and not di/d¢ = 0, then s will increase outward.

Parker set 7 =1 (constant temperature) to approximate the conditions
appropriate to the high thermal conductivity of the corona. If thermal
conduction alone was insufficient to maintain a constant temperature, energy
deposition could be invoked. Then, with the r.h.s. of equation (3.7) equal to
Zero or

d (1 2
this reduces to
Ak B
? = E (39)

Since the L.h.s. of equation (3.9) is larger than the r.h.s. low in the corona and
also decreases faster with increasing distance, the two sides can be equal to
produce a zero in the r.h.s. of equation (3.7). This occurs at

A GumgM g
SEATiE 3.1
¢ 2 2akT, 3:10)

Parker chose the solution for which t =. This latter condition implies
umgw?* = kT, and, hence, the thermal and bulk kinetic energies are approxi-
mately equal at the point defined by equation (3.10), which is called *the
critical point.” The velocity at this point is

kT 1/2
H
Since this is close to the velocity of sound,
P\ 1/2 ST\ 12
(2
H

the critical point is sometimes loosely referred to as the “sonic point” and the
solutions advocated by Parker as the ““ supersonic solutions.” Choice of the
solutions for which di}/d¢ = 0 at the critical point would limit the expansion
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FIGURE 3.1

Parker’s solar wind solutions (isothermal corona)
based on Equation (3.13). (After E. N. Parker.)

velocities to less than the value given by equation (3.11) or 180 km/sec for
T = 2 x 10° °K. Such velocities could not reproduce Biermann’s observations.

The solution of equation (3.7) for the isothermal case such that y =1 at
& = A/2 is given by

A 2
b—Iny=-3-4In>+4In¢+ (3.13)

As one moves away from the sun, the dominant terms are
Yyx~4Iné (3.14)

and, hence, the isothermal region must be terminated at some finite distance.
Figure 3.1 shows solutions calculated from equation (3.13). If we seek solutions
which reach a velocity of 500 km/sec, this velocity is reached at r = Sa for
Ty =3 x 10°°K, r = 16afor T, = 2 x 10° °K, and r = 36a for T, = 1.5 x 10°
°K. A cutoff distance of some 20a would be quite reasonable. Note that some
simplifications were introduced in the original calculations, such as setting
the solar radius = a = 10"'cm.

Thus, Parker showed that velocities ~ 10° km/sec could result from coronal
temperatures existing over an extended region around the sun. The out-
flowing gas suggested by Biermann was then explainable in terms of the high
temperature of the corona. The density at the earth’s orbit was approximately
500 electrons/cm® on the early models; this value is now known to be too
high by a factor of about 10?. The discrepancy results apparently from the
assumed temperature distribution and/or filamentary structure in the corona.
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FIGURE 3.2

Schematic of the spiral form of
the interplanetary magnetic field
and the quantities used to
describe it.

Note that the supersonic solutions obtained by Parker cannot occur if the
coronal temperature is too high. This can be seen by solving for T, in equation
(3.10) for & =1 to obtain T, = 4 x 10° °K. A higher T, would displace the
critical point below the solar surface. The physical reason for this limit is
discussed in Section 3.3.

Parker also discussed the form of the magnetic field if it is carried into space
by steady expansion but with the roots of the field lines fixed on a rotating
sun. Assume that the solar wind plasma cannot cross the magnetic field lines,
i.e., that the field lines are frozen-in. The interplanetsry field lines then
connect all plasma emitted from the same location on the rotating sun and
have an ““ Archimedes > spiral configuration as shown in Figure 3.2.

The spiral field pattern rotates with the solar (twenty-seven-day) period
while the plasma moves strictly radially. This apparent contradiction can be
visualized by imagining the grooves of a phonograph record and the needle
(as suggested by Ahluwalia and Dessler). Just as the grooves determine the
path of the needle, so does the plasma determine the shape of the field. The
condition for co-rotation on this picture follows from quantities defined in
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gure 3.2 and is wsin Y = Qr cos Y. Geometrical situations such as kinks
- flare-induced changes in the field cannot co-rotate with the sun. Note
at the concept of co-rotation used to describe a feature, in this case, the
agnetic field, which does not involve azimuthal motion of material I’nust
- carefully distinguished from physical co-rotation which does involve azimu-
al motion of material (Section 3.7). The question of the electric field and
her problems associated with co-rotation of the magnetic field are discussed
Section 3.7.

