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The initial nonlinear evolution of two unstable waves in a cold beam-plasma system can be described by a 
single wave with a slow modulated amplitude and phase. The modulational calculation is tested quantitatively 
on the analogous wave-particle interaction in a traveling wave tube. The model is found to be valid for one 
autocorrelation time following the onset of nonlinearities. Stochastic behavior follows the breakdown of the 
modulational approximation, i.e., after one autocorrelation time, in agreement with reasonance overlap 
theory. 

I. INTRODUCTION 

In the small cold beam limit, the beam plasma in­
stability1"5 is ideal for studying the development of 
stochasticity in an initially coherent nonlinear sys­
tem. The beam drives a finite spectrum of waves un­
stable, but after many e foldings the bandwidth be­
comes narrow such that the beam dynamics are domin­
ated by a single wave, namely, the fastest growing 
wave. This wave saturates by trapping the beam parti­
cles while forming clumps of particles in phase space. 
As the clumps oscillate in the wave potential, the wave 
amplitude and phase oscillate to conserve momentum 
and energy. H the wave were to remain monochroma­
tic, as it is constrained to do in the single wave model 
computations,2

"4 the trapping oscillations would be long­
lived indicating nonlinear stability for the clump. 6 

However, experiments5 and multiwave computations7 

show that the wave spectrum eventually broadens while 
the dominant wave decays in amplitude and the clumps 
are dispersed in phase space. 

The randomization of the bucnhed particles is caused 
by the emerging sidebands consistent with resonance 
overlap theory. 6 •

8 According to this theory, stochastic 
behavior develops in a nonlinear system containing 
many waves when their trapping widths 15vn =(e¢n/m)112

, 

where <Pn is the amplitude of the nth wave, exceed the 
difference in their phase velocities t.v, i.e., when 
15v0+15v1 >2t.v. In the beam-plasma instability, most 
unstable waves satisfy this condition in the nonlinear 
regime. However, not all such waves are equally ef­
fective in inducing stochasticity because the randomi­
zation time for a particular satellite wave is inversely 
proportional to its frequency separation t.w from the 
main wave. Consequently, the most deleterious satel­
lite wave in a continuous spectrum are those farthest 
away in frequency from the main wave but which still 
satisfy the overlap condition. Nearby satellite waves 
do not play a significant role in the detrapping process 
because their mixing time is relatively long. 

This point is exemplified in a calculation9
-
10 of the 

nonlinear evolution of two waves with closely spaced 
frequencies in which the two waves were viewed as a 
single wave with a slowly varying amplitude and phase. 
For times less than an autocorrelation time, the modu­
lation is slight and an individual particle "sees" an es­
sentially monochromatic wave. The modulated wave 

can be thought of as a sequence of almost monochro­
matic waves, each differing in amplitude and phase 
from its predecessor. In this picture, the nonlinear 
dynamics are identical to those of a single wave and 
the evolution of the modulated wave is calculated by 
averaging the single wave response over the initial am­
plitude and phase. Results of this calculation have been 
verified experimentally, 9 but only for small relative 
amplitudes of the satellite wave. In addition, the limit 
on the applicability of the modulation approximation has 
not been investigated experimentally. 

The present paper describes a quantitative test of the 
modulational calculation for arbitrary amplitude ratio 
E = </>1/ cp0""1 using a traveling wave tube11

-
13 in which 

several trapped particle oscillations are observed. 
The experiments are conducted with a traveling wave 
tube because it has practical advantages over beam­
plasma systems; theoretically, the interaction in a 
traveling wave tube is analogous to the beam-plasma 
instability. We find that for sufficiently small fre­
quency separation, two launched waves saturate due to 
beam trapping and then execute trapping oscillations in 
quantitative agreement with the modulational calculation. 
The calculation fails when the particles resolve the 
spectral spread, namely, one autocorrelation distance 
beyond the onset of nonlinearities. For E"' 1, the co­
herent trapping oscillations are destroyed immediately 
following the breakdown of the modulational approxima­
tion indicating stochastic behavior. For E « 1, the 
trapping oscillations persist long after the breakdown 
of the modulational approximation in accordance with 
resonance overlap theory. 

