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This dissertation discusses the effects of collisions and finite plasma length on 

Trivelpiece-Gould waves on a magnetized, single-species plasma column.  Starting 

from Poisson's equation and a drift-kinetic equation with an energy- and momentum-

conserving Fokker-Planck collision term, a dispersion equation is obtained for an 

azimuthally symmetric wave on an infinitely long column.  The dispersion relation 

includes the effect of velocity-scattering collisions with impact parameters less than 

the cyclotron radius and recovers Landau damping as collisionality approaches zero.  

For wavenumbers such that (k!
D
)<<1—where k ! (k

z

2
+ k"

2
)
1/2

 is the total 



 xiii  

wavenumber, k
z
 and k!  are the wavenumbers along and transverse to the magnetic 

field, and !
D

 is the Debye length—Landau damping is exponentially small, and the 

complex frequency of the wave is approximately ! ! (kz! p / k)[1+ (3 / 2)(k"D )
2
"  

!(1+10i! / 9) / (1+ 2i!)],where ! p  is the plasma frequency, ! ! k"D / (kz# p )  is a 

collisionality parameter, and !
D

 is the collision frequency.   When the Debye length is 

larger than the cyclotron radius, long-range interactions between particles on different 

field lines are also significant but cannot be treated by a Fokker-Planck collision 

operator.  Fluid theory provides a simpler context for incorporating these long-range 

interactions, since their primary effect is the enhancement of transport across the 

magnetic field.  Fluid analysis reveals that the damping rate obtained from kinetic 

theory corresponds to bulk viscosity and that viscous relaxation of radial shear in the 

parallel flow, due to long-range collisions, gives an important additional contribution 

to the damping rate.  Lastly, azimuthally symmetric normal modes are calculated for a 

cold, finite-length plasma column.  The dispersion equation  ! = kz! p / (kz
2
+ k!

2
)
1/2  for 

Trivelpiece-Gould waves on a cold, strongly magnetized plasma has the property that 

two waves with wavenumbers (k
z
,k! )  and ( !k

z
, !k" )  have the same frequency if 

k
z
/ k! = "k

z
/ "k!.   Such degenerate waves are mixed upon reflection at the ends of the 

plasma column, and consequently each normal mode involves many such waves.  The 

modes often exhibit sharp features along resonance cones with slope 

dz / dr = ±(! p

2
/! 2

!1)
1/2
.        
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Chapter 1 

Background and Summary of Results 

 

This dissertation presents theoretical studies of plasma waves—more precisely, 

Trivelpiece-Gould (TG) waves—on a magnetized single-species plasma column [1].  

The results should be relevant to nonneutral plasmas confined in a Penning-Malmberg 

trap [2].  Two problems are considered.  

Chapters 2-4 examine the effect of collisions on an azimuthally symmetric TG 

wave propagating along an infinitely long plasma column [3].  Chapter 2 introduces a 

simple Fokker-Planck operator devised by J. P. Dougherty to treat like-particle 

collisions [4, 5].  In Chapter 3, the Dougherty collision model enables the derivation of 

a kinetic dispersion relation that includes collisions with impact parameter smaller 

than the cyclotron radius.  When the phase velocity is much larger than the thermal 

velocity, the dispersion equation yields a simple formula for the complex frequency of 

the wave.  In Chapter 4, this formula is interpreted using simpler fluid models, and 

bulk viscosity is identified as the damping mechanism.  Fluid theory also provides a 

framework for considering the effect of collisions with impact parameter larger than 

the cyclotron radius.  These collisions lie outside the scope of the Fokker-Planck 

theory but nonetheless transport momentum across the magnetic field, contributing to 

the damping of the wave [5, 6].  

Chapter 5 deals with the effects of finite plasma length.  Azimuthally 

symmetric modes of oscillation are calculated for a cold finite-length plasma column.  
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Similar mode calculations have been carried out in past work [7-9], but here a novel 

finding is presented: each mode is a mixture of multiple degenerate standing waves, 

often exhibiting sharp features along “resonance cones” corresponding to the 

frequency of the mode [10].  The observed mixing is a low-temperature phenomenon, 

requiring that the cold-fluid dispersion relation be valid even for wavelengths much 

smaller than the dimensions of the plasma.  In this regime, Landau damping is 

exponentially small, so the modes are damped by viscosity.  Perturbation theory yields 

a formal expression for the viscous damping rate when the damping is sufficiently 

weak. 

 

1.1  Collisional Effects 

 

 
1.1.1  Kinetic Theory with Collisional Velocity Scattering 

 

 

Theoretical studies of the collisional damping of electron plasma waves in an 

electron-ion plasma date back to the pioneering work of Lenard and Bernstein and 

extend into recent literature [11-14].  Using a simple Fokker-Planck collision operator, 

now called the Lenard-Bernstein (LB) collision operator, Lenard and Bernstein solved 

the linearized Boltzmann and Poisson equations for the electrons to obtain a dispersion 

relation for the complex wave frequency, .!   The dispersion relation admits a discrete 

infinity of roots, the least damped of which corresponds to the Landau (or Bohm-

Gross) root of collisionless theory [15].  Lenard and Bernstein focused on the least 

damped root, finding the collisional damping decrement Im(!) = !"
LB
/ 2,  where !

LB
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is a generic collision frequency that appears in the LB collision operator.  (Actually, 

the ! was omitted in the final step of the analysis, and the omission was corrected 

only recently [13].)  Recent work also showed that there is a complete set of kinetic 

eigenfunctions corresponding to the discrete infinity of roots, and these eigenfunctions 

replace the continuum of Van-Kampen eigenfunctions of collisionless theory [12, 14, 

16]. 

The LB collision operator conserves particle number but not momentum or 

energy.  However, failure of the electron collision operator to conserve momentum 

and energy is acceptable for an electron-ion plasma, since momentum and energy can 

be transferred from the electrons to the ions by collisions.  Indeed, the damping of 

electron plasma waves in an electron-ion plasma involves just such a transfer of 

momentum (and, to a lesser extent, energy).  The oscillating electrons are slowed by 

collisions with the relatively immobile ions, and this friction damps the wave. 

In contrast, in a single-species plasma, the damping mechanism described 

above is irrelevant, since there is no heavier background species.  By default, the 

collisional damping of plasma waves in the single-species plasma must result from 

collisions between like particles.  Therefore, the failure of the LB operator to conserve 

momentum and energy disqualifies it from describing damping in the single-species 

plasma.  Dougherty has introduced a modification of the LB operator that conserves 

momentum and energy as well as particle number, and we will use Dougherty’s 

collision operator [4, 5, 17, 18].   
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The advantage of the LB and Dougherty operators is that they are analytically 

tractable.  For example, the Hermite polynomials form a complete set of 

eigenfunctions of the 1-D LB operator, and this set is a convenient basis for expansion 

of the velocity distribution when collisions are described by the LB operator [12].  

Here we use an analogous set of orthogonal functions as a basis for expansion of the 

velocity distribution. 

Following Trivelpiece and Gould [1], we consider plasma waves on an 

infinitely long, magnetized plasma column of uniform density surrounded by a coaxial 

cylindrical conductor.  For simplicity, we limit the discussion to azimuthally 

symmetric waves.  We also take the magnetic field to be sufficiently large that the 

drift approximation is justified.  Accordingly, we describe the plasma dynamics with a 

drift kinetic equation that includes Dougherty's collision term—hereafter referred to as 

the Dougherty kinetic equation.  This treatment accounts for collisions with impact 

parameters !  satisfying b < ! < r
c
,  where Tqb /

2
!  and r

c
! (T /m)

1/2
/"

c
 are, 

respectively, the classical distance of closest approach and the cyclotron radius for a 

thermal particle (q  and m  are the charge and mass of a single particle, T  is the 

plasma temperature, and !
c
 is the cyclotron frequency).  Here we have implicitly 

assumed that r
c
>> b;  this ordering is typical of experiments on nonneutral plasmas.  

Interactions with impact parameters ! > r
c
 lie beyond the scope of a Fokker-Planck 

collision operator; however, these interactions are considered later in the context of 

fluid theory.   
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The linearized Dougherty kinetic equation and Poisson’s equation yield a 

dispersion relation for the complex wave frequency [3].  Like the LB dispersion 

relation, this dispersion relation admits a discrete infinity of roots for each 

wavenumber.  We focus on the least damped root, which corresponds to the Landau 

root of collisionless theory. 

For wavelengths much larger than the Debye length, the least damped root of 

the dispersion equation is given by the simple approximate expression 

                              ! !
kz! p

k
1+
3

2
(k"D )

2 1+10i# / 9

1+ 2i#

"

#
$

%

&
'

(

)
*

+

,
-,                              (1.1) 

where !
p
! (4"q2n

0
/m)

1/2  and !
D
! [T

0
/ (4"q2n

0
)]
1/2  are the plasma frequency and 

the Debye length of the unperturbed plasma (
0
n and 

0
T  being the unperturbed density 

and temperature), kz and k!  are the wavenumbers along and transverse to the magnetic 

field, k = k
z

2
+ k!

2  is the total wavenumber, !
D

 is a generic collision frequency that 

appears in the Dougherty collision operator, and ! !"Dk / (kz# p )  is a parameter 

characterizing the strength of collisionality.  Note that the ratio of the phase velocity to 

the thermal speed, v
th
! (T

0
/m)

1/2
,  is approximately Re(!) / (k

z
v
th
) ! (k"

D
)
"1
>>1.   

For wavelengths comparable to the Debye length ),1~.,.(
D

kei !  the phase velocity is 

closer to the thermal velocity.  In this case, the dispersion relation must be solved 

numerically, and Landau damping is recovered in the limit .0!"   

For weak collisionality (i.e., ),1<<!  Eq. (1.1) reduces to 
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                                          Re(!) !
kz! p

k
1+
3

2
(k"D )

2"

#$
%

&'
                                      (1.2)           

                                                Im(!) ! "
4

3
"
D
(k#

D
)
2
.                                           (1.3) 

Equation (1.2) is the well-known result from collisionless theory for the frequency of a 

TG wave on a single-species plasma column [19].  Equation (1.3) gives the collisional 

damping rate.  Note that the damping rate is suppressed by the small factor 

(k!
D
)
2
<<1;  this suppression is a reminder that the dominant damping mechanism in 

an electron-ion plasma—electron-ion friction—is not available in the single-species 

plasma.    

According to Eq. (1.1) the ordering k
z
/ k! <<1  implies that Re(!)<<! p

.   

This is the typical wavenumber ordering for plasma wave experiments on a long 

column, and we assume this ordering here.  In fact, this ordering is implicit in our use 

of a Fokker-Planck collision operator, since the derivation of such an operator requires 

the Bogoliubov hypothesis [20], ! <<!
p
.    

A weakly damped solution to the dispersion equation exists even in the limit of 

strong collisionality ).1.,.( >>!ei   In this limit, Eq. (1.1) reduces to 

                                        Re(!) !
kz! p

k
1+
5

6
(k"D )

2"

#$
%

&'
                                        (1.4) 

                                            Im(!) ! "
1

3

v
th

2

"
D

#

$
%

&

'
(kz

2
.                                              (1.5) 
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Here, we implicitly assume that the plasma is weakly correlated (i.e., !D
<<"

p
)  even 

though the wave dynamics are strongly collisional, and this is possible since 

Re(!)<<!
p
.    

Note that the Bohm-Gross correction to the real part of the frequency—that is, 

the term (3 / 2)(k!
D
)
2  in the bracket of Eq. (1.2)—has been replaced by (5 / 6)(k!

D
)
2  

in Eq. (1.4).  This change, which emerges automatically from kinetic theory, has a 

simple explanation based on the adiabatic law of compression [21].  The numerical 

coefficient of the Bohm-Gross term is (d + 2) / (2d),  where d is the number of degrees 

of freedom that share the compressive energy.  For weak collisionality, there is 

negligible equipartition, so d = 1 and (d + 2)/(2d) = 3/2; whereas, for strong 

collisionality, there is nearly complete equipartition, so d = 3 and (d + 2)/(2d) = 5/6. 

 

 

1.1.2  Fluid Theory with Collisional Transport and Temperature Isotropization  

 

While the kinetic dispersion equation (1.1) is valid from the limit of weak 

collisionality to the limit of strong collisionality, its physical interpretation in each 

these limits is not immediately clear.  Fortunately, fluid models provide a 

complementary approach to the kinetic theory in these limits, provided that resonant 

particle effects are negligible.  

First consider the limit of strong collisionality.  Here a dispersion relation can 

be obtained from Poisson’s equation plus the linearized equations of motion for the 

plasma density, flow velocity, and temperature, with collisional effects contained in 
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the viscosity and heat conduction terms.  For wavelengths much larger than the Debye 

length (i.e., k!
D
<<1) , the fluid dispersion relation recovers Eq. (1.4) for the real part 

of the wave frequency.  As a first approximation, the damping rate is given by [3]   

Im(!) ! "
2

3
"
||
k
z

2
+
1

2
"#k#

2$

%
&

'

(
),                                          (1.6) 

where !
||
 and !!  are the coefficients of kinematic viscosity for transport of axial 

momentum along and across the magnetic field, respectively.  The contribution to the 

damping from heat conduction is of higher order in the small parameter k!
D
.   If the 

second term on the right-hand side of Eq. (1.6) is ignored, the kinetic expression (1.5) 

is recovered by the substitution !
||
=!

D
! v

th

2
/ (2"

D
),  where !

D
 is the kinematic 

viscosity predicted by the Dougherty operator.  In other words, the kinetic damping 

formula (1.5) corresponds to the dissipation of the compressive flow by bulk viscosity.   

 However, there is no justification for ignoring the contribution to the damping 

from cross-field viscosity.  Typical experiments on single-species plasmas are 

characterized by the ordering r
c
<< !

D
,  and in this regime the cross-field kinematic 

viscosity is roughly [6] 

!! ""c
#
D

2
,                                                   (1.7) 

where !
c
! q

4
n
0
/ (m

1/2
T
0

3/2
).   Comparison of the two terms in the expression (1.6) 

using this estimate indicates that transport of axial momentum across the magnetic 

field is the dominant damping mechanism in the limit of strong collisionality.  The 

estimate (1.7) is based on collisions between particles on different field lines—that is, 

collisions with impact parameter !  satisfying r
c
<< ! < "

D
.   These collisions can only 
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be described by a nonlocal collision operator and thus lie outside the scope of the 

Dougherty operator or any other Fokker-Planck operator. 

 In the limit of weak collisionality, a fluid model can still be used if the phase 

velocity of the wave is much larger than the thermal velocity.  In particular, the 

ordering Re(!) / k
z
>> v

th
 implies that the particles comprising a given fluid element 

do not disperse on the timescale of the wave and also that the number of resonant 

particles is exponentially small.  However, this fluid model must allow for two distinct 

temperatures, T
||
 and T!,  corresponding to the parallel and cyclotron degrees of 

freedom, since the timescale for exchange of energy between these degrees of freedom 

is longer than the wave timescale.  We assume that the collisional relaxation of the 

two temperatures is governed by the equation [22]  

dT
||

dt
=!

||,!(T! "T|| ),                                                (1.8) 

which defines the equipartition rate, !
||,!.   Meanwhile, the total internal energy of a 

fluid element increases as it is compressed by the wave, evolving in time as      

 
d

dt

1

2
T
||
+T!

"

#
$

%

&
'= (

T
||

n

dn

dt
.                                           (1.9) 

The parallel flow and the density evolve according to Euler’s equation (with pressure 

p = nT
||
)  and the continuity equation, respectively.  Together with Poisson’s equation, 

these fluid equations admit a weakly damped wave with super-thermal phase velocity 

for wavenumbers such that k!
D
<<1.    As a first approximation, the real part of the 

wave frequency is given by Eq. (1.2) and the damping rate by  
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Im(!) ! ""
||,#(k#D )

2
.                                          (1.10) 

Equation (1.3) is recovered by the substitution !
||,! =! ||,!

(D)
" 4!

D
/ 3,  where !

||,!

(D)  is the 

equipartition rate predicted by Dougherty's collision operator. 