If Q is the solar rotation rate and w is taken as constant, we immediately
ve

¢—¢O=Qt=9(r—°w_—r) (3.15)

ferring to Figure 3.2 again, we see that the ““ Archimedes spiral angle”  is
defined by

' (r—ro)d¢
tan Y = — = (3.16)
1ce —d¢/dr = Q/w from equation (3.15), we have
(r —rp)Q

e guantity rQ is the linear velocity that corresponds to rigid body solar
ation at the earth and is approximately 430 km/sec. Thus, if w ~ 430
1/sec, the interplanetary magnetic field lines near the earth should make an
gle of 45°, or 135° with the radius vector. Such behavior has been observed
d is discussed in Section 5.5. ’
[n the preceding discussion we assumed that the field lines were frozen-in
the plasma. This can be calculated from the magnetic Reynolds number

Ry = [4no IX]/[Yw] = 4o Iw (3.18)

gre lis a f:haracteristic dimension and the conductivity ¢ =2 x 10~ 14
(c.g.s. units). Physically, the magnetic Reynolds number is the ratio of the
e required for a magnetic field to diffuse through a distance (g = 4ma 1%)
the time required for the field to be transported through a distance / by
k motions (7,,, = //w). If the Reynolds number is very large, the field is
zen-in. For w =5 x 107 cm/sec, ¢ ~ 107° (for T ~ 10° °K), and / = 103
, we obtain R,, ~ 101 and the field is certainly frozen-in.
.astly, the assumption of a scalar pressure [implicit in the form of equation
)] required justification. Certainly the mean free path for protons should
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be less than the typical dimension and can be calculated in a proton-electron
gas from the 90° deflection time of plasma physics (¢,) and the mean proton
speed for a gas at temperature 7' to obtain

0 = (1/2) x 107° ]:,\;_2 (a.u.) (3.19)

e

Near the earth, a 7 of 10° °K and an N, of 5/cm? are appropriate and A =1
a.u. If the heliocentric distance is used as the typical dimension, A/r = 1. At
2.5 R, appropriate parameters are 7= 1.5 x 10° °K and N, = 10°/cm” for
a A of 1073 a.u. Here, A/r = 12. Hence, a scalar pressure is a good approxi-
mation in the inner and medium corona, but not for the distant reaches of the
corona. This conclusion is apparently modified by the presence of the inter-
planetary magnetic field which can couple particles together and effectively
provide collisions.

Objections to Parker’s theory were immediate and widespread. Besides
many nonrational criticisms, three substantial points against the theory were
made: (1) the high fluxes found from the model implied flow velocities of
hundreds or even thousands of km/sec in the corona, and effects should be
seen in coronal line profiles. This point is well taken, and it is now known that
the flux on Parker’s model is too high by a factor of 10%. A less severe tempera-
ture distribution produces a gentler acceleration and a lower flux; (2) the
form of the solution is determined by a unique integration constant. Changes
in the coronal conditions could change this constant and render the solution
unstable; and (3) the unique supersonic solution is not demanded by the
equations of the problem. Objections (2) and (3), which are concerned with the
form of the solutions, are discussed in Section 3.2. o

a <
e VO

N

3.2 The Form of Solutions:
Solar Wind Versus Solar Breeze

In 1961 Chamberlain combined an energy equation, namely the first law of
thermodynamics, with the equation for heat conduction; this became the
third equation of the problem in which the equations of motion and of
conductivity were the first and second. The new equation which resulted was

1d 2a!T) dN 3 dT
Ao (o = —kTw—+ = Nkw — 3.20
r? dr( dr ) i dr g2 2 v dr ( )

where most of the symbols are as above and the thermal conductivity is

K = Ko T°'? erg/cm-sec-°K (3.2

A=
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e, Ko is approximaiely 5 x 1077 (c.g.s.). Equation (3.20) states that the
rgy flow per second into a volume goes into increasing the volume or into
reasing the internal energy. The time derivative is evaluated using

—=—4w-V (3.22)

s equation refers the net energy gain to the mass flow. Equation (3.20)
tains the assumption of energy flow into a volume only by conduction;
iative losses or mechanical energy deposition are ignored. Thus, unless
erwise noted, use of equation (3.20) implies that the coronal heating takes
e only in a thin shell at the base of the corona.

