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In this presentation, I will give an elementary introduction to plasma
waves in single-species non-neutral plasmas. The plasma is presumed to
be trapped in an elongated cylindrical trap with an axial magnetic field;
this geometry is referred to as a Penning-Malmberg trap. The first part
of the presentation is about low frequency drift waves called Diocotron
waves, followed by plasma waves of two different types, and the last
part of the presentation is about cyclotron waves, which are the highest
frequency electrostatic waves in Penning-Malmberg traps.

1.1. Diocotron Waves

The word Diocotron comes from the Greek meaning “pursue, chase.” Ap-

parently in 1952 researchers conducting experiments with hollow electron

beams inside a conducting cylinder in a magnetic field observed that hollow

beams of charge were unstable. The beam broke apart, and the pieces were

rotating around the magnetic field axis and “chasing” each other. They

named that instability the Diocotron instability. A comprehensive review

of diocotron instability can be found in Chapter 6 of Physics of Non-Neutral

Plasmas by R. Davidson.1 In this presentation, I will be describing stable

Diocotron waves, not the diocotron instability observed on hollow electron

beams. The properties of stable diocotron waves were first measured by

deGrassie and Malmberg2 in confined pure electron columns.

We will consider a simple case of a monotonically decreasing density

profile of ions trapped in an elongated Penning-Malmberg trap. A simple

intoduction to Penning-Malmberg traps can be found in a Physics Today

article.3 Figure 1.1 shows the trap geometry and the coordinates used. The

1
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Fig. 1.1. Schematic of a Penning-Malmberg trap containing positive charges.

plasma is assumed to be “rigid,” that is individual ions “bounce” rapidly

along the magnetic field compared to their rotation around the axis of

the trap. For low frequency drift waves, the rapid bouncing of the particles

along the magnetic field axis averages any z-dependence, and we will assume

here that Diocotron waves have no axial variation, i.e. kz = 0.

1.1.1. Infinite length description

To start the description of the Diocotron wave, we will assume that the

plasma column is “infinitely” long and that it can be described by a 2

dimensional model. In general the density perturbation has the form δn =

δn(r) exp{i(mθθ + kzz − ωt)}; here we will discuss the case of mθ = 1 and

kz = 0.

Fig. 1.2. Image charge model of the diocotron wave for an infinitely long line of charge.

Figure 1.2 shows an end view of a plasma column with line density
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NL[m−1] of particles with (positive) charge q, displaced from the axis by

a distance D. We can replace the wall by an equal and opposite “image

charge” located at a distance S from the center of the trap such that the

potential at r = Rw is a constant: φ(Rw, θ) = const. From a symmetry

argument, the image charge has to be located at the same azimuthal angle

θ as the real charges. The potential from 2 infinitely long lines of charge is:

φ(r, θ) = −NLq
2πε0

[
ln
√
r2 +D2 − 2rD cos θ − ln

√
r2 + S2 − 2rS cos θ

]
= −NLq

2πε0
ln

r
√

1 + D2

r2 −
2D
r cos θ

S
√

1 + r2

S2 − 2r
S cos θ

 . (1.1)

By choosing S/Rw = RW /D, that is, S = R2
w/D, the potential at the

location of the wall can be written as

φ(RW , θ) = −NLq
2πε0

ln

(
D

Rw

)
(1.2)

which is independent of θ. The electric field from a line of charge can be

calculated using Gauss’ Law:

E(r) =

∑
Q

2πε0rL
=

NLq

2πε0r
(1.3)

therefore the image charge electric field at r = 0 is:

Ei(r = 0) = − NLq

2πε0S
= − NLqD

2πε0R2
w

. (1.4)

The E × B drift velocity vd of the (real) charge in the electric field of the

image charge is:

vd =
Ei
B

= − NLqD

2πε0BzR2
w

(1.5)

where we have assumed that the displacement D is small (D/Rw � 1).

The infinite length small amplitude Diocotron frequency is:

f∞dio =
vd

2πD
=

NLq

4π2ε0BzR2
w

. (1.6)

From an experimental point of view, the diocotron mode frequency gives

a measure of the line density NL. We have to be careful here since the

above equation is valid only for infinite length and small amplitude. If one

measures the line density NL with a dump technique4 and also measures

the diocotron frequency for a column with Lp ∼ 2Rp, the infinite length

equation gives a frequency too small by a factor of up to 2 or 3.
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We will describe later corrections to f∞dio to include the effect of a realistic

plasma, that is, finite amplitude, finite length, temperature shift, etc.