While the kinetic derivation of the damping formula (1.3) for weak 

collisionality obscures the underlying damping mechanism, comparison with the two-

temperature fluid model suggests a physical interpretation for the kinetic result.  The 

parallel temperature of a given fluid element oscillates as it compresses and expands in 

the presence of the passing wave.  However, because of the weak collisional coupling 

between parallel and perpendicular degrees of freedom, the oscillation in the parallel 

temperature leads the compression/decompression cycle by a small phase.  As a result, 

the pressure is greater (on average) during compression than during decompression, so 

positive net work is done on the fluid element at the expense of the wave energy.  The 

dissipation is equivalent to a high-frequency bulk viscosity. 

 The long-range collisions with impact parameters ! >> r
c
 have little effect on 

temperature isotropization, since the cyclotron adiabatic invariant inhibits the transfer 

of energy between perpendicular and parallel degrees of freedom by such collisions 

[23].  However, as in the limit of strong collisionality, these collisions contribute to the 

wave damping by transporting momentum across the magnetic field.  The nature of 

this transport is the same regardless of the strength of collisionality, so the second term 

in the damping formula (1.6)—with cross-field viscosity again given by Eq. (1.7)—

still gives a reasonable estimate of this contribution even when collisions are weak. 
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1.2  Finite-Length Effects 

 

Figure 1.1 shows a schematic diagram of a single-species plasma that is 

confined in a Penning-Malmberg trap [2].  A conducting cylinder is divided into three 

sections, and the plasma resides in the central grounded section, with radial 

confinement provided by a uniform axial magnetic field (
!
B = Bẑ)  and axial 

confinement by voltages applied to the end sections of the cylinder.  These plasmas 

routinely come to a state of thermal equilibrium in the trap and are routinely cooled to 

the cryogenic temperature range [24].  The plasma configuration is then particularly 

simple; the density is constant out to some surface of revolution and there drops to 

zero [25].  Chapter 5 discusses the normal modes of plasma oscillation for these cold 

equilibrium plasmas.  Of course, cold-fluid theory provides a good description of these 

modes. 

 At first glance, the problem sounds straightforward: find the longitudinal 

modes of oscillation of a uniformly magnetized, uniform-density, bounded plasma in 

cold-fluid theory.  However, we will see that the problem is subtle and that there is 

some confusion in the literature.   

 The origin of the difficulty is the peculiar dispersion relation for plasma waves 

in a cold magnetized plasma,

 

 

! =
kz! p

kz
2
+ k!

2
,                                                (1.11) 
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where !  is the wave frequency, ! p  is the plasma frequency in the unperturbed 

plasma, k
z
 is the wavenumber along the magnetic field, and k!  is the wavenumber 

transverse to the field.  Note that a wave with wavenumbers (k
z
,k! )  has the same 

frequency as a wave with wavenumbers ( !k
z
, !k" )  if !k

z
/ !k" = kz / k";  thus, each wave has 

the same frequency as infinitely many other waves.  Upon reflection from the 

boundaries, an incident wave typically mixes with other waves sharing the same 

frequency, and consequently each normal mode is a complicated many-wave structure. 

A toy problem illustrates the issues.  Consider a 2-D slab of uniform-density 

plasma that occupies the domain given by 0 ! x ! a  and 0 ! z ! b,  and assume a 

strong magnetic field in the z-direction.  The potential for a mode oscillating with 

frequency !  satisfies the equation  

!2!"#

!x2
+ 1"

#
p

2

# 2

#

$
%%

&

'
((
!2!"#

!z2
= 0.                                    (1.12) 

Suppose that the plasma is bounded on all sides by a perfect conductor so that the 

potential is zero at the boundaries.  In this case, a set of normal modes and frequencies 

is given by  

!"# (x, z) = sin
m$ x

a

!

"
#

$

%
&sin

n$ x

b

!

"
#

$

%
&                                   (1.13) 

!mn =
! p(n" / b)

(m" / a)2 + (n" / b)2
                                      (1.14) 

where m and n are integers.  For any mode (m,n)  there are an infinite number of 

exactly degenerate modes ( !m , !n ),  where !n / !m = n /m.   Each mode can be 
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decomposed into a pair of waves propagating in opposite directions along the 

magnetic field and reflecting at the boundaries, but for this particular geometry there is 

no mixing since the sine functions are orthogonal on the boundary surfaces.  However, 

if the boundary were deformed, the orthogonality would be destroyed and reflections 

would mix degenerate modes, yielding more complicated many-wave modes.   

 It is interesting to construct an alternate representation of the degenerate modes 

[26].  For any frequency, the mode equation (1.12) admits characteristic solutions of 

the form !"# = ![z± (# p

2
/# 2

!1)
1/2
x + c],  where c is an arbitrary constant.  These 

solutions can be thought of as a line or ray at slope dz / dx = ±(! p

2
/! 2

!1)
1/2
.   For the 

mode frequencies in Eq. (1.14), an assembly of such rays can be arranged end to end 

so that the assembly closes on itself.  The sign of the ray changes upon reflection from 

the boundary so that the boundary condition on the wall is satisfied.  Figure 1.2 shows 

a parallelogram-shaped assembly for the degenerate mode frequency corresponding to 

n /m =1.   There are an infinite number of such parallelograms with sides of different 

lengths, and this set is an alternative representation of the sinusoidal degenerate modes 

of Eq. (1.13) for which   Similar ray-like representations can be constructed 

for any other set of degenerate modes—that is, for any other value of the ratio n /m.   

Interestingly, if the rectangular plasma boundary is deformed slightly, all of the 

degenerate sinusoidal modes are mixed, but a given ray-like mode is only modified if 

the boundary is changed at the points at which the ray makes contact. 

 This picture is modified somewhat in cylindrical geometry.  For example, for a 

uniform-density plasma bounded by a cylindrical conducting wall at r = a  and flat 

n /m =1.
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conducting walls at z = 0  and z = b,  the mode degeneracies are only approximate.  

Furthermore, the ray-like solutions are replaced by more complicated functions that 

are peaked along resonance cones with slope [10] dz / dr = ±(! p

2
/! 2

!1)
1/2
.   A crucial 

difference is that the cylindrical functions are not entirely localized along these cones.  

Nevertheless, the basic ideas illustrated by the rectangular toy problem persist.  In 

numerical studies of the normal modes for a long, cylindrical plasma column in a 

Penning-Malmberg trap, we will find complicated many-wave normal modes, with the 

waves often adding to produce conical structures with slope =drdz /  ±(!
p

2
/! 2

!1)
1/2
.  

 However, we emphasize that the mixing is a low-temperature phenomenon, 

requiring that the cold-fluid dispersion relation be valid for axial and transverse 

wavelengths much shorter than the dimensions of the plasma.  The condition for 

validity of the cold-fluid dispersion relation is that (k!
2
+ k

z

2
)
1/2!

D
<<1;  otherwise, 

kinetic effects such as Landau damping modify the dispersion relation, spoiling the 

degeneracy that underlies the mixing.  Thus, in sufficiently warm plasmas, no mixing 

should be observed.  

 With this background, we now return to the discussion of normal modes for a 

cold equilibrium plasma in a Penning-Malmberg trap.  An important difference 

between this problem and the toy problem is that vacuum separates the plasma from 

the conducting wall.  For the simple case of a mode with azimuthal mode number 

zero, the mode equation is given by 

1

r

!

!r
r
!!"#

!r
+
!

!z
1"

#
p

2
(r, z)

# 2

#

$
%

&

'
(
!!"#

!z
= 0,                             (1.15) 
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where !
p

2
(r, z) = 4"q2n(r, z) /m  inside the plasma and !

p

2
(r, z) = 0  in the vacuum.  The 

mode potential vanishes on the trap wall and as .±!"z  

 Historically, two geometrical limits have been emphasized.  In the first limit, 

pioneered by the atomic physics community, the plasma is small compared to the 

radius of the cylindrical conductor and resides in a quadratic trap potential.  The 

surface of revolution defining the shape of the plasma is then spheroidal [27].  Using 

spheroidal coordinates, Dubin found exact analytic expressions for the normal modes, 

and images of the modes in Be+ plasmas corroborated the theory [28, 29].  Of course, 

the Dubin modes have many near degeneracies, and one expects that a deformation of 

the spheroidal boundary will mix these modes.  

 In the second limit, more familiar to plasma physicists, the plasma is long 

compared to the radius of the conducting cylinder and takes the shape of a finite-

length cylinder with rounded ends.  The more complicated shape of these longer 

plasmas prevents an analytic description of the modes.  However, the solution by 

Trivelpiece and Gould for waves on a cold, magnetized, infinitely long plasma 

cylinder provides a useful benchmark for theoretical studies of modes on the finite-

length plasma cyliners [1].  Previous theory has argued that, to a good approximation, 

each mode is a single standing TG wave with the axial wavenumber quantized to fit 

the length of the plasma column.  Moreover, for the case of warm plasmas with 

significant kinetic effects, experimental observations are consistent with this simple 

picture [30].  In contrast, our numerical solution based on cold-fluid theory shows that 
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each mode involves many TG waves, which often add to produce conical structures at 

the expected slope, =drdz /  ±(!
p

2
/! 2

!1)
1/2
.  

 The dispersion relation for the TG waves is given by Eq. (1.11), but with the 

transverse wavenumber k!  quantized to discrete values, each corresponding to a 

different solution to the ODE for the radial dependence of the wave.  Upon reflection 

at the end of the column, a given TG wave reflects not only into its backward-

propagating counterpart but also into other waves with different radial wavefunctions 

[7].  Note that when !  and k!  are specified, Eq. (1.11) chooses the value of k
z
.   The 

value of 
z
k  is important in determining the extent to which a wave participates in the 

mode.  If, after a complete circuit of two reflections, the wave adds in phase with itself 

(say, to produce a standing wave), then that wave will tend to play a significant role in 

the mode.  Such approximate standing waves here play the role of the exactly 

degenerate modes in the toy problem.   

 The numerical method is easiest to understand for the idealized case where the 

plasma column has flat ends—that is, where the plasma is a perfect right circular 

cylinder as shown in Fig. 1.3(a).  This is probably the simplest generalization of the 

toy problem.  The dashed lines in the figure divide the confinement region axially into 

a central region where the plasma resides and two adjacent vacuum regions.  

Following Prasad and O’Neil [7], we expand the mode potential in the central region 

in an infinite sum of TG waves, all having the same frequency, ! —the unknown 

frequency of the mode—but different axial and transverse wavenumbers, 
z
k  and k!.   

These waves all satisfy the mode equation for a mode with frequency !  as well as the 
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boundary condition on the wall, and they are known analytically.  In the vacuum 

region z > L / 2,  we expand the mode potential in an infinite series of cylindrical 

harmonics of the form J0 (!0nr / R)exp[!!0n (z! L / 2) / R],  where  is the radius of 

the conducting cylinder,  is the n
th

 zero of the Bessel function J
0
(x),  and n is a 

positive integer.  For the vacuum region z < !L / 2,  there is simply a sign change in the 

argument of the exponential (and an overall sign change in the case of odd modes).  

The three series satisfy the mode equation in the three regions as well as the boundary 

conditions on the wall and at z!±",  and the numerical task is to find a frequency !  

and choose the coefficients in the series so that the solutions match properly across the 

surfaces separating these regions.  The mode potential and the normal component of 

the electric displacement vector must be continuous across these surfaces. 

 For the simple case of flat ends, the matching task is facilitated by the 

orthogonality of both the Bessel functions to one another and the TG radial 

wavefunctions to one another on the flat matching surfaces [the dashed lines in Fig. 

1.3(a)].  Note that the Bessel functions are not orthogonal to the TG radial 

wavefunctions; indeed, it is this lack of orthogonality that gives rise to the mixing 

upon reflection.  Each TG wave couples to many vacuum solutions, and these couple 

back to different TG waves.  In contrast to the toy problem, the plasma ends need not 

be deformed to get wave mixing.   

Of course, for numerical implementation of the matching, the three series are 

truncated at a finite number of terms, and here a difficulty arises for the idealization of 

R

!
0n
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a flat end.  We do not find convergence of the solution, in that TG waves of arbitrarily 

large wavenumber appear to participate significantly in each mode. 

 Figure 1.3(b) shows a more realistic plasma with rounded (spheroidal) ends 

that fit smoothly onto the central cylindrical section of the plasma.  Here, the matching 

surfaces that separate the central region containing the plasma from the adjacent 

vacuum regions are no longer flat but extend outward to follow the end-shape of the 

plasma [the dashed curves in Fig. 1.3(b)].  Again we expand the mode potential in 

three series for the three regions, but here we lose the orthogonality of the Bessel 

functions and of the TG radial wavefunctions on the matching surfaces.  The matching 

is carried out by choosing the frequency and the coefficients in the series to minimize 

the mean-square error in matching at a large number of sample points on the matching 

surface.  Fortunately, the rounding of the ends suppresses the coupling to large-

wavenumber components, and we find convergent solutions.   

 By taking the central cylindrical section of the plasma to be arbitrarily small, a 

spheroidal plasma is obtained, as illustrated in Fig. 1.3(c).  For the spheroidal plasma, 

if the radius of the conducting cylinder is much larger than the dimensions of the 

plasma, Dubin’s analysis of the modes of a cold plasma spheroid should be applicable 

[28].  Indeed, in this limit we obtain modes that resemble the Dubin modes (although, 

unfortunately, convergence is too slow to resolve fine-scale details of the modes in 

this limit). 

 As mentioned earlier, one advantage of the numerical method is that it 

explicitly identifies the extent to which each TG wave participates in a given normal 
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mode.  Also, use of the known TG wave solutions and vacuum solutions effectively 

reduces the dimension of the numerical task.  Matching on the boundary surface 

involves N unknowns; whereas, a numerical solution on a grid spanning r and z would 

involve 2
N  unknowns.   

 A signature of the predicted wave-mixing is that the least damped modes of the 

cold plasma cylinder damp more quickly than one would expect based on the 

assumption that the mode is a single standing TG wave.  The reason for the enhanced 

damping is that the viscous momentum flux underlying the damping is intensified by 

the presence of steep momentum gradients—i.e., high wavenumbers—in the mixed 

mode.  We investigate viscous damping in the limit where viscous effects can be 

treated as a perturbation to Eq. (1.15).  To first order in viscosity, each mode damps 

with a rate given by a quadratic form that acts on the zero-order (inviscid) mode.  We 

evaluate this expression for one of the numerically calculated modes and compare 

with the rate obtained by approximating the mode as a single TG wave.  The single-

wave approximation underestimates the damping rate by roughly an order of 

magnitude. 
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Figure 1.1.  Schematic diagram of a finite-length single-species plasma column 

confined in a Penning-Malmberg trap.  Axial confinement is electrostatic, provided by 

an electric potential, V, applied to the outer cylindrical electrodes; radial confinement 

is provided by an axial magnetic field.  The confinement scheme depicted here is for 

positively charged particles. 
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Figure 1.2.  An example of a ray-like mode on a magnetized plasma slab of 

rectangular cross-section, surrounded by a perfect conductor.  The mode potential is a 

sum of four Dirac delta functions, each of which is peaked along one side of the 

dashed parallelogram.  Delta functions corresponding to adjacent sides enter the sum 

with opposite signs so that the condition of vanishing potential is satisfied along the 

boundary.  There are an infinite number of other ray-like modes with the same 

frequency as the mode depicted here.  The set of ray-like modes is complimentary to 

the set of modes that are sinusoidal in x and z. 
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Figure 1.3.  Three idealized plasma shapes for which modes of oscillation are 

calculated: (a) a cylinder with flat ends, (b) a cylinder with spheroidal ends, and (c) a 

spheroid.  In each of the three regions separated by the dashed curves, we express the 

mode potential as a linear combination of functions that satisfy the mode equation and 

boundary conditions in that particular region.  The numerical task is to choose the 

coefficients in each linear combination so that the mode potential and the normal 

derivative of the electric displacement match at the boundary surfaces shown here as 

dashed curves. 
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Chapter 2 

Properties of the Dougherty Collision Operator 

 

 
A simplified Fokker-Planck collision operator due to J. P. Dougherty provides 

a powerful tool for investigation of collisional effects in single-species plasmas, since 

it captures the essential physics of like-particle collisions yet is simple enough to allow 

analytic progress [4].  In this chapter, we find a complete set of eigenfunctions of the 

linearized Dougherty collision operator [5].  Expansion of the distribution function in 

terms of these eigenfunctions facilitates solution of the kinetic equation.  Using the 

eigenfunctions, we show that in the limit of strong collisionality, the Dougherty 

operator gives rise to realistic fluid dynamics, including Newton’s law of momentum 

transport and Fourier’s law of heat transport, with reasonable formulae for the 

transport coefficients. 