‘hamberlain also standardized some of the notation. Besides 7 = 7, 1T
W =w?U? let

GM o umy v,

€sc

khor U2 2V

Mr) = (3.23)

© D Is the escape velocity for protons (see Section 1.2).
quations (3.1) and (3.20) can be written in the new notation, combined,
the density eliminated using equation (3.2) to obtain

d (Y 5 Avd (2o id
Rl |5 M £ L M /28 i
i (2 A T) 2@ (T dz) 324

~constant A is given by

4 %y _ 2K4 7o Ao 2k GM g my

T 2T (:20)
ation (3.24) integrates immediately to give
1 5 A dt
= e o Nl e 5
2&,0 i—l—zr—sw 77 7 (3.26)

left-hand side of this equation contains the kinetic energy, the potential
gy, the internal energy (37), and the potential for adiabatic expansion (7).
 total kinetic and potential energy per particle is equal to the energy at
lity (e, ) less the energy still to be gained by conduction as the particle
es from a given point to an infinite distance.

he disposition of e, is crucial for determining the physical nature of the
. Chamberlain presented arguments for ¢ , = 0 and numerically integrated
solar wind equation to obtain his “solar breeze’ models. The param-

s of this model near the earth are w = 18 km/sec, T ~ 20,000 °K, and N, =

m?3.
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FIGURE 3.3

Different solutions to the “‘solar wind” equations
showing the critical point. (After E. N. Parker.)

Consider again equation (3.7); the basic nature of the solutions is not altered
by the introduction of the temperature gradient. The full family of solutions
is shown in Figure 3.3. The transonic solar wind solution is curve (1); this
curve has Y = 1 at the critical point. The solar breeze solutions are labeled (2);
these curves have dy/dé = 0 at the critical point. Solutions (3) and (4) are
double-valued and, hence, unphysical. Solutions (5) and (6) start out super-
sonic and, therefore, are also unrealistic. Empirical evidence indicates that
the solution realized in practice connects the two shaded areas in Figure 3.3.
Only the solar wind solutions satisfy this criterion, and it is clear that the solar
breeze solutions are not realized in practice.

Nevertheless, the solar breeze curves represent perfectly well-behaved
solutions to the wind equations, and they show the property P —»0as A -0
(r » ). Consideration of the effects of the solar magnetic field on the solar
wind (Section 3.7) provides a physical rather than empirical argument for
choosing the solar wind or transonic curve.

Chamberlain noted that within the framework of a nonmagnetic corona
heated by conduction, equation (3.26) provides an empirical criterion for
solar breeze versus solar wind solutions. A solar wind solution requires
positive total energy at infinity or ¢,, > 0. For this to be the case, we must have
everywhere A > 2)/(z>/* dt/d)). Thus, if conduction is sufficiently efficient, a
solar wind can be attained. Physically, the limit results from the fact that the
kinetic energy required for a supersonic solar wind increases with increasing
density while conduction (which supplies the energy) is density independent.
Thus, for a sufficiently high density, conduction cannot supply enough energy
and the supersonic solution cannot be achieved. Noble and Scarf’s model
(discussed below) satisfied the criterion quoted, but Chamberlain’s solar
breeze models did-not.
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Chamberlain also argued that the hydrodynamic and evaporative models
10uld be in reasonable agreement. His evaporative model had an expansion
locity and density comparable with the solar breeze solution while the
mperature was about an order of magnitude higher. The circumstances that
ere involved in the selection of such solutions a decade ago were complex;
 retrospect, however, it seems that the choice could have been adversely
fluenced by the approach taken to the problem. Chamberlain was thoroughly
miliar with the evaporative theory, and Parker was seeking a theoretical
odel to explain Biermann’s comet tail observations. The reader is invited to
amine the papers forming part of this lively controversy. Finally, it should be
ted in passing that Chamberlain’s point concerning the basic similarity of
¢ hydrodynamic and evaporative models actually was correct, but the
aporative model required modification in order to be applicable to the
lar corona (see discussion in Section 3.6.).