The outline of the paper is as follows: Section II de­
scribes a quantitative comparison between experiment 
and the modulational theory. Section ill discusses the 
breakdown of the theory and the onset of stochastic 
behavior. Section IV is the summary. 

11. COMPARISON OF EXPERIMENTAL RESULTS WITH 
MODULATIONAL THEORY 

The multiwave behavior of the beam-plasma insta­
bility is investigated through experiments on the analo­
gous interaction in a traveling wave tube. 11 In the 
small cold beam limit the equations governing the 
evolution of the beam-plasma instability2

•
3 are mathe­

matically identical to those describing the traveling 
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wave tube. 12 The plasma acts essentially as a linear 
dielectric capable of supporting slow space charge 
waves. Therefore, the replacement of the background 
plasma with the slow wave structure of a traveling 
wave tube does not alter the basic features of the wave 
particle interaction. The traveling wave tube, how­
ever, has two practical advantages in that the slow wave 
structure remains linear and does not introduce noise. 
With this system, which is described elsewhere, 13 over 
five trapping oscillations have been observed following 
exponential growth and saturation of a single launched 
wave. 

The spatial evolution of two launched waves is shown 
in Fig. 1. For reference, the dotted line shows three 
trapping oscillations of the main wave at wof21T = 195 
MHz when it is launched alone. The wave power, nor­
malized to the injected beam power, agrees quantita­
tively (± 1 dB) with the results of the single wave model. 
The solid line is the main wave when we introduce an 
upper satellite (dashed line) at w./21T = 198 MHz with an 
initial amplitude ratio E = 0. 39. The main wave is per­
turbed only slightly by the presence of the additional 
wave, in agreement with the prediction of the modula­
tional calculation10 that the main wave is relatively un­
affected for E $ 0. 4. When the satellite is launched 
alone, it saturates at the same amplitude as the main 
wave (-4. 5 dB) because the detuning t::..w/w is small. 
However, in Fig. 1 the satellite saturates at a much 
smaller amplitude (-16. 5 dB) near the point where 
the main wave traps the beam electrons. This agrees 
with previous beam-plasma experiments9

•
14 in which a 

launched wave suppresses neighboring thermal noise 
below its natural level. Notice that the nonlinear pro­
duct w./21T = 192 MHz grows dramatically, at a rate 
much faster than the linear growth rate, when the dy­
namics become nonlinear, namely, within one e folding 
before saturation. This nonlinear product wave satu­
rates at the same amplitude as the launched satellite 
in accordance with the modulational calculation10 for 
small e. Beyond saturation all the waves execute trap­
ped particle oscillations with roughly the same bounce 
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FIG. 1. Wave power normalized to injected beam power as a 
function of distance along the traveling wave tube. The dotted 
line is the main wave w0/2ir: 195 MHz when launched alone. 
The solid line is the main wave when the upper satellite (dashed 
line) is also launched with c: O. 39 and t::..w/2rr :3 MHz. The 
intermodulational product (dot-dash) is also shown; the beam 
current is 10 mA; the beam voltage is 920 V. 
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FIG. 2. Wave power normalized to injected beam power as a 
function of distance along the traveling wave tube. Conditions 
are same as in Fig. 1 except E: 1. 0. 

length Xb"' 66 cm, but at different phases in remarkable 
agreement with Fig. 2 of Ref. 10. 

The fast oscillations in Fig. 1 are at half the wave­
length. They result from the forward wave beating with 
a small component that is reflected by the imperfectly 
matched helix termination. The backward wave does 
not significantly affect the dynamics because it is not 
synchronous with the beam. 