 

2.1  Background 

 

In the kinetic theory of plasmas, the effect of collisions on the particle 

distribution function is treated by the Fokker-Planck collision operator of MacDonald, 

Rosenbluth, and Judd (MRJ) [31].  This operator satisfies the usual properties 

expected of a good collision operator: 

(a) it vanishes for any thermal equilibrium distribution function (any 

Maxwellian) 
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(b) it drives the plasma to thermal equilibrium in the long-time limit; that is, 

the long-time solution of the Boltzmann equation !f !t =C( f , f )  is a 

Maxwellian (here f is the distribution for a given particle species and C  is 

the MRJ operator) 

(c) it conserves particle number, momentum, and energy. 

In addition, the MRJ operator satisfies a property specific to plasmas: 

(d) it accurately accounts for the dominance of small-angle scattering; i.e., it 

contains a velocity-space diffusion term. 

However, inversion of the MRJ operator to find the distribution function is not 

tractable in most cases of interest.  Therefore, it is desirable to find an operator that is 

invertible and yet preserves the important properties listed above.   

This ad hoc approach to the collision operator as a means to analytic progress 

is not a new idea.  For example, Bhatnagar, Gross, and Krook (BGK) proposed a 

drastically simplified collision operator in 1957, and in 1958 Lenard and Bernstein 

(LB) utilized a Fokker-Planck operator with constant diffusion and drag coefficients in 

order to study analytically the effect of collisions on plasma waves [11, 32].  However, 

each of these operators neglects at least one of the properties listed above and is 

incapable of predicting certain phenomena as a result.  Specifically, the BGK operator, 

while conserving the necessary quantities, neglects the dominant role played by small-

angle scattering in the collisional relaxation of the distribution function; as a result, in 

the limit of weak collisionality this operator fails to predict the dramatically enhanced 

relaxation that occurs over regions of velocity-space in which the distribution varies 

sharply.  Conversely, the LB operator accounts for velocity-space diffusion but does 
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not conserve momentum or energy; therefore, results obtained from the LB operator 

cannot match onto those from fluid theory in the limit of strong collisionality. 

A generalization of the LB operator, introduced by Dougherty, retains each of 

the properties (a) through (d).  The operator proposed by Dougherty is given by [4] 

                           CD ( f , f ) =!D

!

!
!
v
"
T[ f ]

m

!f

!
!
v
+ (
!
v#
!
V[ f ]) f

$
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'

()
                   (2.1) 

where 

!
V[ f ]=

1

n
d
!
v
!
vf!                                                  (2.2) 

T[ f ]=
1

3n
d
!
vm(
!
v!
!
V)

2
f"                                           (2.3) 

n[ f ]= d
!
vf! ,                                                   (2.4) 

!
D

 is a generic collision frequency, and m is the particle mass.  Comparison with the 

MRJ collision operator suggests that the collision parameter !
D

 should be of order 

!
D
~ nq

4" / (m1/2
T
3/2
),  where !  is the appropriate Coulomb logarithm.  Unlike the LB 

operator, the Dougherty operator conserves all of the desired quantities and therefore 

matches onto results from fluid theory in the limit of strong collisionality.  Note here 

that strongly collisional does not mean strongly coupled, but rather the weaker 

condition that the mean-free-path between collisions is smaller than the spatial scale of 

interest (e.g., mode wavelength).   

The advantage of the Dougherty operator over the MRJ operator is that it is 

analytically tractable.  The sacrifice is that the velocity dependence of the Fokker-

Planck coefficients is neglected, and therefore results are only qualitatively correct.   



 

 

26 

If the particle distribution function can be written as f = f
0
+! f ,  where! f is a 

small perturbation and f
0
 is the Maxwellian characterized by density n0, temperature 

T0, and zero mean velocity, then one may write  

              
CD ( f , f ) !CD ( f0,! f )+CD (! f , f0 )
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v
!
v! f ."                                                 (2.7)        

The first two terms in the square bracket of Eq. (2.5) are the same as in the LB 

operator, while the remaining terms are responsible for restoring momentum and 

energy conservation.  Dougherty focuses on the inversion of this linearized operator to 

find! f .   Following Chandrasekhar [33], he constructs a Green’s function for the 

linearized kinetic equation 
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treating the right hand side as a source term.  Using the Green’s function it is possible 

to obtain an expression for! f in terms of !
!
V and!T,  and this expression may be 

substituted in the definitions of these quantities, resulting in two algebraic equations 

for !
!
V and !T.   These equations can then be solved and ! f determined. 
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A different method for inverting the linearized Dougherty operator was 

introduced by DeSouza-Machado et al [18].  These authors expand the velocity 

dependence of! f in an infinite series of orthogonal basis functions (Hermite 

polynomials), converting the Dougherty operator to an infinite matrix acting on the 

vector of coefficients in the orthogonal function expansion.  The Hermite polynomials 

diagonalize the LB part of the Dougherty operator [the first two terms in the square 

bracket of Eq. (2.5)], but not the whole operator. 

In contrast, here we expand! f in orthogonal basis functions that diagonalize 

the whole Dougherty operator.  Most of these eigenfunctions are just the Hermite 

polynomials, but a few are modified by the third and fourth terms in the linearized 

Dougherty operator.  Physically, the modified eigenfunctions (and eigenvalues) reflect 

the conservation properties of the Dougherty operator.  One should note that the 

eigenfunctions diagonalize only the collision operator, not the streaming and force 

terms in the Boltzmann equation—these terms couple the eigenfunctions. 

Five of the eigenfunctions have eigenvalue zero (corresponding to 

conservation of particle number, three components of momentum, and energy), and 

these eigenfunctions are crucial in connecting onto fluid theory.  We discuss the 

relation between these special eigenfunctions and the usual hydrodynamic modes in 

the limit of strong collisionality, identifying the sound speed, thermal conductivity, 

and viscosity as predicted by the Dougherty operator.        

More formally, the hydrodynamic modes arise because the streaming term in 

the Boltzmann equation [i.e., ikvz! f  for ! f ~ exp(ikz)]  is not diagonalized by the new 

eigenfunctions.  Although the streaming term may be treated as a small perturbation in 
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the limit of strong collisionality (hydrodynamic limit), it thoroughly mixes the 

degenerate eigenfunctions with eigenvalue zero, yielding the hydrodynamic mode 

eigenfunctions.  These hydrodynamic eigenfunctions diagonalize both the collision 

operator and the streaming term in the important subspace of undamped modes.  In 

second order perturbation theory, the hydrodynamic modes pick up weak damping due 

to weak coupling to eigenfunctions outside the subspace. 

 

2.2  Eigenfunctions of the Linearized Dougherty Collision Operator 
 

We may put the linearized Dougherty operator in self-adjoint form by writing

! f = f
0
"  and substituting this expression in Eq. (2.5).  The result is 
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where we have introduced the scaled velocity 
!
u !
!
v T

0
/m ; the operator !  is self-

adjoint with weight function f
0
.   In order to find the eigenfunctions of this operator, 

we break it into two parts—a differential operator,  
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and an integral operator, 
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As mentioned above, the eigenfunctions, !
n1n2n3

,  of !
1
 are the products of modified 

Hermite polynomials, that is, 
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The corresponding eigenvalues are 

                                             !
n1n2n3

= !"
D
(n
1
+ n

2
+ n

3
),                                     (2.13) 

where n1, n2, and n3 are nonnegative integers.  The functions !
n1n2n3

 satisfy the 

orthogonality relation 

                n
0
!
n1,m1

!
n2 ,m2

!
n3,m3

= d
!
u"n1n2n3

f
0
"m1m2m3! " n

0
"n1n2n3

"m1m2m3
.              (2.14) 

We observe that any!
n1n2n3

which satisfies !2 ("n1n2n3
) = 0  is an eigenfunction of the total 

operator, !,  with eigenvalue!
n1n2n3

.  We therefore express !
2
 in terms of inner 

products with the functions!
n1n2n3

: 

                
!
2
(" ) =#

D

1

6
$
200
+$

020
+$

002
" ($

200
+$

020
+$

002
)

!

"#

+ $
100

" $
100
+ $

010
" $

010
+ $

001
" $

001
$%.

            (2.15) 

Evidently, !
2
(" )  is the projection of!  onto (!

200
+!

020
+!

002
),  !

100
, !

010
,  and !

001
.   

Therefore, for almost every !
n1n2n3

,  !2 ("n1n2n3
) = 0,  and in each such case, !

n1n2n3
 is an 

eigenfunction of !  with eigenvalue!
n1n2n3

.   Hereafter, we refer to these eigenfunctions 

and eigenvalues of !  as !
n1n2n3

and!
n1n2n3

,  respectively.  The exceptions, for which the 

projection in Eq. (2.15) is nonzero, are clearly !
200
, !

020
, !

002
, !

100
, !

010
, and !

001
.    It 

is straightforward to find six additional eigenfunctions of the operator !  to replace 

these exceptions.  A sensible choice is  
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                    !100 ! ux, !010 ! uy, !001 ! uz, !200 !
1

6
(u

2
"3) ,                   (2.16) 

with eigenvalues!
100
= !

010
= !

001
= !

200
= 0,  and 

                !020 !
1

3
u
z

2 "
1

2
(u

x

2
+u

y

2
)

#

$%
&

'(
, !

002
!
1

2
(u

x

2 "u
y

2
),                (2.17) 

with eigenvalues !
020
= !

002
= !2"

D
.   Defined in this manner, the eigenfunctions 

!
000
, !

100
, !

010
, !

001
,  and !

200
,  which span the null-space of ! , correspond to particle 

number, x, y, and z momentum, and kinetic energy.  These eigenfunctions also satisfy 

the orthogonality relation given by Eq. (2.14).   

The completeness of the eigenfunctions found above follows directly from the 

completeness of the Hermite polyniomials.  Except for !
200
, !

020
,  and !

002
, the 

eigenfunctions !
n1n2n3

 are given by !
n1n2n3

!"
n1n2n3

, where the functions !
n1n2n3

 are 

defined by Eq. (2.12).  The three exceptions, !
200
, !

020
,  and !

002
, are mutually 

orthogonal, and each can be expressed as a linear combination of the functions 

!
200
, !

020
, and !

002
.  Therefore, the eigenfunctions !

n1n2n3
 span the same space as do 

the functions !
n1n2n3

.  Since the set {!
n1n2n3

}  is known to be complete, it follows that 

the set {!
n1n2n3

}must be complete as well. 

As a simple demonstration of the utility and basic consequences of this 

complete set of eigenfunctions, we consider the linearized kinetic equation governing 

the evolution of a small, spatially uniform perturbation in the distribution, 

                               !! f
!t

=CD ( f0,! f )+CD (! f , f0 ).                          (2.18) 



 

 

31 

The solution can be written down immediately in terms of the eigenfunctions found 

above: 

          ! f (!u, t) = f0 (u) an1n2n3"n1n2n3
(
!
u)exp[#

n1n2n3
t]

n3=0

!

"
n2=0

!

"
n1=0

!

" ,                 (2.19) 

where the coefficients a
n1n2n3

are determined from ! f (
!
u, t = 0) .  Note that all of the 

eigenvalues!
n1n2n3

 are negative except for!
000
, !

100
, !

010
, !

001
, and !

200
, which are 

zero.  Thus, the initial perturbations in density, fluid velocity, and internal energy— 

!n, !
!
V, and !T —are preserved; all other components of the initial perturbation relax 

at the rate !
D

 or faster.  In other words, we find that 

    lim
t!"

f =
n
0

(2!T
0
/m)

3/2
e
#u2 /2

1+
"n

n
0

+
"
!
V $
!
u

T
0
/m

+
!T (u2 #3)

T
0

%

&
'
'

(

)
*
*
.            (2.20) 

Since!n / n
0
, !
!
V T

0
/m , and !T /T

0
 are small in comparison to unity, this time-

asymptotic expression is equivalent to a Maxwellian with density n
0
+!n,  mean 

velocity !
!
V,  and temperature T

0
+!T.      

    In certain circumstances—for example, if the plasma of interest is 

magnetized—it may be useful to work in cylindrical velocity coordinates, which we 

define by  

u! = u
x

2
+u

y

2
, !

u
= tan

"1
(u

y
/ u

x
).                             (2.21) 

In these coordinates, the u!  dependence of the eigenfunctions of !  may be expressed 

in terms of the associated Laguerre polynomials, L
n

m
(x).   Specifically, the functions 
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!
n!nzm1

[1]
= u!

m1
L
nr

m1 (u!
2
/ 2)sin(m

1
"
u
)He

nz
(u

z
),

!
n!nzm2

[2]
= u!

m2
L
nr

m2 (u!
2
/ 2)cos(m

2
"
u
)He

nz
(u

z
)
                      (2.22) 

are eigenfuntions of ! with eigenvalues  

           
!
nrnzm1

[1]
= !"

D
n
z
+ 2n

r
+ m

1( ),

!
nrnzm2

[2]
= !"

D
n
z
+ 2n

r
+ m

2( ),
                                  (2.23) 

provided that { n!, nz,  m2}! {1,0,0}, {0,1,0}, {0,0,1}, {0,2,0}, {0,0,2} and that {

n!, nz,m1}! {0,0,1}; here n!, nz, and m2 are non-negative integers and m1 is a positive 

integer.  The remaining eigenfunctions are 

              

,3

,

,cos

,sin

22]2[
100

]2[
010

]2[
001

]1[
001

!+=

=

=

=

"

"

"

z

z

u

u

uu

u

u

u

#

#

$#

$#

                                           (2.24) 

having eigenvalues !
001

[1]
= !

001

[2]
= !

010

[2]
= !

100

[2]
= 0  and  

         
!
002

[2]
= u!

2
cos(2"

u
),

!
020

[2]
= 2u

z

2
"u!

2
,

                                          (2.25) 

having eigenvalues !
002

[2]
= !

020

[2]
= !2"

D
.  

 

2.3.  The Limit of Strong Collisionality 
 

The validity of the fluid theory in the limit of strong collisionality is based on 

the existence of hydrodynamic modes that decay slowly compared with the typical 

collisional relaxation time.  The hydrodynamic modes arise as a consequence of the 

conservation of particle number, momentum, and energy by collisions.  Because the 
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Dougherty operator respects these conservation laws, it naturally gives rise to fluid-

like behavior when collisions are strong. 

To see that the Dougherty operator gives rise to realistic fluid dynamics, we 

consider the evolution of a perturbation of the form [34]  

       ! f (
!
u, z, t) = f

0
(u)!(

!
u, t)e

ikz                                       (2.26) 

To avoid the complication of collective forces, we imagine a gas of perfectly Debye-

shielded particles.  The linearized kinetic equation governing the perturbation is then 

          [iku
z
T
0
/m ! ! ]" = !

""

"t
.                            (2.27) 

Solving this equation is equivalent to finding the eigenfunctions of the operatorK !  

iku
z
T
0
/m ! ! .  If collisions are sufficiently strong (i.e., !

D
>> k T

0
/m ), then 

iku
z
T
0
/m  may be treated as a perturbation to !  in Eq. (2.27).  Thus, if!

n1n2n3
and 

 !
n1n2n3

are the eigenfunctions and eigenvalues of K, then as a first approximation,  

    
!

n1n2n3
=!

n1n2n3
,

"
n1n2n3

= #"
n1n2n3

,
                               (2.28) 

provided that !
n1n2n3

 is non-degenerate. 