As noted earlier, the solar wind model first presented by Parker contained
1 undesirable feature: very high fluxes near the earth and very hi gh expansion
locities in the corona. In 1963 Noble and Scarf integrated the solar wind
juations given by Chamberlain from the earth inward for the case of small
it finite e. The parameters adopted at the earth, N, = 3.4/cm3, w =352
n/sec, and 7' = 2.8 x 105 °K, are reasonable representations of the observed
lar wind, and the computer solution also showed reasonable agreement
th the coronal densities. Thermal conduction alone beyond about 2Ry is
flicient gradually to accelerate the coronal plasma through the critical
int and produce a supersonic expansion at large distances.

Investigators have probed the question of the stability of the solar wind
lutions, but the problem is complex and some of the earlier conclusions are
w being questioned. Recently Jockers investigated the stability of an
thermal, spherically symmetric solar wind to velocity and pressure pertur-
tions which are applied at the inner boundary. He did find stable solutions
t urged further investigation.

Many basic problems are not yet understood, such as the degree to which
id behavior is approximated in an essentially collisionless plasma. But one
zzling and surprising aspect of the inviscid hydrodynamic models described
this section (see also the references) is the fact that they are in better agree-
>nt with the observations than models with viscosity (see Section 3.4).

3 The/rDe Laval Nozzle\Analogy

e process by which the solar corona with typical thermal speeds of 180
1/sec is able to move material against the solar gravitational field (such that
> escape velocity is &~ 500 km/sec) and give it a velocity of 400-500 km/sec
d beyond may at first sight seem somewhat mysterious, particularly to
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FIGURE 3.4

Quantities related to the flow
in tubes.

workers with a background in astronomy. Analagous processes have been
known to aerodynamicists and aircraft engineers for some time. Here we
explore the physics of supersonic expansion with the help of a nozzle analogy.

Consider a flow of fluid down a tube with cross section ¢ (Figure 3.4). The
equation of continuity becomes

opw =const 3.27)
The equation of motion (3.1) neglecting gravity becomes
— pwdw =dP (3.28)
where P is the pressure. This equation can be rewritten as
dP dPdp
CETE

By specifying the physical nature of the process, we can specify dP/dp. If the
flow is isothermal,

—w dw. (3.29)

2
Lol (3.30)
dp vy
where v, is the speed of sound (see equation (3.12)). If the flow is a(ybatic,
d—P = p2 (3.31)
dp
Here the latter assumption is adopted and equation (3.29) becomes
Wipsegn Y dw (3.32)
P Vs

Taking logarithms of equation (3.27), differentiating, and evaluating dp/p
from equation (3.32) yields