1.1.2. A negative energy mode

The diocotron mode is a negative energy mode. This can be easily seen in

the image charge model that we have used in this presentation. The image

charge has the opposite sign of the “real” charge, therefore as the plasma

is attracted towards its image charge, the electrostatic energy decreases as

the mode amplitude increases. Here any kinetic energy is ignored. Let’s

calculate how much electrostatic energy is required to displace the plasma

by a distance D in the image charge electric field.

WES =

D∫
0

Q · Eidx =

D∫
0

NLqLp

(
−NLqx
2πε0R2

w

)
dx

= − (NLq)
2

4πε0

D2

R2
w

Lp < 0. (1.7)

The electrostatic energy WES is negative; this means that the diocotron

Fig. 1.3. Sectored electrode with model of impedance Z. Growth rate plotted versus
resistance R.

mode can be destabilized by dissipation. This destabilization is referred

to as “resistive growth.” Figure 1.3 illustrates how an azimuthal section

of the wall (called a sector) can destabilize the dioctron mode. The power

dissipated in the load connected to the sector is P = 1
2I

2Re(Z), where I

is the image current, and the electrostatic energy in the wave is Wwave.
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Therefore the growth rate of the wave is:5

γ =
P

2Wwave
=

4ε0

π

ω2L2
s sin2 ∆θ

2

Lp
Re(Z) (1.8)

for the RC circuit shown on Fig. 1.3 the real part of the impedance is

Re(Z) =
R

1 + ω2R2C2
. (1.9)

This growth rate was carefully verified experimentally5 as shown on Fig.

1.3. As the external resistance R is increased, the growth rate increases

linearly up to a maximum corresponding to ω2R2C2 = 1; at the maximum

growth rate, half of the current is flowing through the resistor and the

other half through the capacitor. As R is further increased, the growth rate

is reduced since more and more current flows through the dissipationless

capacitor. Figure 1.3 also shows the growth rate for a different capacitor,

further validating the model. Figure 1.4 shows how a feedback circuit can

Fig. 1.4. Schematic of diocotron feedback circuit and feedback growth rate versus phase

shift.

be used to damp a diocotron mode, by phase-shifting the sector voltage so

as to obtain an effective “negative resistance.” Changing the phase of the

feedback controls the growth or damping rate of the diocotron mode.6

The diocotron mode provides a useful technique to control the position

of the plasma in a trap. For example Fig. 1.5 shows a “phaser” pictures of

z-integrated density obtained by multiple dumps and measuring the charge

passing through a collimator hole at varying azimuthal positions of the

plasma.7 Also the diocotron mode is a good tool to load off axis multitrap

cells8 designed to store large numbers of particles such as positrons.



December 21, 2012 6:0 World Scientific Review Volume - 9in x 6in anderegg˙waves˙nnps

6 F. Anderegg

1.1.3. Finite amplitude shift of diocotron mode

For large displacement D, the plasma column distorts into an elliptical

cross-section and the frequency of the diocotron mode increases, as9

fdio = f∞dio + f∞dio

(
1− 2(Rp/Rw)2

[1− (Rp/Rw)2]2

)(
D

Rw

)2

. (1.10)

The measured amplitude shift versus normalized displacement is shown on

Fig. 1.5. (a) Measured frequency shift vs. amplitude for three different radius plasmas.
(b) “Phaser” picture of z-integrated density; colors represent density on a linear scale of

106cm−3, showing elliptical distortion of the plasma for large displacement.

Fig. 1.5 for 3 different plasma radii. Figure 1.5b shows phase-locked densi-

ties n(r, θ) for the diocotron at two amplitudes showing elliptical distortion;

for both cases Rp = 2.42cm and the wall radius was at Rw = 3.81cm.