However, in the degenerate subspace for which !
n1n2n3

= 0, one must 

diagonalize the perturbation, iku
z
T
0
/m , in order to obtain the correct lowest-order 

approximation to the eigenfunctions of K.  In this degenerate subspace, in the basis {1, 

ux, uy, uz, (u
2
-3)/ 6 }, the operator iku

z
T
0
/m  has the following matrix 

representation 
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   iku
z
T
0
/m = ik T

0
/m

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 2 / 3

0 0 0 2 / 3 0

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

.            (2.29) 

The eigenvectors and eigenvalues of this “degenerate block” are                        

!000

(0)
=
1

5
" 2 +

1

2
(u

2 "3)
#

$
%

&

'
(, )000

(1)
= 0;

!100

(0)
= ux , )100

(1)
= 0;

!010

(0)
= uy , )010

(1)
= 0;

!00±1

(0)
=

3

10
1±

5

3
uz +

1

3
(u

2 "3)
#

$
%

&

'
(, )00±1

(1)
= ±ikvth

5

3
.

          (2.30) 

The second order corrections to these eigenvalues are given by the formula 

      !
n1n2n3

(2)
=

("
n1n2n3

(0)
, ikv

z
"

n1 'n2 'n3 '

(0)
)
2

#!
n1 'n2 'n3 '

(0)

n1 ',n2 ',n3 '

s.t.!(0 )$0

%  ;                             (2.31) 

they are!
000

(2)
= k

2
T
0
/ 3!

D
m , !

100

(2)
= !

010

(2)
= k

2
T
0
/ 2!

D
m , and !

00±1

(2)
= 4k

2
T
0
/ 9!

D
m . 

Since !
000
, !

100
, !

010
, and !

00±1  are smaller than all other eigenvalues of K by at least 

a factor of k T
0
/m !

D
, the time-asymptotic behavior of ! f is dictated by 

!
000
,!

100
,!

010
, and !

00±1 .  Specifically, after a sufficiently long time (i.e.,!
D
t >>1),  

a hydrodynamic phase ensues, during which ! f is given by 

 
! f ! f

0
e
ikz
[A

000
"
000
e
#k

2
T0t/3"Dm + A

100
"
100
e
#k

2
T0t/2"Dm + A

100
"
100
e
#k

2
T0t/2"Dm

+ A
001
"
001
e
#4k

2
T0t/9"Dm#ik 5T0 /3mt + A

00#1"00#1e
#4k

2
T0t/9"Dm+ik 5T0 /3mt ],

        (2.32) 

where the coefficients A
000
, A

100
, A

010
, and A

00±1 are determined from !(
!
u, t = 0) . 
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The first term in square brackets on the right hand side of Eq. (2.32) is properly 

identified as a heat conduction mode; the second and third terms represent viscous 

relaxation; the fourth and fifth terms are counter-propagating, damped sound waves. 

The eigenvalues !
000
and !

100
 (corresponding to the heat conduction and 

viscous relaxation modes, respectively) can be compared with the corresponding 

eigenvalues of the linearized hydrodynamic equations.  This comparison yields 

formulae for the viscosity, !
D
,  and thermal conductivity, !

D
,  corresponding to the 

Dougherty collision operator: 

!
D
=
1

2
n
0

T
0

"
D

                                                (2.33) 

                                                   !
D
=
5

6
n
0

T
0

m"
D

.                                             (2.34) 

These expressions are reasonable approximations to the Braginskii transport 

coefficients that result from the more accurate MRJ collision operator [35]: 

! = 0.96n
0

T
0

"
s

                                                (2.35) 

! = 3.9n
0

T
0

m"
s

                                               (2.36) 

where !
s
! 4" 1/2#q4n

0
/ (3m

1/2
T
0

3/2
)  is the collisional slowing-down rate for a thermal 

particle. 
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Chapter 3 

 

Kinetic Theory of Trivelpiece-Gould Waves with Collisional 

Velocity Scattering 

 
 

 

In this chapter, we use the Dougherty collision operator to investigate the 

effect of collisional velocity scattering on a plasma wave propagating along a 

magnetized, single-species plasma column of infinite length [3].  We seek azimuthally 

symmetric, wave-like solutions of Poisson’s equation plus the drift-kinetic equation 

with Dougherty’s collision term and find a dispersion relation for the complex 

frequency of the wave in terms of the Debye length, the plasma frequency, the 

collision frequency, and the wavenumbers along and transverse to the magnetic field.  

For a wave with phase velocity comparable to the thermal velocity, Landau damping 

is recovered when the collision frequency is sufficiently small.  For a wave with phase 

velocity much greater than the thermal velocity, a simple expression for the complex 

frequency is obtained, and the damping is dominated by collisions. 

 

3.1  Poisson’s Equation 

 

Having in mind a Penning-Malmberg confinement scheme [2], we imagine that 

the plasma column resides in a coaxial conducting cylinder of radius R and is 

immersed in an axial magnetic field ).ˆ( zBB =
!

  We take the radial density profile in the 

absence of the wave to be uniform—that is, 
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       n
0
(r) =

n
0

               r < a

0                 a < r < R

!
"
#

$#
                                      (3.1) 

where a  is the radius of the plasma column.  The unperturbed plasma column is 

symmetric under azimuthal rotation and translation along the magnetic field, and we 

anticipate azimuthally symmetric eigenmodes of the form                  

                           !" = !"̂J
0
(k!r)e

i(kzz"#t ) , ! f = ! f̂J
0
(k!r)e

i(kzz"#t )                        (3.2) 

inside the plasma (i.e., for ar < ) and  

                           0,)]()([ˆ
)(

00 =+=
!

ferkBKrkAI
tzki

zz
z "#""# $                           (3.3) 

outside the plasma (for r > a ).  Here J0(x) is a Bessel function of the first kind, I0(x) 

and K0(x) are modified Bessel functions of the first and second kinds, and A and B are 

constants specified by the requirements that the potential and the electric field be 

continuous across the radial boundary of the plasma column.  The requirement that the 

potential vanish at the conducting wall imposes on the radial wavenumber, k! , the 

well-known constraint [7, 19] 

        k
z
a
I
0
'(k

z
a)K

0
(k

z
R)!K

0
'(k

z
a)I

0
(k

z
R)

I
0
(k

z
a)K

0
(k

z
R)!K

0
(k

z
a)I

0
(k

z
R)

! k"a
J
0
'(k"R)

J
0
(k"R)

= 0.            (3.4) 

For each axial wavenumber kz, this equation admits an infinite sequence of solutions 

for k! , each corresponding to a different radial eigenmode.   

Inside the plasma, for a perturbation of the above form, Poisson’s equation 

reduces to 

                                             !k2!"̂ = 4#e d
!
v! f̂" .                                             (3.5) 

Outside the plasma, the perturbation satisfies Laplace’s equation identically. 
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3.2  The Dougherty Kinetic Equation 
 

In accord with typical experiments on single-species plasmas, we assume that 

the wavenumbers and frequencies under consideration are sufficiently small that the 

dynamics may be described using the drift approximation.  In other words, we take f  

to be the distribution of guiding centers with parallel velocity vz and cyclotron 

invariant I
c
=mv!

2
/ 2B :   

                                              f = f (r, z, vz, v!
2
) .                                             (3.6) 

The evolution of this distribution is governed by the drift-kinetic equation 

                          
!f

!t
+ vz

!f

!z
+
cẑ "
!
#!

B
$
!
#f +

e

m

!!

!z

!f

!vz
=C( f ) ,                       (3.7) 

with collisional effects contained in the term C( f ).    

The experiments that we have in mind are characterized by the ordering 

!
D
>> r

c
>> b,  where !

D
 is the Debye length, r

c
 is the cyclotron radius, and b  is the 

classical distance of closest approach.  This ordering implies two classes of collisions.  

The first consists of approximately isotropic, velocity-scattering collisions with impact 

parameters between b  and r
c
; these collisions are accurately described by a Fokker-

Planck collision operator [36, 37].  The second class of collisions, characterized by 

impact parameters larger than r
c
,  is highly anisotropic; the cyclotron adiabatic 

invariant inhibits the exchange of energy between parallel and perpendicular degrees 

of freedom, so these collisions are effectively 1-D [6].  The long-range collisions 
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cannot be accounted for by a Fokker-Planck collision operator, so we will ignore them 

in this chapter and discuss them in the context of fluid theory in Chapter 4.   

We account for the short-range collisions using Dougherty’s collision operator.  

In the drift approximation, the Dougherty operator takes the form 

                 

CD ( f ) =!D

1

v!

"

"v!
v!

T[ f ]

m

"f

"v!
+ v! f

#

$
%

&

'
(

+!D

"

"vz

T[ f ]

m

"f

"vz
+ (vz )Vz[ f ]) f

#

$
%

&

'
(,

                   (3.8)  

where n, V
z
 and T are given by the functionals 

                                               n[ f ]= dvz dv!2!v! f" ,                                           (3.9) 

                                        Vz[ f ]= n
!1

dvz dv"2!v"vz f# ,                                    (3.10) 

                      T[ f ]= (3n)
!1

dvz dv"2!v"[v"
2
+ (vz !Vz[ f ])

2# ] f .                    (3.11) 

For a reasonable approximation to the true Fokker-Planck collision operator, the 

collision parameter !
D

 should be of order [37] 

                                     !
D
~ ne

4
m

!1/2
T
!3/2
ln(r

c
/ b).                                     (3.12) 

The argument of the Coulomb logarithm is the ratio of the upper and lower bounds on 

the impact parameters under consideration. 

A steady-state solution to Eq. (3.7) is given by 

                           f = f
0
(r, vz, v!

2
) =

n
0
(r)

(2!T
0
/m)

3/2
e
"m(vz

2
+v!

2
)/2T0                     (3.13) 

                                                     ! =!
0
(r) ,                                                   (3.14) 
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where )(0 r!  is determined from n
0
(r)  via Poisson’s equation and n

0
(r)  is given by 

Eq. (3.1).  We consider a perturbation to this steady state of the form 

                       f (r, z, vz, v!
2
, t) = f

0
(r, vz, v!

2
)+! f (r, z, vz, v!

2
, t),                       (3.15) 

                                       !(r, z, t) =!
0
(r)+"!(r, z, t) ,                                       (3.16) 

where ! f  and !"  are assumed small and have the space and time dependence 

specified by Eqs. (3.2) and (3.3).   

Substituting Eqs. (3.15) and (3.16) into the Dougherty kinetic equation, using 

Poisson’s equation (3.5) to eliminate!" , and neglecting nonlinear terms, we obtain 

the linearized Dougherty kinetic equation     

                     i!" f̂ = ikzvz" f̂ !CD ( f0," f̂ )!C(" f̂ , f0 )+
ikzvz

k
2#D

2

f
0

n
0

d
!
v! f̂" ,                (3.17) 

where !
D
! [T

0
/ (4"q2n

0
)]
1/2  is the Debye length in the unperturbed plasma.  The 

linearized Dougherty operator takes a more convenient form when the perturbation is 

expressed as ! f̂ = f
0
"  and the thermal velocity, vth = T0 /m, and scaled velocity 

coordinates, u
z
= v

z
/ v

th
 and  u! = v! / vth , are introduced:        

         

CD ( f0, f0!)+CD ( f0!, f0 ) =

f
0
"D

1

u!

"

"u!
u!

"!

"u!
#u!

"!

"u!
+
"2!

"uz
2
#uz

"!

"uz

$

%
&

'

(
)

+
#T

T
0

u!
2 # 2+uz

2 #1( )+
!Vz

vth
uz

*"D f0# ($),

                      (3.18) 

where   

                                      !Vz = n0
!1
vth
4

duz du"2!u"uz ! f ,#                                  (3.19) 
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                         !T = (3n0 )
!1
mvth

5
duz du"2!u"[(uz

2
+u"

2
)!3]! f# ,                      (3.20) 

Equation (3.17) constitutes an eigenvalue problem, f̂! being the eigenfunction and!  

the eigenvalue.  

 

3.3  The Dispersion Equation 
 

From Eq. (3.17), we wish to find a dispersion equation which relates the 

complex frequency, !,  to the axial and radial wavenumbers and the plasma 

parameters, including collisionality.  To this end, we employ the complete set of 

orthogonal functions 

                                            !
mn
!

1

m!
He

m
(u

z
)L

n
(u"

2
/ 2) ,                                     (3.21) 

where Hem(x) is the m
th

 modified Hermite polynomial, Ln(x) is the n
th

 Laguerre 

polynomial, and m and n take on nonnegative integer values.  These functions satisfy 

the orthogonality relation  

                (!
n!nz
,!

m!mz
) " (2" )#1/2 du

z
du!u!$ !

n!nz
!
m!mz

e
#u2 /2

= #
n!m!

#
nzmz
.            (3.22)           

We expand the eigenfunction ! f̂  in a series of the form 

                                    ! f̂ (uz,u!
2
) = f

0
amn"mn (

m,n=0

"

# uz,u!
2
) ,                                 (3.23) 

where the coefficients a
mn

 are constant.  Substituting this expression into Eq. (3.17) 

and exploiting the orthogonality relation (3.22), we obtain an infinite-dimensional 

matrix equation,  
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       !a
mn
= (!

mn
, u

z
! "m "n )

"m , "n =0

#

$ a "m "n + iµ (!
mn
, "! "m "n )

"m , "n =0

#

$ a
mn
+
#
1,m
#
0,n

k
2$

D

2
a
00
,          (3.24) 

for the coefficients amn and corresponding eigenvalue!;  here we have introduced the 

scaled wave frequency !"! / k
z
v
th

 and collision frequencyµ !!
D
/ k

z
v
th

, and the 

parentheses denote the inner product defined by Eq. (3.22).  The first term on the 

right-hand-side is given by 

                          (!
mn
, u

z
!
m 'n '
) = "

m!1,m '"n,n ' m +"
m,m '!1"n,n ' m ',                         (3.25) 

while the second term is simplified by the relations 

                                                          ! ("
10
) = 0,                                                  (3.26) 

                                             ! ("20 ) = !
4

3
"
20
!
2 2

3
"
01
,                                     (3.27) 

                                            ! ("01) = !
2 2

3
"
20
!
2

3
"
01
,                                      (3.28) 

and otherwise 

                                                 ! ("
mn
) = !(m+ 2n).                                            (3.29)    

In particular, for m > 2, Eq. (3.24) reduces to the recursion relation [12]  

                          [!+ i(2n+m)µ]a
mn
= ma

m"1,n + m+1a
m+1,n .                     (3.30)                                             

A necessary condition for the convergence of the series (3.23) is that for a 

given value of n, the coefficients amn must approach zero as m approaches infinity.  I 

this condition is satisfied, Eq. (3.30) implies that [12] 

                                  
a
m+1,n

a
mn

!"
i

mµ
        as      m!" .                                 (3.31)            
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With this limit in mind, we “truncate” the recursion relation (3.30) at some sufficiently 

large value of m, mmax, by setting 

                              [!+ i(2n+mmax
)µ]a

mmax,n
= m

max
a
mmax"1,n

.                            (3.32) 

In addition, we will look for eigenfunctions for which a
mn
= 0  unless n = 0 or n = 1.  

We begin with Eq. (3.32) and iterate the recursion relation backwards for n = 0 

and n = 1.  For n = 0, for example, Eq. (3.32) is solved for a
mmax,0

,  yielding 

                                        a
mmax,0

=
m
max

[!+ im
max
µ]
a
mmax"1,0

.                                     (3.33) 

This expression is then substituted in the preceding equation,       

                [!+ i(mmax
"1)µ]a

mmax"1,0
= m

max
"1a

mmax"2,0
+ m

max
a
mmax,0

,              (3.34)    

which is then solved for a
mmax!1,0

,  yielding 

                        a
mmax!1,0

=
m
max

!1

"+ i(m
max

!1)µ !
m
max

"+ im
max
µ

a
mmax!2,0

.                        (3.35) 

This expression is then substituted in the preceding equation, and so on.  By means of 

these recursive substitutions, all but four of the coefficients amn can be eliminated.  A 

byproduct of this procedure is the development of continued fractions, the beginnings 

of which can be seen in Eq. (3.35).  The set of equations given by Eq. (3.24) [with the 

truncation condition (3.32)] is thereby reduced to the four equations 

                                           !"a
00
+ a

10
= 0 ,                                               (3.36) 

                            [1+ (k!
D
)
!2
]a
00
!"a

10
+ 2a

20
= 0 ,                                 (3.37) 

                                3 2a
10
!3F

1
(",µ)a

20
! 2 2iµa

01
= 0 ,                               (3.38)  
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                                      !2 2iµa
20
!3F

2
(",µ)a

01
= 0 ,                                    (3.39) 

where F
1
(!, µ)andF

2
(!, µ) are the continued fractions 

              F1(!, µ) "!+
4

3
iµ #

3

!+3iµ #
4

!+ 4iµ #!
m
max

!+m
max
iµ

,                 (3.40)    

             F2 (!, µ) "!+
2

3
iµ #

1

!+3iµ #
2

!+ 4iµ #!
m
max

!+ (m
max

+ 2)iµ

.            (3.41) 

Finally, upon elimination of the coefficients a
00
, a

10
, a

20
, and a

01
 from Eqs. (3.36)-

(3.39), the following dispersion equation is obtained: 

                (k!
D
)
2
=

F
1
(!, µ)F

2
(!, µ)+8µ 2 / 9

[F
1
(!, µ)F

2
(!, µ)+8µ 2 / 9](!2

"1)" 2F
2
(!, µ)!