2
ﬂ‘_: (W_z_ 1)@ (3.33)
o vZ w

This is a fundamental equation. Consider the various possibilities.
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Case I: Here the tubeis converging and hence do/o is negative. If the velocity
increasing, dw/w is positive, and [(w?/v?) — 1] must be negative. Thus
< v,, and the speed of sound is the limiting flow speed in a converging
€.
“ase II: Here the cross section of the tube is constant, and do/a = 0. If the
ocity is increasing, the relation requires w = v,.
“ase I11: The tube is diverging and hence do is positive. If a positive dw/w
equired, then w > v, is indicated.
"hus, a flow can be (1) accelerated to the velocity of sound in a converging
e, (2) accelerated through the velocity of sound in a tube of constant cross
tion, and (3) accelerated supersonically in a diverging tube. Such a sequence
stitutes the basic principle of the de Laval nozzle or rocket engine shown
ematically in Figure 3.5. The basic physical process in both the solar wind
| the rocket engine is to convert random motions into directed motions.
mpare equations (3.7) and (3.33); they are remarkably similar in form. In the
ar wind case, solar gravity confines the hot plasma, allows the existence of
critical point, and produces the supersonic expansion. In the rocket
ine, the chamber walls provide the confinement; the critical point is
ated in the throat of the nozzle, and the supersonic expansion results.
‘he role of gravity and the importance of “confinement” cannot be over-
phasized. Consider a subsonic flow in a diverging tube; equation (3.33)
ates a negative dw/w, and the velocity of expansion continuously decreases.
e there is no throat. Examine once again equations (3.7) to (3.9), and note
t the zero in the right-hand side of equation (3.7) depends on the solar
vity; if it is too low, the zero does not exist and the solution cannot pass
bugh the critical point. This fact is the physical origin of the result (pre-
ted in Section 3.1) that supersonic expansion cannot occur in a spherical
metry for temperatures greater than about 4 x 10° °K. For higher tempera-
s, A [equation (3.5)] is too small, the zero cannot occur, etc. This upper
it could be altered by a different geometry, formed for example by magnetic
ctures above prominences.
ome theoretical results from the rocket problem may be of interest. The
Kimum exhaust velocity from a de Laval nozzle is (3)/?v, ; for a 2 x 10° °K
ona, the sound speed is 235 km/sec, and the maximum exhaust speed is
km/sec. Gravity is not included in this calculation, but the efficiency could
reatly increased by heating beyond the throat (where the gas would begin
ool adiabatically); this is the principle of the afterburner. If, on the other
d, the sound speed is not reached in the throat, the gas decelerates in the
rging section. Whether or not this occurs depends on the pressure of the
kground medium; the flow into a vacuum is supersonic.
1 summary, the solar wind flow, as an important phenomenon with the
erved properties noted above, exists only for a limited temperature range.
" is too high, there is effectively no throat, and supersonic expansion
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FIGURE 3.5

The de Laval nozzle or rocket engine
showing the conversion of random
kinetic motions into directed motions.

cannot occur. If 7 is too low, the situation is essentially static—like a heavy
gas in a planetary atmosphere. For the intermediate range with T~ 2 x 10°
°K, the supersonic flow occurs in a manner physically similar to the de Laval
nozzle in a rocket engine.

3.4 Solutions with Viscosity

The Navier-Stokes equation for a compressible fluid in a steady state is
w2
pw+Vw = —VP — p[VqS = —:f e,] (3.34)

+ 7*V2w + ({4 S H)V(V - w)

Here ¢ = — GM/r; w, is the azimuthal velocity; e, is a unit radial vector;
the viscosity, n* = 1.2 x 107® T°/2 gm/cm-sec; { is the second coefficient of
viscosity. For an inviscid fluid, spherical symmetry, and w, = 0, equation
(3.34) reduces to equation (3.1).

The centrifugal force term p(wj/r)e, in equation (3.34) can be roughly
estimated by means of an approximation used in studying planetary interiors
where the centrifugal force is averaged over a sphere. This averaged force
2pw§,/3r is unimportant both for rigid body rotation in the corona and als.o
for realistic values of w, throughout the solar wind region; this term is
included, however, for a model given in Section 3.7.

Studies of the viscous terms in equation (3.34) have been undertaken by
several investigators. Normally, the second coefficient of viscosity is set equal
to zero. The term #*V?w is the usual viscous term while the term (1/3) #*V
(V- w) arises from the fact that the gas is compressible (V- w = 0 for an incom-
pressible fluid). Several solar wind models with viscosity have been derived;
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they have the common property of giving a very low expansion velocity near
the earth of about 165 km/sec. Large viscous stresses are found in these models.
These viscous solutions have the computational advantage of having no
singularities corresponding to the critical point of the inviscid solution. This
can be seen by solving equation (3.7) for dy/d¢; the viscous terms (when
added) prohibit a zero in the denominator of the resulting expression.

Meyer and Schmidt have suggested that some insight into the physical
situation can be obtained through consideration of the viscous stress 7". The
sum of the viscous terms in equation (3.34) for spherical symmetry can be
evaluated from the expression

1d
=) (3.35)

where the usual expression for the viscous stress is

4 fdw w
ekl [———] (3.36)

The stress is composed of a part resulting from the velocity gradient and a part
(w/r) produced by the lateral momentum transfer in a radially diverging flow.
The viscous force associated with the lateral momentum transfer has a
braking effect and is important even far from the sun.