1.1.4. Finite length diocotron

The confining potential at the end of the trap pushes the plasma in the z-

direction, resulting in a radial force on an off-axis plasma. The force comes

from the radial component of the confining potential and adds to the force

due to the image charge. Ftot = Fi + Fc where Fi is due to the image and

Fc is due to the confinement. A careful calculation of the frequency change
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has been conducted10 and gives:

fdio

f∞dio

=
Ftot

Fi,∞
= 1 +

[
j01

2

(
1

4
+ ln

(
Rw
Rp

)
+
kBT4πε0

NLe2

)
− 0.671

](
Rw
Lp

)
.

(1.11)

The plasma electrostatic pressure (term: 1
4 +ln(Rw/Rp)) pushes on the end

confining potential, increasing the diocotron frequency. The plasma kinetic

pressure [term: kBT4πε0/(NLe
2)] also similarly increases the frequency.

Finally the finite length of the image charge reduces the force (term 0.671);

the numerical factor comes from the specific shape of the vacuum potential

of cylindrical electrodes. The finite length diocotron frequency equation

has been extensively tested experimentally.

Fig. 1.6. Measured diocotron frequency versus plasma radius, plasma length, and tem-
perature showing agreement with Eq. (1.11). The long dashed line is a theory for “non-
rigid” plasmas.11

Figure 1.6 shows the measured frequency shift plotted against Rw/Rp
and Rw/Lp. In both cases the solid line is the theory prediction of Eq. (1.11)

with no adjustable parameters. The kinetic pressure term kBT4πε0/(NLe
2)

can also be written as 4λ2
D/R

2
p; it is small for plasmas which have many

Debye lengths across, but it is large for clouds made out of a few particles

with a large Debye length. The third graph of Fig. 1.6 shows the measured



December 21, 2012 6:0 World Scientific Review Volume - 9in x 6in anderegg˙waves˙nnps

8 F. Anderegg

kinetic pressure shift for 3 different plasma radii. Note that the kinetic

pressure shift is much larger for small plasmas (large λD/Rp) than for large

plasmas. These finite length corrections are important to account for when

using the diocotron frequency to measure the line density.

1.1.5. Magnetron regime

For short and low density plasmas, the radial component of the confinement

potential is substantially larger than the potential due to the image charge.

In this regime the “diocotron mode” is called the “magnetron mode.” In

this regime the frequency of the mode is almost independent of the amount

of charge in the trap, contrasting sharply with the diocotron mode described

before. The frequency of the mode is:10

f = − Er
2πDBz

=
1

2πDBz

[
∂φc
∂r

+
∂φi
∂r

]
r=D

(1.12)

where φc is the confinement potential and φi is the potential due to the

image charge. For a cylindrical trap with a trapping electrode length L

and a confining potential Vc applied to the end of the trapping electrode,

one gets10

f =
1

2πBz

1.15
Vc
R2
w

L

Rw︸ ︷︷ ︸
magnetron

− 1.0027
Q

R3
w︸ ︷︷ ︸

diocotron

 . (1.13)

For example, 105 electrons contained in a trap with Vc = 10V, Rw = 1cm,

L/Rw = 0.2, the magnetron term is 230 kHz and the diocotron term is

1.4 kHz.

1.1.6. Higher order diocotron modes

The image charge model we have used so far has the advantage of giving

a physical intuition of the dioctoron mode but is limited to mθ = 1. The

standard linear theory of diocotron modes can be found in Refs. 11 and 1,

giving a diocotron mode frequency:

fmθdio = fE×B

[
mθ − 1 +

(
Rp
Rw

)2mθ
]

(1.14)

where fE×B is the plasma rotation frequency and mθ is the azimuthal mode

number. For a square profile fE×B = qn/(4πε0B). For mθ = 1 this result is
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identical to the image charge model for infinite length and small amplitude,

Eq. (1.6).

One can see from Eq. (1.14) that for the mθ = 1 mode, the diocotron

frequency is the plasma rotation frequency reduced by (Rp/Rw)2. Also for

a small radius plasma, the mθ = 2 diocotron frequency is almost at the

plasma rotation frequency.

1.2. Plasma Waves

We are considering a long plasma in a conducting cylinder with a magnetic

field B aligned with the trap axis. The magnetic field is strong enough to

make the cyclotron frequency much larger than the plasma frequency, but

the exact magnitude of the magnetic field is not important.