As predicted by modulational theory, the modes in 
Fig. 1 do not grow beyond the initial saturation points.9

•
10 

However, many intermodulational products with fre­
quencies w. = w0 ±nt::..w, n = 2, 3 ... are nonlinearly unsta­
ble, but they remain relatively small within the length 
of the experiments and do not significantly affect the 
particle dynamics. In fact, there is little difference in 
the spatial evolution of the total wave power (measured 
with a braodband detector) between the single- and 
many-wave case because the total power in the satellite 
waves is small, roughly H>% of the total power. 

The basic premise for the modulational calculation 
can be tested simply by launching the satellite wave 
withe= 1. 0 as shown in Fig. 2. In particular, two 
waves launched with equal amplitude should evolve 
similarly as long as the beam particles do not resolve 
the frequency separation. Indeed, this occurs in Fig. 
2 and since t::..w is small, the two launched waves evolve 
together over the entire interaction region. Their 
saturation amplitude is 4. 5 dB lower than the satura­
tion level for a single wave. The wave at w.1 appears 
spontaneously near the onset of nonlinearities and satu­
rates 9. 5 dB below the saturation level of the main 
wave. Once again, many intermodulation products ap­
pear following saturation but 80% of the wave power re­
mains in the two launched waves. 

For quantitative comparison with the modulation cal­
culation, we plot the saturation amplitudes of the main 
wave, launched satellite and the nonlinear product as a 
function of e in Fig. 3. The amplitudes are normalized 
to the saturation level of the main wave when it is 
launched alone. The measured points agree with the 
calculation (solid line) within the experimental error 
(± 1 dB). For E $ 0. 4, the saturation amplitudes for the 
primary satellite waves are equal and proportional to E 
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FIG. 3. Saturation amplitude for main wave w0/27r=l95 MHz, 
launched satellite w0+Aw(Aw/27r=3 MHz), and intermodula­
tional product w0 - Aw as a function of initial amplitude ratio E. 

Saturation amplitudes are normalized to the saturation ampli­
tude of the main wave when it is launched alone. The beam 
current is 10 mA; the beam voltage is 920 V. 

while the evolution of the main wave is unaffected. For 
e >0. 4, the satellites play an active role in trapping the 
particles. Consequently, their saturation amplitudes 
are no longer simply proportional toe, and the satura­
tion level of the main wave decreases with increasing e. 
Although the saturation amplitudes of the individual 
waves depend one, the total wave saturation power 
{broadband measurement) varies only slightly (±0. 5 
dB) withe. 

Figure 3 shows that the modulational calculation cor­
rectly predicts the saturation amplitudes when two 
waves are launched. We emphasize that the calculation, 
which is described in detail in Ref. 10 and repeated 
here for different values of e, is performed for a small 
cold beam-plasma system. However, it is directly 
applicable to the traveling wave tube because the inter­
actions in both systems are analogous. 

Ill. BREAKDOWN OF MODULATIONAL THEORY 

The breakdown of the modulational approximation can 
be observed by increasing Aw. In Fig. 4, the condi­
tions are identical to those in Fig. 2 except Aw/21T == 25 
MHz. The waves at w0 and w.1 are launched with equal 
amplitude, and they evolve together until z =90 cm. 
At this point, the two launched waves depart dramati­
cally signifying the breakdown of the modulational ap­
proximation. 

The dependence of the breakdown position zb on the 
frequency separation is shown in Fig. 5. A linear re­
lation between zb and w/ Aw is observed which can be 
expressed as 

(1) 

where La is the autocorrelation distance, which is the 
distance a resonant particle must travel in the labora­
tory to resolve the frequency separation Aw, and is 
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FIG. 4. Wave power versus distance along the traveling wave 
tube. Conditions same as in Fig. 2 except Aw/271"= 25 MHz . 

given by 

L = 1TV 
a Aw(v0/v1 -1) ' 

{2) 

where v0 is the phase velocity of the main wave, and v, 
is the group velocity (vJv,.= 1. 6 for the experimental 
results shown here). The zero intercept in Fig. 5 z0 

== 60 cm is the point where the dynamics become nonli­
near as indicated by the rapid emergence of the nonli­
near product wave in Figs. 1, 2, and 4. Equation {l) 
shows that the modulation approximation fails when the 
resonant particles resolve the spectral spread following 
the onset of nonlinearities. 