.              (3.42) 

This result becomes exact in the limit mmax! ".   

In general, for given values of k!
D

 and µ,  Eq. (3.42) must be solved 

numerically for the complex frequency! ; in practice, this requires that the continued 

fractions F
1
(!, µ)  andF

2
(!, µ)  be evaluated approximately by carrying out a 

sufficiently large number of iterations.  The resulting dispersion relation is a 

polynomial equation, the number of roots of which increases with the number of 

iterations made in evaluating the continued fractions; each of these roots lies in the 

lower half of the complex !  plane (see Fig. 3.1).  In other words, there appears to be 

a countably infinite spectrum of damped eigenmodes, analogous to that found by Ng, 

Bhattacharjee, and Skiff for the one-dimensional LB kinetic equation [12].   
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The least damped root of Eq. (3.42) corresponds to the TG wave and 

approaches the Landau root of the collisionless dispersion relation in the limit µ! 0.  

In particular, in this limit, the imaginary part of this root does not approach zero 

exactly, but instead matches onto the Landau damping coefficient, as shown in Fig. 

3.2 for k!
D
= 0.3.   Hereafter, we will focus on this least damped root, which we will 

refer to simply as the Landau root. 

In order to isolate collisional effects from resonant particle effects, we restrict 

our attention to high-phase-velocity waves )Re(.,.[ !ei >>1], for which Landau 

damping is negligible.  In this limit, a suitable approximation to Eq. (3.42) may be 

obtained by setting 
1
F ! !+ 4iµ / 3  and 

2
F ! !+ 2iµ / 3 , since retaining the 

continued fractions only leads to corrections of higher order in .
1!

"  The resulting 

dispersion equation is 

                                   (k!
D
)
2
=

!
2
+ 2iµ!

!
4
+ 2iµ!3

"3!
2
"10iµ! / 3

.                               (3.43) 

There exists a weakly damped root to this equation when k!
D

<<1, and this is the 

Landau root.  An approximate expression for this root, valid in both the weakly 

collisional and strongly collisional limits, can be obtained by solving Eq. (3.43) using 

perturbation theory.  More precisely, we assume that Re(!) ~ (k!
D
)
"1  (this 

assumption will be verified after the analysis has been carried out) and take 

µ ~ Re(!);Eq. (3.43) can then be solved order by order in the small parameter k!
D

<<1.   When carried out to second order, this procedure yields the expression 
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                                   !"
1

k!
D

1+
3

2
(k!

D
)
2 1+10iµk!D / 9

1+ 2iµk!
D

#

$
%

&

'
(

)

*
+

,

-
..                               (3.44) 

In Fig. 3.3, this expression is plotted as a function ofµ  for k!
D

 = 0.05, and the exact 

numerical solution of Eq. (3.42) for the Landau root is shown for comparison.  With 

the units restored, Eq. (3.44) becomes 

                              ! =
kz! p

k
1+
3

2
(k"D )

2 1+10i# / 9

1+ 2i#

!

"
#

$

%
&

'

(
)

*

+
,,                             (3.45) 

where ! p  is the plasma frequency and ! !"Dk / (kz# p )  is a parameter characterizing 

the strength of collisionality.  

For weak collisionality (i.e., ! <<1),  Eq. (3.45) reduces to 

                                          Re(!) !
kz! p

k
1+
3

2
(k"D )

2"

#$
%

&'
,                                     (3.46)             

                                                Im(!) ! "
4

3
"
D
(k#

D
)
2
.                                          (3.47) 

Equation (3.46) is the well-known result from collisionless theory for the frequency of 

a long-wavelength TG wave on a single-species plasma column [19].  Equation (3.47) 

gives the collisional damping rate.  Note that the damping is suppressed by the small 

factor (k!
D
)
2
<<1;  this suppression is a reminder that the dominant damping 

mechanism in an electron-ion plasma—electron-ion friction—is not available in the 

single-species plasma.  

Note from Eq. (3.46) that the ordering k
z
/ k! <<1  implies that Re(!)<<! p

.   

This is the typical wavenumber ordering for plasma wave experiments on a long 

column, and we assume this ordering here.  In fact, this ordering is implicit in our use 
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of a Fokker-Planck collision operator, since the derivation of such an operator requires 

the Bogoliubov hypothesis [20], ! <<!
p
.    

A weakly damped solution to the dispersion equation exists even in the limit of 

strong collisionality (i.e., ! >>1).   In this limit, Eq. (3.45) reduces to 

                                        Re(!) !
kz! p

k
1+
5

6
(k"D )

2"

#$
%

&'
,                                         (3.48) 

                                            Im(!) ! "
1

3

v
th

2

"
D

#

$
%

&

'
(kz

2
.                                              (3.49) 

Here, we implicitly assume that the plasma is weakly correlated (i.e., !D
<<"

p
)  even 

though the wave dynamics is strongly collisional, and this is possible since 

Re(!)<<!
p
.    

Note that the Bohm-Gross correction to the real part of the frequency—that is, 

the term (3 / 2)(k!
D
)
2  in the bracket of Eq. (3.46)—has been replaced by (5 / 6)(k!

D
)
2  

in Eq. (3.48).  This change, which emerges automatically from kinetic theory, has a 

simple explanation based on the adiabatic law of compression [21].  The numerical 

coefficient of the Bohm-Gross term is (d + 2) / (2d),  where d is the number of degrees 

of freedom that share the compressive energy.  For weak collisionality, there is 

negligible equipartition, so d = 1 and (d + 2)/(2d) = 3/2; whereas, for strong 

collisionality, there is nearly complete equipartition, so d = 3 and (d + 2)/(2d) = 5/6. 
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3.4  The Distribution Function 
 

  In the limit µ <<1,  we evaluate the sum in Eq. (3.23) to determine the !u -

integrated eigenfunction, ! !f ! 2! du" #u#" f̂ ,  corresponding to the Landau root for 

several values of the parameters µ  and k!
D
.   In Fig. 3.4, this function is plotted for 

µ = 0.035  and k!
D
= 0.33.  (These values were chosen to facilitate comparison with 

Fig. 2 in [12].) We find that the eigenfunction exhibits the qualitative features of that 

determined by Ng et al. using the LB operator [12].  In the vicinity of the resonance 

(i.e., for u
z
!"),  the eigenfunction deviates significantly from the expression for the 

collisionless quasi-mode, u
z
e
!uz

2
/2
[ 2! (k"

D
)
2
("!u

z
)]
!1
;  whereas far from the 

resonance, the collisionless expression is a good approximation.  The width of the 

“boundary layer” surrounding the resonance increases with collisionality. 

In the limit ,!>>µ  all of the coefficients in the sum (3.23) are of order 1!µ

or smaller, with the exceptions of a
00
, a

10
, a

20
,  and a

01
;  in this case, the eigenfunction 

is given by  

    
! f̂ (uz,u!

2
) =

e
"(uz

2
+u!

2
)/2

2"
1+#uz +

1

2
[#2 "1" (k#D )

"2
](uz

2
+u!

2 "3)
$
%
&

'
(
)

+O(µ"1
).

      (3.52) 

Evidently, as a first approximation, the perturbation to the distribution is completely 

characterized by the perturbations in particle number, momentum, and energy.  In 

other words, the distribution is simply a Maxwellian with perturbed density, drift 
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velocity, and temperature, with all other components of the perturbation vanishing as

.
1!µ   

 

3.5  Comparison with Landau Collision Operator 

 

We have just seen that in the limit of weak collisionality, an eigenmode of the 

collisional system is nearly identical to the corresponding quasi-mode of the 

collisionless system, except in the vicinity of the wave-particle resonance.  

Furthermore, when the phase-velocity of the wave of interest is large compared with 

the thermal velocity, the fraction of particles in the vicinity of the resonance is 

exponentially small.  Thus, for a high-phase-velocity wave in the weakly collisional 

limit, we may treat the collision term as a small perturbation to the collisionless drift-

kinetic equation.  The perturbation theory can be carried out to first order using the 

more accurate Landau collision operator (which is equivalent to the MRJ operator 

discussed in Chapter 2), providing an opportunity for comparison with the results 

obtained using the Dougherty collision operator in this limit. 

We proceed by expressing the wave frequency, the distribution function, and 

the potential as ! !! (0)
+! (1)

,  ! f ! ! f (0) +! f (1),  and !"# !" (0)
+!" (1) , where the 

superscripts indicate the size of each term in powers of the collisionality.  The zero-

order, drift-kinetic/Poisson system of equations is 

                                  (!i! (0)
+ ikzvz )" f

(0)
+ ikzvz

q"# (0)

T
f
0
= 0,                           (3.53) 
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                                           !k2!" (0)
= !4#q d

!
v" ! f (0),                                       (3.54) 

from which follows the well-known dispersion equation 

                                       1+ (k!D )
!2

d
!
v

kzvz

! (0) ! kzvz
"

f
0

n
0

= 0.                               (3.55) 

We ignore the usual subtleties related to the resonance, since, by hypothesis, there are 

negligibly few resonant particles.  To first order in collisionality, the collisional drift-

kinetic/Poisson system is  

  
(!i! (0)

+ ikzvz )" f
(1)
! i! (1)" f (0) + ikzvz

q"# (1)

T
f
0
=

C( f
0
," f (0) )+C(" f (0), f

0
),

           (3.56) 

                                                !k2!" (1)
= !4#q d

!
v" ! f (1).                                       (3.57) 

Substituting the second of these equations into the first, dividing by (!i! (0)
+ ik

z
v
z
),  

and integrating over velocity, we obtain 

          ! (1)
d
!
v!

" f (0)

! (0) " kzvz
= i d

!
v! (! (0) " kzvz )

"1
[C( f

0
," f (0) )+C(" f (0), f

0
)],        (3.58)        

where the first and third terms on the left-hand-side of Eq. (3.56) have cancelled by 

virtue of the collisionless dispersion equation (3.55).  With the collision operator 

expressed in the Landau form [38], Eq. (3.58) becomes 

! (1)
d
!
v!

f
0
"

! (0) " kzvz
= i
2#q4 ln#

m
2

$

$ d
!
v! (! (0) " k

z
v
z
)
"1 %

%
!
v
& d '
!
v
(
!
v- '
!
v )

2
I" (
!
v- '
!
v )(
!
v- '
!
v )

!
v- '
!
v

3
f
0
'f
0!
%"

%
!
v
"
% '"

% '
!
v

(

)*
+

,-
,

      (3.59) 

where I is the unit tensor and we have defined .)v(v )0(
zzzz

kk !" #$    
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To lowest order in ,/v !thzk  the integral on the left-hand-side of Eq. (3.59) is 

given by 

                                         d
!
v!

f
0
!

" (0) " kzvz
# 2n

0

kz
2
vth
2

" (0)3
.                                         (3.60) 

It remains to evaluate the integral 
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Integrating by parts and expanding the resonant denominators, we obtain 
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  (3.62) 

In terms of center-of-mass and relative coordinates, 
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the integral takes the form 
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  (3.64) 

Carrying out the integral over v1 yields, to lowest order in k
z
v
th
/!,  
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I ! "
n0
2

4! 3/2

kz
4
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d
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                             (3.65) 

Finally, substitution of Eqs. (3.65) and (3.60) into Eq. (3.59) gives the damping rate 

! (1) ! "i
16 "

15

n0q
4
ln(rc / b)

m
2
vth
3

kzvth

! (0)

#

$
%

&

'
(

2

.                               (3.66)  

The expression in parentheses is approximately k
z
v
th
/! ! k"

D
.   Furthermore, the 

factor outside the parentheses is recognizable as the equiparition rate, !
||,!,  predicted 

by the Landau collision operator [39].  Thus, we can rewrite Eq. (3.66) in the more 

compact form 

! (1)
! "i"

||,#(k#D )
2 .                                          (3.67)                                    

Comparison of Eq. (3.67) with the analogous damping formula (3.47), 

obtained from the Dougherty operator, suggests that the prefactor 4!
D
/ 3  in Eq. (3.47) 

must be the equipartition rate predicted by the Dougherty operator.  This interpretation 

can be verified by direct calculation of the Dougherty equipartition rate.  Consider the 

collisional relaxation of the anisotropic Maxwellian velocity distribution  

f (vz, v!
2
) = n

0

e
"mvz

2
/(T0+!Tz )

2" (T
0
+!Tz ) /m

e
"mv!

2
/(T0+!T! )

2" (T
0
+!T! ) /m

,                     (3.68) 

where !T
z
 and !T!  are small in comparison with T

0
.   Expansion about the isotropic 

Maxwellian distribution 

f
0
=
n
0
e
!mv

2
/(2T0 )

(2!T
0
/m)

3/2
                                            (3.69)             
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to first order in the small quantities yields the linear perturbation 

! f = f
0

!T
||
(mvz

2
/T

0
!1)

T
0

+
!T"(mv"

2
/T

0
! 2)

T
0

#

$
%

&

'
(.                          (3.70)  

Substitution of this expression in the linearized Dougherty kinetic equation, 

!! f

!t
=CD ( f0,! f )+CD (! f , f0 ),                            (3.71) 

multiplication by mv
z

2
/ (2T

0
),  and integration over velocity coordinates yields the 

equation 

     
d!T

||

dt
=
4"

D

3
(!T! "!T|| ),                                         (3.72)            

for the evolution of the parallel temperature.  In other words, the Dougherty collision 

model gives the isotropization rate !
||,!

(D)
= 4!

D
/ 3,  as expected.  The connection 

between damping and temperature isotropization in the limit of weak collisionality 

will be explored further in the next chapter. 
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Figure 3.1.  Complex eigenvalues of the linearized Dougherty kinetic equation, for 

k!
D
= 0.1  andµ = 0.1.   The dashed line indicates the real-!  axis.  The eigenvalue 

with smallest imaginary part gives the complex frequency of the plasma wave 

(Trivelpiece-Gould wave). 
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Figure 3.2.  Scaled damping rate, ! Im("),  plotted as a function of ,µ  for k!

D
= 0.3.   

The intercept at µ = 0  coincides with the scaled Landau damping rate, !
L
,  of 

collisionless theory. 
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Figure 3.3.  Real (a) and imaginary (b) parts of the analytic approximation (3.45) to 

the Landau root, plotted (as solid curve) versusµ,  for k!
D
= 0.05.   The solid circles 

represent the exact numerical solution of the dispersion equation (3.42).  The short-

dashed curves give the asymptotic expressions (3.46) and (3.47), which are valid for

!<<µ , while the long-dashed curves give the asymptotic forms (3.48) and (3.49), 

valid for !>>µ .  
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Figure 3.4.  Real (a) and imaginary (b) parts of the u! -integrated eigenfunction, 

! !f ! 2! du" #u#" f̂ ,  corresponding to the Landau root, ,!  for     

! 