To derive the frequency of plasma waves in a trap, we start by writing

the continuity equation,

∂n

∂t
+

∂

∂z
n · vz = 0 (1.15)

and Newton equation

m
∂vz
∂t

= qEz = −q ∂
∂z
φ. (1.16)

Note that we have kept only the z dynamics in these two equations, but we

will keep all components for the Poisson equation:

∇2φ = −4πqδn. (1.17)

We will now assume that the density perturbation is δn(r) exp{i(mθθ +

kzz − ωt)}, and the above equations become

−iωδn+ n ikzδvz = 0; (1.18)

−miωδvz = −qikzδφ; (1.19)

−k2δφ = −4πqδn. (1.20)

Combining these 3 equations, one gets the Trivelpiece-Gould12 mode dis-

persion relation for a cold plasma,

ω2 =
k2
z

k2

4πq2n

m
=
k2
z

k2
ω2
p (1.21)

where ωp is the plasma frequency.
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When the thermal pressure is included, the dispersion relation becomes:

ω2 =
k2
z

k2
ω2
p + 3v2k2

z . (1.22)

Here the thermal pressure increases the mode frequency. The wave vector

k is equal to

k2 = k2
z + k2

⊥ (1.23)

and in cylindrical geometry for Rp � Rw

k⊥ =
1

Rp

(
2

ln(Rw/Rp)

)1/2

. (1.24)

It is interesting to note that if we had kept all k (not only kz) we would get

ω2 = ω2
p(1 +

3

2
k2λ2

D) (1.25)

which is the standard plasma wave dispersion relation for an infinite un-

Fig. 1.7. Dispersion relation for Langmuir wave and Trivelpiece-Gould wave.

magnetized plasma, known in plasma physics as a Langmuir wave. The

dispersion relation of these two types of plasma waves is shown on Fig. 1.7.

In an infinite, unbound plasma, when we have a little bit of extra charge

δq at one location and little deficit of charge at another location, an electric

field E is established. In contrast, when a plasma is inside a conducting
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wall, the electric field Ez is reduced by the conducting wall. At the wall

Ez = 0 and only Er is not zero. This reduction of Ez reduces the restoring

force and therefore lowers the oscillation frequency; the frequency of plasma

waves called Trivelpiece-Gould waves is lower than the frequency of plasma

waves in an unbounded system called Langmuir waves (fTG < fLangmuir).

1.2.1. Finite length Trivelpiece-Gould modes

For trapped plasmas, the wavelength has to fit in the plasma such that the

wave is reflected at each end of the trap, generating a standing wave with

a parallel wave vector:

kz =
mzπ

Lp
(1.26)

where mz is the parallel mode number: mz = 1 corresponds to one half

wavelength in the plasma, mz = 2 corresponds to a full wavelength in the

plasma. In the limit of a long column (kzλD � 1 and Rpkz � 1), the

frequencies of the axisymmetric (mθ = 0) Trivelpiece-Gould (TG) mode

are:

ω ∼= ωp

(
Rp
Rw

)
(Rwkz)

[
1

2
ln

(
Rw
Rp

)]1/2
[

1 +
3

2

(
v

vph

)2
]

(1.27)

for non-axisymmetric modes (mθ 6= 0).

ω −mθωE = ωp

(
Rp
Rw

)
Rwkz

1

jmθ,mr

[
1 +

3

2

(
v

vph

)2
]
. (1.28)

Equation (1.28) assumed the mode frequency ω is of the same order as

mθωE , which is valid for the ion case. In contrast for electron plasmas ω

is large compared to the rotation mθωE . For electron plasmas the Bessel

function zero γmθ,mr of Eq. (1.28) is replaced by γmθ−1,mr.
13 These

dispersion relations are “acoustic,” with ω ∝ kz, and all frequencies have

the same phase (and group) velocity. Themθ 6= 0 modes are Doppler shifted

by the plasma rotation frequency; these can be useful for some rotating wall

applications.14

Experimental observations indicate that kz = mzπ/Lp is too large by

about 10% and that the effective wavenumber corresponds to a longer wave-

length extending past the end of the plasma. A theoretical model similar

to an organ pipe wave number calculation gives: keff = kz +α1Rp+α2RW ,

where α1 and α2 are given in Ref. 15.
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Fig. 1.8. Summary of longitudinal, azimuthal and radial wave number physical mean-

ing.