For two waves of comparable amplitude, the break­
down of the modulational approximation marks the tran­
sition from coherent to stochastic behavior as evidenced 
by the washing out of the trapping oscillations in Fig. 4. 
Such a stochastic instability arises when the trapping 
widths of two waves exceed the difference in phase vel­
ocities; specifically, this so-called resonance overlap 
condition is8 

(3) 

where v" is the phase velocity of the nth satellite wave. 
In the beam-plasma instability as well as in a traveling 
wave tube, most linearly unstable modes have a phase 
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FIG. 5. Breakdown position of the modulational approximation 
as a function of w0/ Aw. Main wave and upper satellite are 
launched with E = 1. O. The beam current is 1 O mA; the beam 
voltage is 920 v. 
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FIG. 6. Wave power versus distance along the traveling wave 
tube. The conditions are the same as in Fig. 4 except€"' O. 2. 

velocity within a trapping width of the saturated main 
wave and, therefore, they satisfy the overlap criterion 
in the nonlinear region. 

When Eq. (3) is satisfied, the phase space trajec­
tories of neighboring particles diverge in a diffusion 
time which, in the laboratory frame, transforms to a 
distance zd given by 

(4) 

where K = [ ov/ v0 - v1 ) ]
2 is the K entropy. 8 e. is the satu­

rated amplitude ratio cf>/ cf>0 and is related toe accord­
ing to Fig. 3. z0 is included in Eq. (4) because particle 
diffusion is significant only after the dynamics become 
nonlinear. 

By comparing Eqs. (1) and (4), we find that stochas­
tic behavior occurs immediately following the break­
down of the modulational calculation when the two waves 
have comparable amplitudes Es -1. However, for 
e. « 1, the coherent motion of the bunched particles 
persist beyond an autocorrelation distance and this is 
shown in Fig. 6. The conditions in Fig. 6. are identi­
cal to those in Fig. 4 except that the satellite is launch­
ed with a smaller amplitude so that e. -0. 13. The trap­
ping oscillations of the main wave persist throughout 
the length of the experiment, that is, far beyond the 
autocorrelation distance La -30 cm even though the 
overlap criterion Eq. (3) is still satisfied. This is 
consistent with theory because Eq. (4) predicts that 
the mixing length is zd - z0 -17 m due to the smallness 
of e.. Conversely, the position where the modulational 
approximation fails is relatively unchanged by the de­
crease in e. as indicated by the growth of the satellite 
waves during the second trapping oscillation in Fig. 6. 
Remember, according to the modulational calculation, 
the satellite waves should be nonlinearly stable (see Fig. 
1) and the nonlinear growth of these waves indicates the 
breakdown of the modulational calculation. 

IV. SUMMARY 

In summary, we have found that a modulational calcu­
lation successfully describes the initial nonlinear evolu-
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tion of two unstable waves in a system analogous to the 
beam-plasma system for all relative amplitudes of the 
waves. The model fails after an autocorrelation dis­
tance beyond the onset of nonlinearities, that is, after 
the particles resolve the frequency separation of the 
two waves. Since most satellite waves within the insta­
bility bandwidth satisfy the resonance overlap condition, 
they induce stochasticity and detrap the particles. The 
mixing time is found to be proportional to the autocor­
relation time. Since the autocorrelation time is inver­
sely proportional to Aw, satellite waves close in fre­
quency to the main wave are not very effective in induc­
ing stochasticity even though they satisfy the overlap 
condition. This also suggests that the most deleterious 
satellite waves in a continuous spectrum are those 
farthest away in frequency from the main wave but 
which still overlap with the main wave. 
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