Meyer and Schmidt have pointed out that the presence of the magnetic
field in the solar wind greatly reduces the mean free path perpendicular to the
field lines. This reduction, in turn, reduces the lateral momentum transfer.
These researches have suggested that the physical situation can be approxi-
mated by neglecting the term in (w/r) in equation (3.36) and writing T = (4/3)
1*Ldw/dr]. They have carried this modification through and find a much more
reasonable model of the solar wind with an expansion velocity at earth of
about 302 km/sec.

These developments show that viscosity should be included in model solar
vind calculations, but apparently care must be taken to include the viscosity
ind the magnetic field and perhaps other effects such as the anisotropic
listribution of peculiar velocities in a consistent manner. If the interpretation
suggested by Meyer and Schmidt is correct, the viscous solutions with a
nagnetic field resemble the inviscid solutions. Their interpretation is not
miversally accepted however, and the authors themselves have noted that it
s probably in error. If it is incorrect, some other explanation will be needed
or the serious discrepancy between the viscous solutions and the inviscid
olutions, which show good agreement with the observations. The situation
nvolves the concept and calculation of viscosity in a dilute gas which does not
xperience ordinary collisions.

1

3.5 Two-Fluid Models

The solar wind models described in the preceding sections of this chapter have
all been, in effect, one-fluid models. The fluid was ideally composed solely ol
particles with mass u my, all of which can be adequately described at cach
point by one density, one velocity, and one temperature. This basic concep!
is not vitiated by evaluating the conductive heat transport with the correct
expression for a proton-electron gas.

Sturrock and Hartle have pointed out that the single-fluid models contain
an implicit and probably indefensible assumption concerning the rate ol
energy exchange between the protons and electrons. In particular, the protons
and electrons could have substantially different temperatures far from the sun,

Some physical insight into the temperature inequality can be obtained by
considering the expansion rate versus the energy exchange rate. The expan
sion rate is

Ll e (3.37)
PN dr
This can be approximated away from the sun where N, oc ¥~ > by
2w k
vcxpzT (3.38)
Near the earth, we take w = 500 km/sec to obtain v,,, & 6 X 10~ % sec™ L. The

energy exchange rate is available from standard expressions of plasma
physics and is

NE

v 1 x 107! T3 (3.39)
Near the earth, we take N, = 5/cm® and find v~ 5 x 1077 sec™" for 7,
10* °K. Clearly, 7, would have to be ~10° °K for equality of vg and v,,,.
For vg »v.,,, a T, much less than 10® °K would be required. These are orders
of magnitude less than the anticipated and measured values of 7, throughout
the interplanetary medium, and considerable differences between T, and 7,
would, therefore, be expected.

Hartle and Sturrock have investigated a two-fluid model of the solar wind.
Only the temperatures of the two fluids can be significantly different. Both
densities and flow velocities must be the same to preserve local charge neutral:
ity and to keep the sun electrically neutral, respectively. (Recall the discussion
in Section 1.2). Hence we have one equation of continuity (3.2) and one
equation of motion,

GMsmyN,
2

d d
o B T R (3.40)
21 dr dar
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originate entirely in the corona; (2) the He™ originates by charge-exchange
of He* " with neutral hydrogen in the interplanetary medium; or (3) the
He " originates by charge-exchange of He™ * with terrestrial neutral hydrogen
in an extended cloud around the earth. This latter possibility must be con-
sidered because the Vela probes are in a nearly circular orbit with a radius
of about 17 Rj. The first possibility appears unlikely because the ratio
O*7/0™° is entirely consistent with the solar wind originating in the corona.
It is difficult to favor either the second or third hypothesis. The second would
imply far more neutral hydrogen (presumably of interstellar origin) in the
interplanetary medium than expected from our discussion in Section 3.10.
The third would appear to require a more extended and denser terrestrial
hydrogen cloud than is currently considered plausible. Direct observation of
neutral hydrogen atoms in the solar wind or the interplanetary medium
should resolve this problem.