Figure 1.8 summarizes all the m’s used to describe the TG plasma

modes. Higher mz results in higher mode frequency; higher mθ results

in lower Doppler shifted mode frequency ω−mθωE and higher radial mode

number mr results in lower mode frequency.

1.2.2. Thermally excited Trivelpiece-Gould modes

Trivelpiece-Gould (TG) modes are easy to excite. Figure 1.9 shows the re-

sults of a “transmission” experiment in a pure electron plasma; mz = 1 to 5

are shown with a -80 dBm drive. As the drive amplitude is reduced, the re-

ceived amplitudes are reduced, and mz = 2 disappears into the noise, since

the antenna geometry was not effective at detecting mz = 2. More interest-

ingly, when the drive amplitude is turned off, TG modes are spontaneously

excited at low level by thermal fluctuations.17

As we will see, the thermal excitation of plasma modes provides an

effective diagnostic tool; since non-neutral plasmas can relax to a state of

thermal equilibrium in the rotating frame, the “tools” of thermodynamics

can be used. The plasma mode is excited by thermal electron motion in the

plasma and by noise in the load (i.e. measuring circuit). At the same time,

the plasma mode is damped due to Landau damping and by dissipation in

the load.

Nyquist’s theorem quantifies the amount of thermal noise in a circuit
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Fig. 1.9. Spectrum of mθ = 1, 2, ..., 5 Trivelpiece-Gould modes for three drive ampli-

tudes including no drive, i.e. thermally excited.

element:

V 2

df
= 4kBT Re(Z). (1.29)

Figure 1.10 shows the electronic detection circuit attached to the electrodes

Fig. 1.10. Schematic diagram of Penning-Malmberg trap electrodes and electrical circuit
analogue to plasma mode and receiver.

of trap, and the lump circuit element model. Applying the Nyquist theorem
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to our trap, we get

V 2
a

df
= 4kBTp Re(Zp)

∣∣∣∣ ZL
Zp + ZL

∣∣∣∣2︸ ︷︷ ︸
plasma

+ 4kBTL Re(ZL)

∣∣∣∣ Zp
Zp + ZL

∣∣∣∣2︸ ︷︷ ︸
load

(1.30)

where Va stands for the antenna voltage. The load impedance from a resis-

tor and capacitor in parallel is Z−1
L = R−1

L + iωCL. The plasma impedance

around one mode is given by16 Zp = Gω2
m/[i(ω − ωm) + γm], where G is a

coupling coefficient due to the geometry, and γm is the mode damping.

Fig. 1.11. Spectra of thermally excited TG mode for (a) kTplasma = 1.89eV and
kTload = 0.3eV; (b) kTplasma = 1.84eV and kTload = 2.5eV. The long dashed line

is Eq. (1.30) fitted to the data; the solid line is the plasma component and the short
dashed line is the load noise filtered by the plasma.

The measured voltage fluctuations on the antenna are shown in
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Fig. 1.11; the fluctuations are decomposed in two parts, a Lorentzian from

the plasma, and a dip-and-step from the load. The red trace is from the

Lorentzian plasma contribution and the green trace is from the thermal

noise of the load. The temperatures of the plasmas and of the load are ob-

tained from this decomposition. The temperatures of the plasmas measured

by this “emission” technique are plotted on the vertical axis of Fig. 1.12

versus the temperatures measured by a standard slow dump of the particles

contained in the trap. Here we used a room temperature amplifier to mea-

sure the thermally excited mode at plasma temperatures as low as 2.5 times

room temperature. Figure 1.12 shows that both temperature diagnostics

Fig. 1.12. Plasma temperature measured by emission technique versus standard dump
temperature measurement. The two types of symbol represent measurements performed
on two apparatuses.

agree within 15%, which is typical of the accuracy of the dump temperature

diagnostic.