µ = 0.035 and 

k!
D
= 0.33. The dashed curves give the real and imaginary parts of the expression 
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Chapter 4 

 

Fluid Theory of Trivelpiece-Gould Waves with Collisional 

Transport and Temperature Isotropization 
 

 

 

Fluid theory provides a complementary approach to the kinetic theory 

presented in Chapter 3.  While the kinetic dispersion formula (3.45) captures the effect 

of short-range collisions for arbitrary collisionality (provided that correlations are 

weak), it does not account for the effect of long-range collisions.  These collisions lie 

outside the scope of any Fokker-Planck collision operator, but nonetheless dominate 

the transport of momentum and energy across the magnetic field [6].  Fortunately, this 

cross-field transport is easily accounted for in the context of fluid theory.  In addition, 

while it is not obvious from the kinetic derivation how collisions cause damp the 

wave, fluid theory clarifies the damping mechanism underlying the kinetic result.   

 

 

4.1  Fluid Theory with Collisional Transport 
 

In the limit of strong collisionality, the plasma dynamics is accurately 

described by fluid equations, provided also that the axial and transverse scalelengths 

are large compared to the collisional transport step-sizes in these directions.  In the 

fluid description, the effects of finite collisionality are contained in the transport terms.    

Again, the analysis is simplest when the unperturbed density and temperature 

of the plasma column are constant for r ! a  and zero for r > a.   The unperturbed fluid 
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velocity is then given by 
!
V
0
= r!

E
"̂,  where the 

!
E !
!
B  rotation frequency, !

E
,  is a 

constant determined by the unperturbed density, n
0

.   Assuming that the density, fluid 

velocity, temperature, and potential perturbations share the parameter dependence 

                                    !n, !V
z
, !T, !" ~ J

0
(k!r)e

i(kzz"#t ) ,                                   (4.1) 

the linearized continuity, momentum, and energy equations plus Poisson’s equation 

reduce to  

                                           !i!"n+ n
0
ik

z
"V

z
= 0,                                                (4.2) 

          !i!"Vz = !ikz
q
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ikz

mn
0
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0
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ikz
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2"V,             (4.3)  

                        !i!"T = !
2

3
T
0
ik

z
"V

z
! #

||
k
z

2"T ! #"k"
2"T,                                 (4.4)  

                                               !k2!" = !4#q!n.                                                 (4.5) 

Here !
||
 and !!  are the parallel and perpendicular kinematic viscosities and !

||
 and !"  

are the parallel and perpendicular thermal diffusivities.  Elimination of the perturbed 

quantities from these equations yields the dispersion relation 

 
(k!

D
)
2
+1

(k!
D
)
2
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/ 3+"# )i"

!
2

3(!i"+ 4"
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/ 3+"# )(!i"+ # || + ## )
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where ! =! / k
z
v
th

 is the scaled wave frequency and !
||
=!

||
k
z
/ v

th
,  !! =!!k!

2
/ k

z
v
th
,  

!
||
= !

||
k
z
/ v

th
,  and !! = !!k!

2
/ k

z
v
th

 are the scaled transport rates along and across the 

magnetic field.  The validity of the fluid equations (4.2)-(4.5) requires the ordering 

!
||
, !!, " ||,  !! <<! .  Working to first order in the transport rates, we approximate Eq. 

(4.6) as 
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       (4.7) 

For sufficiently long wavelengths (i.e., k!
D

<<1), the dispersion equation (4.7) 

can be solved perturbatively for the root corresponding to the TG wave by treating 

!
||
, !!, " ||, "!,  and k!

D
 on equal footing, and one finds (after restoring the units) 

                                         Re(!) =
kz! p

k
1+
5

6
(k"D )
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,                                        (4.8) 

Im(!) = !
2
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"
||
k
z

2
+
1

2
""k"

2#

$
%

&

'
( .                                       (4.9) 

The real part of the frequency (4.8) is identical to that obtained by kinetic theory in the 

limit of strong collisionality, as one would expect.  The damping, at this order in the 

perturbation theory, is due to momentum transport, both along and across the magnetic 

field.  If the contribution from cross-field viscosity is ignored in Eq. (4.9), the kinetic 

expression (3.49) is recovered by the substitution !
||
=!

D
! v

th

2
/ (2"

D
),  where !

D
 is the 

kinematic viscosity predicted by the Dougherty operator (see Section 2.3).  In other 

words, the kinetic damping formula (3.49) corresponds to the dissipation of the 

compressive flow by bulk viscosity.   

 However, there is no justification for ignoring the contribution to the damping 

from cross-field viscosity.  Typical experiments on single-species plasmas are 

characterized by the ordering r
c
<< !

D
,  where r

c
 is the cyclotron radius, and in this 

regime, the cross-field shear viscosity is roughly [6]  
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!! ""c
#
D

2
,                                                    (4.10) 

where !
c
! nq

4
/ (m

1/2
T
3/2
) .  Comparison of the two terms in the expression (4.9) using 

the estimate (4.10) indicates that transport of axial momentum across the magnetic 

field is the dominant damping mechanism in the limit of strong collisionality.  For 

sufficiently large transverse wavenumbers, [i.e., k!!D ~  (! p /"c )(kz#D )
1/3
],  the wave 

is heavily damped by this mechanism.  The estimate (4.10) is based on collisions 

between particles on different field lines—that is, collisions with impact parameter !  

satisfying r
c
<< ! < "

D
.   These collisions can only be described by a nonlocal collision 

operator and thus lie outside the scope of the Dougherty operator or any other Fokker-

Planck operator. 

 The contribution to the damping rate due to heat conduction appears at higher 

order in k!
D
.   This discrepancy stands in contrast with the roughly equal contributions 

from heat conduction and viscosity to the damping of a sound wave in a neutral fluid. 

 

4.2  Fluid Theory with Temperature Isotropization  

 
  

 In the limit of weak collisionality, a fluid model can still be pursued if the 

phase velocity of the wave is much larger than the thermal velocity.  In particular, the 

ordering Re(!) / k
z
>> v

th
 implies that the particles comprising a given fluid element 

require many wave periods to disperse and also that the number of resonant particles is 

exponentially small.  However, this fluid model must allow for two distinct 

temperatures, T
||
 and T!,  corresponding to the parallel and cyclotron degrees of 
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freedom, since the timescale for exchange of energy between these degrees of freedom 

is longer than the wave timescale.  We assume that the collisional relaxation of the 

two temperatures is governed by the equation [22]  

dT
||

dt
=!

||,!(T! "T|| ),                                             (4.11) 

which defines the equipartition rate, !
||,! .  We also assume that the change in internal 

energy of a fluid element is equal to the work done on it by its surroundings: 
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dt
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2
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+T!

"

#
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%

&
'= (
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n

dn

dt
.                                          (4.12) 

In other words, we neglect heat flux.  This approximation seems reasonable in the 

limit of large phase-velocity, where distance traveled by a thermal particle along the 

magnetic field during a wave period is small compared to the parallel wavenumber.  

By the same reasoning, we neglect viscous fluxes and assume that the evolution of the 

fluid velocity is given by Euler’s equation of motion: 

mn
dVz

dt
= !

"(nT
||
)

"z
! qn

"!

"z
                                      (4.13) 

Finally, the density evolves according to the continuity equation and determines the 

potential through Poisson’s equation.   

 Once again, we consider perturbations of the form 

!n, !V
z
, !T

||
, !T!, !" ~ J0 (k!r)e

i(kzz"#t ) .                          (4.14) 

Substitution into the fluid equations and linearization about the unperturbed state 

yields 

           !i!"n+ n
0
ik

z
"V

z
= 0,                                            (4.15) 
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||,"("T" !"T|| )                                             (4.18) 

!k
2!" = !4#q!n.                                                 (4.19) 

Eliminating the perturbed quantities, we obtain the dispersion equation 
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=
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A solution with phase-velocity Re(!) / k
z
>> v

th
 exists only for wavenumbers such 

that k!
D

<<1.  To lowest order in !
||,! /",  this solution is given by  

Re(!) =
kz! p

k
1+
3

2
(k"D )

2!

"#
$

%&
,                                      (4.21) 

Im(!) = !"
||,"(k#D )

2                                            (4.22) 

Equation (4.21) is the familiar formula for the frequency of a TG wave, with the 

Bohm-Gross correction.  The kinetic damping formula (3.47) for weak collisionality is 

recovered from Eq. (4.22) by the substitution !
||,! =! ||,!

(D)
" 4!

D
/ 3,  where !

||,!

(D)  is the 

isotropization rate predicted by Dougherty's collision operator. 

 While the kinetic derivation of the damping formula (3.47) obscures the 

underlying damping mechanism, the two-temperature fluid model used here suggests a 

physical interpretation of the kinetic result.  Consider one complete compression-

decompression cycle of a fluid element in the presence of the wave, beginning when 
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the density of the fluid element is a minimum; the situation is depicted schematically 

in Fig. 4.1.  The time evolution of the parallel temperature is determined by a 

competition between two factors; compression (or decompression) tends to increase 

(or decrease) the parallel temperature, but the parallel temperature is also weakly 

driven towards the perpendicular temperature by collisions.  Most of the time, the 

latter is a relatively small effect, since collisions are weak, so the parallel temperature 

oscillates nearly in phase with the density.  However, when the time rate of change of 

the density approaches zero, collisional relaxation momentarily dominates, with the 

result that the parallel temperature oscillation precedes the density oscillation slightly 

(by a time difference of order !
||,! /"

2
).   Consequently, the parallel pressure is greater 

(on average) during compression than during decompression, so positive net work is 

done on the fluid element at the expense of the wave energy. 

 The form of the damping formula (4.22) is actually somewhat misleading; the 

quantity   

! 

k"
D

 appearing in the parentheses is just the ratio of the thermal velocity to 

the phase velocity.  Thus, Eq. (4.22) can be rewritten as 

Im(!) ! ""
||,#

v
th

2

! 2

$

%
&

'

(
)kz

2
,                                          (4.23) 

where the quantity 2!
||,!(vth

2
/" 2

)  is the effective bulk viscosity for frequencies 

! >> k
z
v
th
,"

||,!.  

 For simplicity, we have not included long-range collisions in the two-

temperature fluid model.  These collisions have little effect on temperature relaxation, 

since a conserved cyclotron adiabatic invariant prevents such collisions from 
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transferring energy between perpendicular and parallel degrees of freedom.  However, 

as in the limit of strong collisionality, these long-range collisions contribute to the 

wave damping by transporting momentum across the magnetic field.  The nature of 

this transport is the same regardless of the strength of collisionality, so the second term 

in the damping formula (4.9)—with cross-field viscosity again given by Eq. (4.10)—

still gives a reasonable estimate of this contribution even when collisions are weak. 
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Figure 4.1  Schematic plot of the time evolution of the density perturbation and 

parallel and perpendicular temperature perturbations at a fixed location in space over 

one wave period, in the limit of weak collisionality.  Due to the weak collisional 

temperature relaxation, the oscillation in parallel temperature leads the density 

oscillation by a time difference of order !
||,! /"

2
.   Consequently, compression occurs 

at a higher pressure than does the decompression, leading to a net heating at the 

expense of the wave energy.  
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Chapter 5 

 

Standing Plasma Waves on a Cold, Finite-Length Plasma 

Column 

 

 
  

 In this chapter, the effects of finite plasma length are considered.  We calculate 

azimuthally symmetric modes of oscillation for a cold, finite-length plasma column.  

Similar mode calculations have been carried out in past work, but here a novel finding 

is presented: each mode is a mixture of multiple degenerate standing waves, often 

exhibiting sharp features along resonance cones corresponding to the frequency of the 

mode.  The observed mixing is a low-temperature phenomenon, requiring that the 

cold-fluid dispersion relation be valid even for wavelengths much smaller than the 

dimensions of the plasma.  In this regime, Landau damping is exponentially small, so 

the modes are damped by viscosity.  Perturbation theory yields a formal expression for 

the viscous damping rate when the damping is sufficiently weak.   

 

5.1  Cold-Fluid Equations of Motion 

 
 

As an approximation to the Penning-Malmberg trap configuration shown in 

Fig. 1.1, we assume that mode potential satisfies the boundary conditions !" = 0  at 

r = R  and at z!±",  where R  is the radius of the conducting wall of the trap.  For 

azimuthally symmetric modes, Poisson’s equation takes the form 
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1

r

!

!r
r
!!"

!r
+
!
2!"

!z
2
= "4#q!n ,                                     (5.1)                 

where !"  is the mode potential, !n  is the corresponding density perturbation, and q is 

the charge of a single particle. 

In accord with the experiments that we have in mind, we assume that the axial 

magnetic field in the trap is sufficiently large that the drift approximation is justified.  

In cold-fluid theory, small azimuthally symmetric perturbations then evolve in time 

following the linearized continuity and momentum equations,  
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where !V
z
 is the perturbed fluid velocity associated with the mode and n

0
 is the 

unperturbed density. 

Seeking normal-mode solutions to Eqs. (5.2)-(5.3), we assume that the 

perturbation oscillates with frequency !,    
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and substitute, obtaining 
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 70 
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Equations (5.5)-(5.7) can be combined to give  
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a partial differential equation for the mode potential.  Equation (5.8) represents a 

generalized eigenvalue problem, since typically both !"#  and !  are unknown.    

Multiplication of Eq. (5.8) by !"#  and integration over the interior of the trap 

gives a formal expression for the mode frequency in terms of the mode potential [8], 

! 2
=

r dr dz! p

2
(r, z)(!"#! /!z)

2"
r dr dz[(!"#! /!z)

2
+ (!"#! /!r)

2
]"

,                              (5.9) 

where integration by parts has been employed .  It follows from this formula that the 

allowed mode frequencies are real and bounded by the plasma frequency; that is, 

0 !! 2
!!

p

2
.    

Alternatively, one can derive an integral equation [40] for the z-component of 

the mode electric field, !E
z," = !"!#" /"z,  by inverting Poisson’s equation with the 

Green’s function, G(r, z | !r , !z ),  defined by the conditions 
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=
!(r " #r )!(z" #z )
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                                 (5.10) 

G
r=R

=G
z! "z #$

= 0.
 
                                          (5.11) 

In terms of the Green’s function, Eq. (5.1) can be recast as 

!"# (r, z) = !4$q "r d "r d "z !n# (# "r , "z )G(r, z | "r , "z ) .                        (5.12) 
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Equations (5.6) and (5.7) give the perturbed density in terms of the electric field: 
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%

&

'
( .                                   (5.13) 

Inserting this expression in Eq. (5.12), integrating by parts, and taking the partial 

derivative with respect to z, one obtains the integral equation  

!! 2"Ez,! (r, z) = "r d "r d "z! p

2
( "r , "z )

#G

#z# "z
"Ez,! ( "r , "z )$ .                    (5.14) 

Unlike Eq. (5.8), Eq. (5.14) constitutes a linear eigenvalue problem, !! 2  being the 

eigenvalue and !E
z," , the eigenfunction.  Furthermore, the integral operator on the 

right-hand-side is self-adjoint with respect to the inner product ( f
1
, f
2
) !  

r dr dz! p

2
(r, z) f

1
f
2
.!   It follows that all mode frequencies are real and that for any two 

modes with distinct frequencies !  and !! ,  the axial electric fields are orthogonal 

inside the plasma: 

r dr dz! p

2
(r, z)"Ez,! (r, z)"Ez, !! (r, z)" = 0 (! # !! ) .                (5.15) 

We will take Eq. (5.8)—not Eq. (5.14)—as our starting point for the mode calculations 

in the remainder of this chapter.  However, it should be emphasized that !E
z," —not

!"# —is the true eigenfunction.  For a mode that consists of many component waves, 

this distinction is important, since it is easy to underestimate the degree of the mixing 

when viewing a plot of the mode potential (see Figs. 5.2 and 5.4).  For example, a 

wave with axial wavenumber k
z
 which appears with amplitude A  in the z-component 

of the mode electric field will appear with amplitude A / k
z
 in the mode potential, 
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since !E
z," = !"!#" /"z.   In this sense, large axial wavenumbers are suppressed 

relative to smaller wavenumbers in the mode potential.  In contrast, the density gives 

an exaggerated impression of the mixing; a wave which appears with amplitude A  in 

the z-component of the mode electric field will appear with amplitude (k!
2
+ k

z

2
)A / k

z
 

in the mode density. 