5.5 The Magnetic Field

The interplanetary magnetic field is an integral part of the solar wind and is
the photospheric field extended outward by the expansion of the plasma.
From the theory presented in Sections 3.1 and 3.7, we would expect an
average field near earth of about 5y; the solar rotation leads to the develop-
ment of the characteristic Archimedean spiral with an angle of about 45°.
Available observations confirm this general picture.

A histogram (based on observations covering three solar rotations; see
Figure 5.10) shows the distribution of field magnitude that was obtained by
Ness, Scearce, and Cantarano from IMP-1 data. The median value is 5.5y
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FIGURE 5.10

The distribution of interplanetary magnetic field
magnitude as observed by IMP-1 from 1963

to 1964. (Courtesy N. F. Ness.)
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FIGURE 5.11

The distribution of interplanetary field directions observed by IMP-1; note the change
when a longer averaging period is used. (Courtesy N. F. Ness, C. S. Scearce, J. B.
Seek, and J. M. Wilcox.)

(1y = 107 ° gauss). Extreme values of the field magnitude are a low of about
0.25y and a high near 40y. Vector magnetic fields can currently be measured to
within +0.257; such an accuracy is dependent on the construction of non-
magnetic spacecraft.

The directional properties of the magnetic field are determined by plotting
histograms of field direction as projected into the plane of the ecliptic (see
Figure 5.11); the 7° difference between the plane of the solar equator and the
plane of the ecliptic is unimportant for this discussion. The clear tendency of
the field to lie along angles in a solar-ecliptic coordinate system of 135° or
315° (corresponding to a spiral angle of 45°) is shown, particularly when the
results are averaged over a longer time period. Hence, a gross overall Archi-
medean spiral geometry is indicated, but with a substantial amount of local
irregularity.

Measurements made on board Mariner 2, Pioneer 5, and IMP-1 have
indicated a southward component of field perpendicular to the plane of the
ecliptic amounting to about 1y. If such a permanent component persists
across a sector boundary (see Section 5.6) where the field changes direction
(say) from toward to away from the sun, the angle that the field lines make
with the ecliptic plane must change sign; Dessler has pointed out the dis-
agreeable nature of this possibility. Davis has warned of the severe conse-
quences of such a component for the solar magnetic field. If the magnetic
flux is frozen-in, the time rate of change of a net magnetic flux through the
plane of the ecliptic is

oD
i 2nrwB | (5.3)

3-hour averages
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or B, =107° gauss (0.1y), r = 1.5 x 10" cm, and w =4 x 107 cm/sec, we
btain a flux loss of 4 x 10'° maxwell/sec. Over a year’s time (3 x 107 sec),
his becomes & 1023 maxwells or roughly the magnetic flux in one hundred
verage sunspots. Such a loss would be difficult to explain and is highly
nlikely. An instrumental origin for the perpendicular component of the
rterplanetary magnetic field seems likely. Measurements carried out on
ioneer 6 (from December 1965 to September 1966) indicate a zero net per-
endicular field.

.6 Variations

adial variations of the density, flux, and bulk kinetic energy are of interest in
remselves as well as providing checks on our theoretical understanding.
leugebauer and Snyder have compared these quantities observed on Mariner
with the expected inverse square variation (Figure 5.12), and the theoretical
xpectation is verified. The radial variation of the total magnetic field was
-udied on Pioneer 6 for 0.81 a.u. < r < 1.0 a.u. by Burlaga and Ness and
n Mariner 4 for 1.0 a.u. <r < 1.5 a.u. by Coleman, Smith, Davis, and
ones. The field strength for the latter experiment could be approximated by
= 4.13 (rfro)”'*° where roy = 1.5 a.u. and the field is in y; an ideal spiral
eld in a quiet solar wind at 350 km/sec would have B oc (r/ro)~"?°.
Variations in the density and solar wind velocity during the flight of
fariner 2 have been presented by Neugebauer and Snyder, and these are
hown in Figure 5.13. These data clearly show that high velocity is correlated
ith low density, and vice versa. Thus, the flux wN, tends to be somewhat
onstant. Vela measurements show that high proton temperatures are
bserved when the bulk velocity is high and that low temperatures are ob-
srved when the velocity is low. Eventually, acceptable models of the solar
7ind will have to explain these gross features. Variations of w with geomagnetic
1dex Kp are also known, but we defer this discussion until consideration of
he “ sector structure” (below).