1.2.3. Higher order Trivelpiece-Gould modes

So far we have discussed axisymmetric plasma waves; here, I will be showing

briefly some experimental results of plasma modes with azimuthal depen-
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Fig. 1.13. Observed mode frequencies of mθ = ±1 as a function of plasma length Lp.

dance. Figure 1.13 shows the observed mode frequencies for azimuthal mode

mθ = ±1 in a magnesium ion plasma, and in a pure electron plasma. The

modes are Doppler-shifted according to Eq (1.28) by the plasma rotation

frequency. The shift is clearly visible on the Mg+ data, but is hard to see

on the electron data, since the electron mode frequency is larger by a factor√
mi/me, whereas the rotation frequencies are comparable. Figure 1.13

demonstrates that the Doppler shifted mode frequencies are proportional

to N
1/2
L L−1

p .

1.2.4. Electron acoustic waves

Electron Acoustic Waves (EAW)18,19 are plasma waves with a slow phase

velocity, typically ω ≈ 1.4kv; in contrast, TG modes have ω & 3kv. The

name comes from the neutral plasma community: the ions are stationary,
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as for electron plasma waves; but the mobile electrons give an acoustic re-

sponse. Analogous EAW modes are observed in pure electron and pure ion

plasmas (where the name is somewhat misleading). The EAW is non-linear

so as to flatten the particle distribution to avoid strong Landau damping,

but it can exist at small amplitude. Figure 1.14 shows the dispersion rela-

tion of plasma waves in an infinite size plasma where the dispersion relation

has the shape of a “thumb.”

Fig. 1.14. Plasma wave dispersion relation in homogeneous infinite plasma and plasma
of finite radial size.

In a trapped non-neutral plasma with a finite radial size Rp resulting in

k⊥ given by Eq. (1.24), the dispersion curve looks like a “tear drop” when

λD/Rp is fixed. Experimentally it is easier to fix kz and Rp, measuring

the dispersion curve as a function of temperature T as shown in Fig. 1.15.

The upper squares correspond to TG waves and the lower dots to EAW.

At small amplitude (Aexc = 50mV) no waves are observed for T > 1.3eV

corresponding to Rp/λD < 2. The TG wave is easily excited with bursts

as short as 3–10 cycles; in contrast the EAW requires typically hundreds

of cycles to be excited. However, at larger amplitude the waves are excited

over a range of frequencies. The bar at T = 0.8eV shows the range of

frequencies over which a 100 cycle burst with Aexc = 300mV results in a

wave at frequency f = fexc ringing for hundreds of cycles. This means that

at T = 0.8eV, a wave can be excited at “any frequencies” within the vertical

extent of the grey bar. Similarly, waves at T = 1.4eV are excited past the

“end of the thumb,” where no near-linear solution exists. For these off-

dispersion relation waves, the drive modifies the particle distribution until

the distribution becomes resonant with the drive.

We note that similar modes may occur in laser-plasma interactions,

where they are called KEEN (Kinetic Electrostatic Electron Nonlinear)
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Fig. 1.15. Plasma wave dispersion relation for finite radial size plasma with fixed kz
plotted versus temperature.

waves.20 The connections between EAWs and KEEN waves are currently

being investigated.

1.3. Cyclotron Wave

A single particle of charge q and mass m in a magnetic field has a cyclotron

frequency fc = qB/(2πm). In a plasma, the cyclotron mode frequency is

shifted from fc. For a single species non-neutral plasma, cold fluid theory

predicts that the cyclotron mode has frequencies:21

f = fc + fE×B

{
(mθ − 2) +

[
1−

(
Rp
Rw

)2mθ
]}

. (1.31)

One can see that for mθ = 1 the cyclotron mode frequency is downshifted

by one diocotron frequency. Figure 1.16 shows the measured cyclotron

mode frequency of a pure electron plasma plotted against the diocotron

frequency, demonstrating that for a single species plasma the lowest order

cyclotron mode is downshifted by one diocotron frequency.

For multispecies non-neutral plasmas, cyclotron modes can be used to

identify the composition of the plasma, but the exact frequency shifts are



December 21, 2012 6:0 World Scientific Review Volume - 9in x 6in anderegg˙waves˙nnps

Waves in Non-neutral Plasma 19

Fig. 1.16. Electron cyclotron mode frequency21 plotted versus measured diocotron fre-

quency. The solid line demonstrates the validity of Eq. (1.31) for single species plasmas.

still a work in progress.
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