 

5.2  Trivelpiece-Gould Waves 

 
 

Before considering modes of a finite-length plasma cylinder, we present the 

solutions of Eq. (5.8) obtained by Trivelpiece and Gould for the case of an infinitely 

long cylinder [1].  In this case, Eq. (5.8) simplifies to  
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which is separable.  Specifically, for any real ! , there exist an infinite number of 

degenerate solutions of the form 

!"# (r, z) =$m

TG
(#;r)e±ikmz .                                        (5.17) 

Substitution into Eq. (5.16) yields an ODE for the radial dependence, !
m
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(";r) ,   
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In thermal equilibrium, the radial plasma density profile, n0 (r) , is nearly constant out 

to some radius and there abruptly falls off on the scale of the Debye length.  Following 
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Trivelpiece and Gould, we take an unperturbed density profile that is constant out to 

some radius, a,  and zero outside this radius,  

n
0
(r) = n

0
H (r ! a),                                             (5.19) 

where H(x) is the Heaviside step function.  This choice corresponds to an equilibrium 

density profile in the limit of zero temperature.  Insistence on a finite-temperature 

equilibrium density profile in place of the approximation (5.19) necessitates numerical 

solution of Eq. (5.18), but the qualitative behavior of these solutions (e.g., oscillatory 

out to some radius; monotonically decreasing outside this radius) is the same.   

With the assumption of a step-function density profile, Eq. (5.18) becomes a 

Bessel equation in the domain r < a  and a modified Bessel equation in the domain 

a < r < R.    Making use of the boundary condition !" = 0  at r = R  and requiring that 

!"  be continuous at r = a,  one finds solutions of the form                            
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The wavenumber k
m
= k

m
(!)  is given by the m

th
 nonnegative solution to the equation 
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which comes from the requirement that !!" /!r  be continuous at r = a.   These are the 

azimuthally symmetric Trivelpiece-Gould waves.  By defining the transverse 

wavenumber k!,m " km (! p

2
/! 2

#1)
1/2
,  one recovers the dispersion equation (1.11). 
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In addition to the Trivelpiece-Gould waves, there exists another class of 

solutions to Eq. (5.16) of the form [7] 

!"# (r, z) =$m

A
(#;r)e±%mz.                                       (5.22) 

For these solutions, the radial dependence is given by  
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where !
m

 is the m
th

 nonnegative solution to the equation 
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We will refer to these solutions as “annular solutions”, since they are localized in the 

annular vacuum region a < r < R .  Because the annular solutions become 

exponentially large as z!±",  they are typically ignored in the theory of the infinitely 

long cylinder; however, we will need these solutions when we solve for modes of a 

finite-length plasma cylinder. 

The functions !
m
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(";r)  and !
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(";r)  are orthogonal on the interval 0 < r < R  

with weight function !(", r) !1""
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and 
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The difference in sign ensures that both !
m

TG
(";r)  and !

m

A
(";r)  are real-valued 

functions.  Several of the functions !
m

TG
(";r)

 
and

 
!

m

A
(";r)

 
are plotted in Fig. 5.1 for 

R =1,
 
a =1/ 2,

 
and

 
! /!

p
=1/10.

 

 

 

5.3  Modes of a Plasma Column with Flat Ends 
 

  

 We now search for modes of a finite-length plasma cylinder.  Jennings et al 

approached this problem by discretizing Eq. (5.8), while Rasband et al employed a 

finite-element method [8, 9].  Following Prasad and O’Neil [7], we choose to 

represent each mode as a linear combination of the TG and annular solutions discussed 

in the previous section.  This approach manifests the mixing of degenerate waves.   

In this section, we focus on a well-known model which takes the unperturbed 

plasma density to be constant inside a right-circular cylinder of radius a  and length L  

and zero outside this cylinder [Fig. 1.3(a)]:  

n
0
(r, z) = n

0
H (r ! a)H (| z |!L / 2) .                                (5.27) 

In this case, although the Trivelpiece-Gould and annular solutions are no longer global 

solutions to Eq. (5.8), they still satisfy this equation in the region z < L / 2 .  We 

assume that the mode potential in this region can be expressed as a linear combination 

of these solutions,  
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For z > L / 2 , Eq. (5.8) reduces to Laplace’s equation, and thus, in this region, the 

mode potential can be expressed as a linear combination of vacuum solutions,  

!"# (r, z) = sign(z) A
n
J0 ($0nr / R)e

!$0n (z!L/2)/R

n=1

"

# .                       (5.29) 

Here we have assumed that the mode potential is odd in z; the generalization to even 

modes is straightforward.  

For the sake of numerical tractability, we must approximate Eqs. (5.28) and 

(5.29) by the partial series 

!"# (r, z) = B
m
$

m

TG
(#;r)

sin(k
m
z)

sin(k
m
L / 2)

m=1

N /2

! + C
m
$

m

A
(#;r)

sinh(%
m
z)

sinh(%
m
L / 2)

m=1

N /2

!       (5.30) 

and 

!"# (r, z) = sign(z)! A
m
J0 ($0mr / R)e

"$0m (z"L/2)/R

m=1

N

# ,                   (5.31) 

where N is some finite number of basis functions presumed to be sufficient to 

represent the mode to the desired degree of accuracy. 

Note that the set of basis functions used here is not complete in the usual sense; 

we have only assumed that it is sufficient to represent a global solution to the mode 

equation with frequency !.   Expressing the global solution as a linear combination of 

local solutions in distinct domains has the advantage that convergence is much faster 

than would be the case if a more conventional basis were employed—for example, if 

the Fourier expansion !"# = !m,n
A
mn
J
0
($

0m
r / R)sin[(2n"1)z / L]  were used in place 
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of Eq. (5.28).  Suppose that, in order to achieve some prescribed level of resolution of 

the mode, N 2  basis functions from the more standard basis are required; the same 

resolution can be achieved with just N  basis functions of the type used here.
 

Taken together, the series (5.30) and (5.31) satisfy Eq. (5.8) everywhere inside 

the trap; all that remains is to find a set of coefficients, Am, Bm, and Cm, and a 

frequency, !,  such that the resulting mode potential satisfies the required matching 

conditions at the boundary, z = ±L / 2.   One such condition is that !"  be continuous 

at z = ±L / 2.   Exploiting the orthogonality of the Bessel functions, we write this 

condition as 

  

R
2

2
J
1

2
(!

0n
)A

n
= B

m
r drJ

0
(!

0n
r / R)"

m

TG
(#;r)

0

R

!
m=1

N /2

"

+ C
m

r drJ
0
(!

0n
r / R)"

m

A
(#;r)

0

R

!
m=1

N /2

" .

              (5.32) 

The other matching condition is that the z-component of the electric displacement, 

!D
z
= ["

p

2
(r, z) /" 2

!1]"!# /"z,  be continuous at z = ±L / 2.   Using the orthogonality 

relations (5.25) and (5.26), we write this condition as 

R
2

2
k
m
cot(k

m
L / 2)B

m
= A

n
(!

0n
/ R) r drJ

0
(!

0n
r / R)"

m

TG
(#;r)

0

R

!
n=1

N

"          (5.33) 

and 

!
R
2

2
!
m
coth(!

m
L / 2)C

m
= A

n
("

0n
/ R) r drJ

0
("

0n
r / R)#

m

A
($;r)

0

R

"
n=1

N

# .      (5.34) 
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Elimination of 
n
A  in Eqs. (5.33) and (5.34) using Eq. (5.32) yields two sets of 

coupled equations for the amplitudes of the Trivelpiece-Gould and vacuum 

components, B
m

 and C
m

: 

   

k
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m
!
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m '
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r drJ
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  (5.35) 

and 
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  (5.36) 

Equations (5.35) and (5.36) specify N  equations for N  unknowns, which can be 

expressed in matrix notation as 

M
mm '
(!)x

m '
= 0

m '=1

N

! [or M (!)
!
x = 0],                            (5.37) 

where 
!
x ! (B

1
,B

2
,...,B

N /2
,C

1
,C

2
,...,C

N /2
)  and M (!)  is a symmetric matrix with 

elements 
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  (5.38) 

for m ! N / 2  and !m " N / 2,

 M
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for N / 2 <m ! N  and N / 2 < !m " N,  and 

M
mm '
(!) = !

"
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R

r drJ
0
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0n
r / R)# "m
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(!;r)

0

R

#

R
2
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r drJ
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$      (5.40) 

for m ! N / 2  and N / 2 < !m " N.   Equation (5.37) constitutes a generalized 

eigenvalue problem; each matrix element depends on the unknown mode frequency, 

!,  through the functions !
m

TG
(";r)  and !

m

A
(";r)  and the wavenumbers k

m
= k

m
(!)  

and !
m
=!

m
(") .  

 In order to better understand the matrix equation (5.37), it is instructive to 

consider the simple case in which the plasma extends to the trap wall—that is, .Ra =   

In this case, there are no annular solutions, so the matrix M is given entirely by Eq. 

(5.38).  Furthermore, the TG solutions have the same radial dependence as the vacuum 

solutions—  

!
m

TG
(";r) =

k
m

2
(")

(#
0m
/ R)

2

J
0
(#

0m
r / R)

J
1
(#

0m
)

                                (5.41) 
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[the normalization follows from Eq. (5.25)].  Consequently, the second term on the 

right-hand side of Eq. (5.38) is zero unless m = !m ,  implying that a given TG wave 

reflects entirely back into itself at z = ±L / 2.   In other words, the matrix M is diagonal, 

and Eq. (5.37) takes the simple form 

[k
m
cot(k

m
L / 2)! k

m

2
R / !

0m
]B

m
= 0.                               (5.42) 

Thus, when the plasma extends to the trap wall, the modes are just standing TG waves 

with radial dependence given by Eq. (5.41) and axial wavenumber quantized 

according to the condition that the diagonal matrix element equal zero, 

cot(k
m
L / 2)! k

m
R / !

0m
= 0.                                     (5.43) 

For a long plasma, it follows that for radial modenumber m, the allowed axial 

wavenumbers are given by k
mn
= (2n!1)! / L !"k

mn
,  where n is an integer and !k

mn
 is 

a correction of order R / L2.   Inserting this expression in Eq. (5.43) and expanding the 

cotangent term, one finds that to first order in R / L2,  !k
mn
! (2n"1)2"R / (#

0m
L
2
).    

 When the plasma does not extend to the trap wall, the radial dependence of the 

TG waves no longer matches that of the vacuum solutions.  Consequently, at 

z = ±L / 2,  an incident TG wave reflects partially back into itself and partially into 

other TG waves.  It follows that each mode must be a mixture of multiple component 

waves.  From a cursory analysis of the matrix M, one can guess which waves should 

appear prominently in the admixture for a mode with frequency !.   According to the 

normalization condition (5.25), the second term on the right-hand side of Eq. (5.38)—

and thus any off-diagonal matrix element—is of order R / L2  or smaller [7].  In 
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contrast, the first term on the right-hand side of Eq. (5.38), which appears only on the 

diagonal of the matrix, can be any size, diverging as k
m
(!)L / 2  approaches any 

multiple of ,!  and vanishing as k
m
(!)L / 2  approaches any odd multiple of ! / 2.   If 

the wavenumber k
m
(!)  is such that k

m
cot(k

m
L / 2) >> R / L

2
,  the mth  diagonal 

element will be large, and one can see that the amplitude of the mth  wave must then be 

small in order for Eq. (5.37) to be satisfied.  Conversely, the amplitude of the mth  

wave may be large only if the mth  diagonal element is small compared toR / L2 ; as in 

the previous example, this occurs for wavenumbers k
m
(!) = (2n!1)" / L !#k

m
(!),  

where n is an integer and !k
m
(")  is a correction of order R / L2.   For a given mode 

frequency, there can be many such waves, and these waves will give the dominant 

contribution to the admixture for that mode.    

The heuristic argument outlined in the preceding paragraph is a revised version 

of an argument introduced by Prasad and O'Neil [7].  These authors derived a 

generalized version of Eq. (5.37) for a mode with azimuthal dependence and carried 

out a perturbative solution based on the smallness of the off-diagonal matrix elements.  

However, a tacit assumption underlying the perturbation theory is that only one of the 

diagonal elements of the matrix is small compared to the off-diagonal elements in its 

row, and this assumption is unjustified. 

We proceed by evaluating the matrix M (!)  on a grid in ! -space and 

calculating the determinant at each point on this grid.  We search for values of !  for 

which Det[M (!)]= 0 ; at these values the null-vector, 
!
x , gives a solution to Eq. 
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(5.37).  As expected, the contribution to each solution is greatest from wavenumbers 

k
m
(!) ! (2n"1)" / L.   However, as the number of basis functions, N , is increased, 

increasingly short-wavelength waves enter the admixture for each solution with 

significant amplitude, and this trend continues to the limit of our computational 

capability.  The lack of convergence should not be surprising.  The off-diagonal matrix 

elements fall off only as m
-1

 and so are non-negligible even for large m; thus, for 

arbitrarily large m, the m
th

 diagonal matrix element can still be smaller than the off-

diagonal elements in the m
th

 row, provided that the wavenumber km is close enough to

(2n!1)! / L,  where n is an integer.   

An exemplary solution is plotted in Fig. 5.2—with various numbers of basis 

functions retained—as an illustration of the appearance of increasingly large 

wavenumbers in each solution.  In Fig. 5.2(a), only four TG waves are retained, and 

the dominant term in the admixture comes from the first TG wave, which has 

wavenumber k
1
(!) ! 3" / L " 6.94(R / L2 ),  where !  is the frequency of the solution.  

In Fig. 5.2(b), eight waves are retained, and now the seventh wave, which has 

wavelength k7(!) ! 39" / L " 2.45(R / L
2
),  enters the admixture with amplitude 

comparable to that of the first wave.  With more waves retained, the solution incurs 

significant contributions from even shorter wavelengths.   
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5.4  Modes of a Plasma Column with Spheroidal End-shape  
 

 

 There is reason to suspect that the appearance of increasingly short 

wavelengths in each of the solutions obtained in the previous section stems from the 

crude representation of the plasma shape as a cylinder with perfectly flat ends.  The 

mode structure is determined by the coupling between TG waves reflecting at the ends 

of the plasma cylinder, and this coupling must be affected by the end-shape.  In this 

section, we generalize the method of Section 5.3 and look for modes of a plasma 

cylinder with a spheroidal end-shape.  In this case, the plasma boundary is given by 

r = a  for z < L / 2  and by [(z! L / 2) / (2"L
0
)]
2  +(r / a)2  =1  for z > L / 2 . 

Following the procedure of Section 5.3, we divide the space inside the trap into 

regions with distinct solution sets, as depicted in Fig. 1.3(b).  The surface that 

separates these regions is given by z = [L +!L(r)] / 2,  where 

!L(r) =
2!L

0
1" (r / a)2 r < a

0 a < r < R

#
$
%

&%
                                  (5.44) 

is the deviation from the flat matching surface taken in Section 5.3.  We express the 

mode potential as the series (5.30) and (5.31) in the appropriate domains.  Again, the 

matching conditions on !"  and !
!
D = [!

p

2
(r, z) /! 2

!1](""# /"z)ẑ ! (""# /"r)r̂  yield 

coupled equations for the coefficients B
n
 and C

n
.   The continuity of !"  gives  
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   (5.45) 
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while the continuity of !
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D ! n̂  gives 
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   (5.46)

 

where n
r
(r)  and n

z
(r)  are the radial and axial components of the unit vector n̂  that is 

normal to the matching surface. 

The analysis of Section 5.3 relies on the orthogonality properties of the Bessel 

functions and the functions !
m

TG
(";r)  and !

m

A
(";r);  however, this approach fails here 

because the curvature of the plasma boundary introduces additional r-dependence.  

Instead, we discretize the radial coordinate, taking P points, {r1, r2, …, rP},  and 

evaluate Eqs. (5.45) and (5.46) on this grid, obtaining two sets of coupled equations,  

AnJ0 (!0nrp / R)e
!!0n"L(rp )/(2R)

n=1

N

# =

Bm"m

TG
(#;rp )

sin{km (#)[L +"L(rp )] / 2}

sin{km (#)L / 2}m=1

N /2

#

+ Cm"m

A
(#;rp )

sinh{$m (#)[L +"L(rp )] / 2}

sinh{$m (#)L / 2}m=1

N /2

# ,

            (5.47) 

and 
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    (5.48)  

Equations (5.47) and (5.48) comprise a system of 2P equations for 2N  unknowns and 

can be expressed as a single matrix equation, 

!M
pn

n=1

2N

" (!) !x
n
= 0 [or !M (!)