A great deal of information is available about the variations in the magnetic
eld. Ness has pointed out that we have

dB, 0B,
s — T (e VB 5.4
[ dt ]observcd (’}t i (w ) g ( )

‘here By is the interplanctary field. Since the solar wind speed is some five
y ten times any magnetohydrodynamic wave speed, the second term in
quation (5.4) dominates. Thus, the major observed change is due to convec-
on of different regions past the observer. With this fundamental limitation
y mind, consider the interpretation of variations in (say) the magnetic field

=]
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FIGURE 5.12

The radial variation of density, momentum, and
energy averaged over a solar rotation obtained
from Mariner 2. (Courtesy M. Neugebauer and
C. W. Snyder, and the Journal of Geophysical
Research.)

observed as a function of time. Should these variations be interpreted as
waves or discontinuities or whatever? Coleman has searched for the “sig-
natures”’ of different wave forms and has reported evidence for Alfvén and/or
fast mode waves. Sari and Ness have proposed a rather different interpreta-
tion. Analyses of time variations of the interplanetary magnetic field are often
carried out in terms of “power spectra’ which are the square of the Fourier
transform of the observed variation. Sari and Ness note that individual dis-
continuities (and a random distribution of discontinuities) have a power
spectrum proportional to( frequency)™* and that such a dependence is evident
in data obtained from Pioneer 6 for the appropriate frequency range (2.8
x 107* to 1.6 x 1072 ¢/s) and well above the noise level. This behavior is
attributed to directional discontinuities in the microstructure (see below for
definition), and such discontinuities alone are sufficient to explain the power
spectra. At lower frequencies, the interplanetary macrostructure shows up
in the power spectra. The overall situation is not yet entirely settled. A sample
of data showing some discontinuities in the solar wind is given in Figure
5.14.

Burlaga and Ness have suggested three scales of observing time in which
to classify interplanetary phenomena: (1) microstructure, ¢ < 1 hours; (2)
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IGURE 5.14

ample data showing discontinuities in the solar wind; U is the bulk velocity, Vr is the
hermal velocity, ¢ is the azimuthal angle shown in Figure 5.11, and 0 is the polar
ngle (8=0 in the ecliptic); ¢ and @ refer to the direction of B. (Courtesy L. F.
Jurlaga.)
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FIGURE 5.15

The sector structure of the interplanetary magnetic field
observed by IMP-1. The plus or minus polarities correspond to
the positive and negative directions indicated in Figure 5.11.
Polarities in parentheses correspond to a movement into the
shaded area of Figure 5.11 for a few hours in a smooth and
continuous manner. (Courtesy N. F. Ness and J. M. Wilcox.)

mesostructure, 14 < ¢ < 10 hours; and (3) macrostructure, ¢ > 10> hours.
These observing times scale naturally into length scales by multiplying them
by an average solar wind velocity of about 400 km/sec. Then, we find: (1)
microstructure, /(us) < 10° km ~ 0.01 a.u.; (2) mesostructure, /(meso) ~ 10°-
10® km ~ 0.01-1.0 a.u.; and (3) macrostructure, /(macro) > 10® km =~ 1 a.u.

The microstructure corresponds to shock waves and the contact discon-
tinuities; these features can act as scattering centers for cosmic rays. The
mesostructure corresponds to filaments or kinks in the field structure. These
are the ““flux tubes” responsible for channeling of cosmic rays (Section 6.7).
The ultimate origin of this scale of structure may bein the solar supergranula-
tion described in Section 2.2.

Finally, the macrostructure manifests itself as a longitudinal variation
in the magnetic field first discovered by Ness and Wilcox which they called
the ““sector structure.” Individual sectors contain a magnetic field of constant
polarity as shown in Figure 5.15. The sector boundaries are sharp (<10° km)
and relatively stable in time. Changes do occur, however. Regular variations
of magnetic field magnitude, w, Kp, and N, are found in the individual






