
Understanding these geometrical structures can substantially clarify the meaning of
complex probability wave function analysis.
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The complete and self-consistent "Maxwell" equations are displayed algebraically, 
describing (time-delayed) force and torque interactions between moving particles 
with charge and spin.  
The algebra is the 4-level Grassmann  linear algebra describing 3D Euclidean space,
with BasisElements of  { 3 Vectors, 1 Point } , generating structures for particles 
distinct from lines, planes, and volumes.   Here, this is denoted , here denoted  G3p1 .

With this full algebra, Forces from 2 particles  can add to become a Torque, 
and two  linear Flows  can add to become a  Circulation . 
With similar clarity, the algebra describes the motional "transformations" between
vector electric   and bi-vector magnetic through 1st order (v/c ) motion of an origin Point,
without  2nd order space-time algebra effects. 

Thus, the algebra explicitly distinguishes between conduction currents and the
(orthogonal)  spin/circulation currents;
and between dynamic effects such as spin-transfer Torque,
and entropic effects such as conduction Resistance or magnetization damping.

Geometrically, there are  two fundamental lengths in electro-magnetism :
the "classical radius of the electron  Re = e2/mec2 = 2.82 pm (10-15 m ),
which scales the electric interaction energy between two charges;  and  the
"Compton wavelength", here denoted   Dv = ℏc /mec2 = 386. pm,
which scales the magnetic dipole moment of a  single  electron Spin.  

Significantly, a single propagating E-M wave necessarily linkes both together, with |    | = |     | 
in magnitude.  Moreover, as a bi-vector,     squares to negative, making               = 0;
and this agrees with the first Lorentz invariant", generally written as E2 – B2 =0.
Thus, a single E-M wave emanated from a particle does not by itself carry energy;
but rather two oppositely propagating waves are required to transfer energy from one 
particle to another.  This is closely analogous to the QM combination of  " "* .
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Geometric Linear Algebras

Gnp1 ≡ Grassmann Extension Theory
n+1 Basis Elements : 1 Point, n Vectors
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Clm   ≡  Clifford "Geometric Algebra"
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G3p1 gives full structures needed for geometric
             Particle/Field interactions in real 3-Space 
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G3p1 linear algebra connects   Fields  to Particle Scources
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Travelling EM Waves from a single Particle (Charge & Spin)  are NilPotent ;
  Interaction with 2nd Particle  transfers  Force & Torque .
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