!
!x = 0],                            (5.49)   

where 
!
!x " (A

1
,A

2
,...,A

N
,B

1
,B

2
,...,B

N /2
,C

1
,C

2
,...C

N /2
)  and !M (!)  is a 2P!2N  matrix; 

the primes are a reminder that the matrix !M  and the vector 
!
!x  are distinct from M  

and 
!
x  as defined in Section 5.3.   

In order for every basis function to be well-resolved on the radial grid, we take 

P >> N,  and thus Eq. (5.49) becomes an over-determined system of equations that 

cannot be satisfied exactly.  Thus, we seek a nonzero vector 
!
!x  and frequency !  

which minimize the mean squared mismatch at the boundary, !(!,
!
"x ) , defined as 

!(!,
!
"x ) #

1

P
[ "M (!)

!
"x ]
2
.                                        (5.50) 
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We exclude the trivial solution, 
!
!x = 0,  by imposing a normalization constraint.  We 

observe that a variety of different normalization constraints lead to the same solutions.  

A simple choice is the following:    

 
[S(!)

!
!x ]
2
=1,

      
                                          (5.51) 

where 

S
n !n (!) =

k
n
(!)"

n !n

sin[k
n
(!)L / 2]

                                         (5.52) 

for n ! N / 2  and S
n !n = 0  otherwise.  This constraint simply requires that the squared 

amplitudes of all Trivelpiece-Gould components making up the mode electric field 

sum to one. 

For fixed !,  the minima of !(!,
!
"x )  under this normalization constraint are 

given by the condition 

! [ !M (")
!
!x ]
2
"#{[S(")

!
!x ]
2
"1}( ) =1,                             (5.53) 

where !  is a Lagrange multiplier and the variation is taken with respect to 
!
!x .  

Carrying out the variation yields  

[ !M (!)]T !M (!)
!
!x = ![S(")]T S(")

!
!x ,                             (5.54) 

where the superscript T denotes the transpose.  In other words, for fixed !,  the local 

minima of !(!,
!
"x )  are given by the “generalized eigenvectors” of the matrix 

[ !M (!)]T !M (!)  with respect to the matrix [S(!)]T S(!) .  The global minimum (on the 

surface of constraint) is given by the eigenvector with the smallest eigenvalue; all 
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eigenvalues are positive since both [ !M (!)]T !M (!)  and [S(!)]T S(!)  are positive-

definite. 

To find a mode frequency, we therefore evaluate the matrices [ !M (!)]T !M (!)  

and [S(!)]T S(!)  on a grid in !  and determine the smallest eigenvalue, !
min
("),  at 

each grid point.  For N >>1,  the function !
min
(")  typically has many local minima.  

As N and P are increased, some of these minima approach zero (as does the 

corresponding mismatch), and the value of !  where such a minimum occurs gives the 

frequency of a mode.  The mode potential is given by the eigenvector, 
!
!x ,  

corresponding to !
min
(")  at the mode frequency.  The procedure is illustrated in Fig. 

5.3.  

In practice, when only a few terms are retained in the series (5.30) and (5.31) 

and the corresponding function !
min
(") is plotted, one observes relatively few local 

minima, and the location of each minimum gives a rough indication of the frequency 

of a mode comprised mostly of long-wavelength waves [Fig. 5.3(a)].  Using this 

information, one can then keep many more terms in the series and plot the 

corresponding function !
min
(")  over a much smaller frequency interval about one of 

these minima [Fig. 5.3(b)].  Of course, this strategy only works for the relatively 

smooth modes comprised mostly of long-wavelength waves, but these are typically the 

most relevant modes in an experiment.  Figure 5.4 illustrates the matching of the 

potential and electric displacement at the sample points along the matching surface for 

an exemplary solution. 
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Several solutions are plotted in Fig. 5.5.  We observe that strong mixing occurs 

only amongst waves with axial wavelengths larger than the variation in plasma length, 

!L
0
,  and in particular for wavenumbers k

m
! (2n"1)! / L,  where n is an integer.  For 

example, Fig. 5.5(a) shows a mode that is mostly a mixture of the m =1  and m = 2  

waves having wavenumbers k
1
! ! / L  and k

2
! 3! / L .  [Recall that the wavenumbers 

k
m
= k

m
(!)  of the component waves are determined by Eq. (5.21) and the frequency 

of the mode, !. ]  Waves with shorter axial wavelengths are less strongly mixed but 

tend to add constructively to create fine-scale cone-like structures in the mode along 

resonance cones with slope dz / dr = ±(! p

2
/! 2

!1)
1/2
.   The modes shown in Figs. 

5.5(b)-(e) exhibit these cone-like features.   

 It should be noted that Jennings et al also find solutions to the mode equation 

that do not resemble any single Trivelpiece-Gould wave [8].  In addition, the authors 

note that according to Eq. (5.9), very different waveforms can have similar 

frequencies.  However, Jennings et al conclude that the more complicated solutions 

are not real modes, but the result of miscalculation by the numerical algorithm.  

Presumably, this work was motivated by experiments involving warm plasmas, in 

which Landau damping rates consistent with the single-wave approximation had been 

observed, so the complicated solutions were not investigated further. 

 By choosing !L
0
<< L  and a << R,  we approach the limit where Dubin’s 

theory for modes of a spheroidal plasma should apply.  An example of a solution 

obtained in this limit is depicted in Fig. 5.6(a); Figure 5.6(b) depicts the corresponding 

Dubin mode Dubin mode for comparison.  It should be mentioned that the 
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convergence of the solutions for spheroidal plasmas is slower than for long, cylindrical 

plasmas; that is, for a given number of basis functions, the mismatch at the sample 

points {r1, r2,…, rP} tends to be larger.  While Fig. 5.6(a) represents the limit of our 

computational capabilities, we expect that if many more basis functions could be 

retained, the mismatch would tend to zero without significant change in the 

appearance of the mode potential.  However, the high-k features in the electric field 

plotted in Fig. 5.6(a) may be artifacts of the incomplete convergence.  

 

5.5  Viscous Damping 

 

In the low-temperature regime that we have in mind, the phase velocity of any 

given component comprising a mode is small in comparison to the thermal velocity, so 

Landau damping is negligible.  Instead, as we have seen in Chapter 4, these modes are 

damped by viscous processes.   

Here we calculate an expression for this viscous damping rate, assuming that 

the damping is weak, so that perturbation theory can be used.  With viscosity included, 

the momentum equation (5.7) takes the form 
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where 
!"  is the cross-field kinematic viscosity and !

||
 is the parallel kinematic 

viscosity.  Poisson’s equation (5.5) and the continuity equation (5.6) remain 

unchanged.  We define the parameters !
||
!"

z
/ (#L

||

2
)  and )/( 2

!!! " L#$% , where L
||
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and 
!
L  are the axial and transverse scale-lengths of the mode.  For a weakly damped 

mode, these are small parameters.  We thus expand the mode and its frequency as 

perturbation series, keeping only terms of zero- and first-order in 
||

!  and :
!

"  
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Together, !n"
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,!V
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(0)
,  and !"#

(0)  satisfy the inviscid fluid equations for a mode with 

frequency ! (0) .  To first order, the viscous momentum equation (5.55) can be 

rewritten as  
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Insertion of this expression into the continuity equation (5.6) gives !n" in terms of 

!"# .  Poisson’s equation then becomes 

1

r

!

!r
r
!!"#

(1)

!r
+
!2!"#

(1)

!z2
=
!

!z

#
p

2

# (0)2

!!"#

(1)

!z

"

#
$$

%

&
''+

!

!z

2#
p

2
i$ (1)

# (0)3

!!"#

(0)

!z

"

#
$$

%

&
''

+
!

!z

1

r

!

!r
r
i#

p

2%(

# (0)3

!

!r

!!"#

(0)

!z

"

#
$

%

&
'

)

*
+

,

-
.

/
0
1

21

3
4
1

51
+
4

3

!2

!z2
i#

p

2%
||

# (0)3

!2!"#

(0)

!z2
"

#
$$

%

&
''.

       (5.57) 

Here we have used the fact that !"#

(0)  and ! (0)  together satisfy the inviscid mode 

equation (5.8), which implies that the zero-order terms cancel.  Multiplying Eq. (5.57) 

by !"#

(0) , integrating over the entire domain of the trap, and integrating each term by 

parts twice eliminates the terms involving !"#

(1)  [by virtue of Eq. (5.8)], and we are 
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left with an expression for the first-order viscous correction to the frequency in terms 

of the inviscid approximation to the mode: 

! (1) =
r dr dz" p

2
(r, z) (2#

||
/ 3)(!$Ez,"

(0)
/!z)2 + (#" / 2)(!$Ez,"

(0)
/!r)2#$ %&'

r dr dz" p

2
(r, z)$Ez,"

(0)2'
,      (5.58) 

where !E
z,"

(0)
= !"!#"

(0)
/"z.   This expression is purely real and nonnegative and gives 

the viscous damping rate of the mode. 

 Due to the mixing of degenerate waves, the axial and transverse scale-lengths, 

L
||
 and L!,  of even the least-damped modes can be much smaller than the 

corresponding dimensions of the plasma.  As a result, the damping of these modes is 

significantly greater than one would predict based on the single-wave approximation 

[7-9], which takes the mode potential inside the plasma to be given by a single 

Trivelpiece-Gould wave with wavenumber k
m
=m! / L[1!O(R / L)] .  For example, 

according to Eq. (5.58), the mode displayed in Fig. 5.4(c) damps at the rate 

! = (27.0"! + 0.325" || ) / R
2 .  By comparison, if this mode is approximated by its 

largest-amplitude Trivelpiece-Gould component (m =1, in this case), the smaller rate 

! = (2.94"! + 0.0930" || ) / R
2  is obtained. 
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Figure 5.1.  Several of the functions  and  plotted for the parameter 

values   and   These functions give the radial dependence 

of the Trivelpiece-Gould and annular solutions on an infinitely long plasma cylinder.   
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Figure. 5.2.  The axial electric field,  and potential,  corresponding to a 

solution of the matrix equation (5.37) obtained by retaining (a) 8 terms and (b) 16 

terms in the series (5.30) and (5.31).  The plasma has length L =14.0  and radius 

a = 0.5,  and the trap has radius R =1.   As the number of basis functions is increased, 

the solution involves increasingly large wavenumbers. 
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Figure 5.2, continued. 
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Figure 5.3.  (a) Evaluation of the function!
min
(")  at discrete values of !  for N = 8 

basis functions.  The local minima near! = 0.070!
p  and ! = 0.078!

p  indicate the 

frequencies of two low-order modes.  (b) Evaluation of the function !
min
(")  on a finer 

grid in !  for N = 24 (open rectangles) and N = 48 (solid circles) basis functions.   
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Figure 5.4.  An example of the matching of (a) the mode potential and (b) the normal 

component of the electric displacement at the sample points along the matching 

surface.  Each black circle/white square gives the value of the electric potential or 

normal component of the electric displacement as the sample point is approached from 

inside/outside. Here  and   The spatial dependence of this mode is 

displayed in Fig. 5.5(a). 
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Figure 5.5. (a) The axial electric field,  and potential,  of a normal mode of 

a plasma with length , radius , and end-shape  note 

the strong mixing of the  and  components.  (b),(c) Two normal modes of 

a plasma cylinder with length  radius  and end-shape given by  

  (d),(e) Two normal modes of a plasma cylinder with length  

radius  and end shape given by   In (a)-(e), the domain of each plot is 

the interior of the plasma, and the radius of the trap is  
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Figure 5.5, continued. 
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Figure 5.5, continued. 
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Figure 5.5, continued. 
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Figure 5.5, continued. 

Ez,

z

z

r

r

(ii)

p

(e) 



 104 

 

 

 

 

 

 

 

 

 

Figure. 5.6.  (a) The axial electric field,  and potential,  of a normal mode 

of a plasma with length L +!L
0
= 0.401,   radius  and end-shape given by 

!L
0
= 2a.   Note that this plasma is nearly spherical; the central cylindrical section of 

the plasma is only one four-thousandth the length of the plasma at r = 0.   The radius 

of the trap is R =1.0.   (The convergence in the parameter regime L << L
0
, a << R  is 

relatively poor compared with that for long cylindrical plasmas, so the fine-scale 

ripple in the electric field could be an artifact of the incomplete convergence.)  (b) One 

of two  modes of a perfectly spherical plasma in the limit R!".   Note 

the similarity between these modes.  
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Figure 5.6, continued.  
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Epilogue 

 
   

          To conclude, we suggest several avenues for building upon the work presented 

in this dissertation.  

First, while the effect of long-range collisions on plasma waves was given a 

simple treatment using fluid theory, a more satisfactory analysis might incorporate 

these collisions into the kinetic description of the wave.  Dubin and O'Neil derived a 

collision operator for these non-point-like interactions, which could be employed to 

this end [23].  Also, as Dubin and O'Neil point out, cross-field transport can be 

enhanced by interactions over distances of many Debye lengths; in this case, the 

transport is mediated by the emission and absorption of plasma waves.  However, this 

non-local transport was not considered in this dissertation; in taking the cross-field 

viscosity to be approximately ! ~ mn"
c
#
D

2
,  we implicitly assumed that interactions are 

cutoff at the Debye length.  More fundamentally, the fluid analysis itself presumes that 

transport is local.  

One could also improve upon the mode calculations for the finite-length 

plasma column by taking a true cold equilibrium as the unperturbed plasma state.  The 

plasma shape assumed in our calculations is only an idealization of the equilibrium 

shape, but Prasad and O'Neil have shown that the true shape can be calculated 

numerically.  In fact, the mode calculations of Jennings et al [8] and Rasband et al [9] 

used true equilibria, but, as discussed in Chapter 5, the authors did not examine the 

electric fields associated with the modes--only the potentials--so the degree of mixing 
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between degenerate waves was severely underestimated.  

 In addition, an improved mode calculation might solve the eigenvalue 

problem for the mode electric field, yielding a complete set of modes all at 

once.  (Recall that our method yields only one mode at a time.)  With a complete set of 

modes, one could calculate the plasma response to an electrical signal applied to the 

trap wall, in accord with the standard method for exciting these modes in the 

laboratory.  Since the modes are closely spaced in frequency, any signal that lasts for a 

finite time will likely excite not just a single mode, but multiple nearly degenerate 

modes. 

Finally, we hope that the predictions described in this dissertation will be 

tested in the laboratory.  In fact, there is an ongoing effort at UCSD to measure the 

collisional damping of plasma waves in a single-species plasma column.  Francois 

Anderegg has measured the damping rate of longitudinal normal modes of a Mg
+ 

plasma in the low-temperature regime where Landau damping is negligible.  At the 

time of these experiments, it was thought that the normal modes were simply standing 

Trivelpiece-Gould waves with axial wavenumbers quantized to fit the length of the 

plasma column.  Thus, it seemed reasonable to compare the measured damping rate 

with the imaginary part of the complex frequency formula (1.1) for a Trivelpiece-

Gould wave, using wavenumbers deduced from the measured wave 

frequency.  However, across several decades in temperature, the measured damping 

rate exceeded the predicted rate by over an order of magnitude, even though the 

temperature scaling of the data seemed to agree with that of the formula.  
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Based on this uniform discrepancy, we concluded that we had identified the correct 

damping mechanism, but that perhaps the mode structure involved higher 

wavenumbers than expected, giving rise to the enhanced damping observed in the 

experiment.  Indeed, this interpretation motivated the calculation of modes of a cold 

finite-length plasma column that forms the second part of this dissertation, and these 

calculations revealed that each mode involves many degenerate waves.  Ironically, in 

the meantime, the damping rate was re-measured at smaller wave amplitude, and the 

new data exhibit a different temperature scaling.  We now believe that the measured 

damping is the result of friction against impurities in the plasma, which is masking the 

far weaker damping associated with like-particle collisions.  In order for the damping 

from like-particle collisions to be observed, the plasma must be rid of impurities. 
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