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Pure Electron Plasma, Liquid, and Crystal
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We speculate on the possibility of liquefying and crystallizing a magnetically confined
pure electron plasma.

Recent experiments have involved the magnetic
confinement of an unneutralized electron gas of
sufficient density to be called a plasma —a pure
electron plasma. ' It is interesting to consider
what will happen if such a plasma is cooled to a
very low temperature, say, to a few degrees
kelvin or less. One thing that cannot happen is
recombination, since there are negligibly few
ions in the confinement region. For electron
thermal energy less than the Coulomb interac-
tion energy between neighboring electrons (i.e.,
kT&e'n'~'), the electrons will be strongly corre-
lated. For sufficiently low temperature, the
electron-electron correlation function will ex-
hibit oscillations characteristic of a liquid, that
is, a pure electron liquid. For even lower tem-
perature, one expects the liquid to experience a
phase transition and become a pure electron crys-
tal. At low temperature, one also expects quan-
tum effects to be important in the electron dynam-
ics. In this Letter we speculate on the possibility
of realizing such conditions in the laboratory.

The confinement geometry for the experiments
of Ref. 1 is basically cylindrical. Radial confine-
ment of the plasma is provided by a uniform stat-
ic magnetic field, B, in the axial direction. The
cylindrical wall is divided into three sections
with the plasma residing in the grounded central
section. The end sections are biased sufficiently
negatively that axial confinement of the plasma
is guaranteed. ' The method for injecting the elec-
trons and capturing them is described in Ref. 1.

The radial confinement must persist long enough
for the plasma to be cooled, and it must persist

f

in the face of strong electron-electron interac-

tions. The key to understanding this confinement
is the total canonical angular momentum of the
electrons, Ps=+&[mvs r, —(e/c)As(r&)r&] H.ere,
(r, 6, z) are cylindrical coordinates, and the vec-
tor potential is given by As(r) =Br/2, neglecting
the diamagnetic field. One may show that the dia-
magnetic field is small compared to I3, provided
all electron velocities are small compared to c'.
The confinement is easiest to understand for the
case where I3 is sufficiently large that we may set
Ps ~(-eB/2c)g, r, '. To. the extent that Ps is con-
served, there is a constraint on the allowed ra, -
dial positions of the electrons (i.e. , Q„r' = c. onst)
and only a small fraction of the electrons can
reach a wall which is at a radius significantly
larger than the initial radius of the plasma. Of
course, P is conserved by electrostatic inter-
actions between the electrons, no matter how
complicated and nonlinear these interactions may
be. Examples of effects which do not conserve
I' are electron-neutral collisions, finite wall re-
sistance, radiation, and construction errors that
are not cylindrically symmetric.

Assuming P is conserved and the electrons re-
main confined, electron-electron interactions
will eventually bring the electrons into thermal
equilibrium with each other. Under these condi-
tions, the distribution for a canonical ensemble
is given by p = Z ' exp [- (H —vP s)/k T], where B
is the Hamiltonian for the electrons. ' The parti-
tion function Z = Z(R, &u, T) is determined by nor-
malization to unity of the phase-space integral of
the distribution, and the parameters T and w are
determined by the energy and angular momentum
in the system. ' In terms of velocity and position
variables, the distribution takes the form

P(x„v„.. . , x„,v~) =(1/Z) exP((- 1/kT) [Qz mv&'/2+'lt(x». . .x~) —cog&(mvs r& —eBr&'/2c)]'f,

where %L(x„.. . , x~) is the energy required to assemble the electrons in the configuration (x„.. . , x~)
and we have retained only electrostatic interactions between the electrons. Rearranging terms in the
exponential allows one to rewrite the distribution as

p(x„v„.. . , x, v~) = (1/Z) exp((- 1/k T) [g& m(v&- r,. u&8)'/2+ %t(x„.. . , x~) + m~(Q —cu) Qp&'/2)], (2)

where Q=eB/mc. The velocity dependence of each electron is simply a, Maxwellian superposed on a
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= (2m/e) ~(Q —&u), (3)

neutralizing it aut to some radius where the sup-
ply of electrons is exhausted. At that radius the
electron density falls off abruptly, assuming the
Debye length is much smaller than the column ra-
dius. ' Near the negatively biased end cylinders
the density also falls abruptly; so the overall pic-
ture is of a uniform density plasma bounded by
some surface of revolution where the density
falls abruptly. The condition an the magnitude of
the density given by Eq. (3) can be rewritten as
the well-known condition' for the dynamical
equilibrium of a uniform-density rigidly ro-
tating unneutralized plasma column [i.e. , &u~'
= 2&v(A- ~)]. The Brillouin limit' on the density
[i.e. , co~ ~ 6/v 2] results from choosing &u to maxi-
mize the density for a given field.

The interpretation of the last term in the brack-
et of Eq. (2) as the potentia, l energy due to a hypo-
thetical cylinder of uniform positive charge also
can be used as the basis for a comparison be-
tween our system of electrons in a rather thor-
oughly studied theoretical model. ' " In this mod-
el, electrons, or more generally, charged parti-
cles of a single species interact electrostatically
and are immersed in a uniform neutralizing back-
ground charge. The model has been studied be-
cause of its application to correlation effects in
such diverse systems as plasmas, metals, neu-
tron stars, dielectric solutions, and colloidal
suspensions. It is clear that replacement of the
magnetic field in our confinement device by a
cylinder of uniform positive charge would leave
the distribution in Eq. (2) unchanged, except for
the rigid-body rotation apparent in the velocity

rigid rotation of frequency ~. For sufficiently
large J3, the last term in the bracket insures
that the prabability of finding an electron at large
r& is exponentially small. Equivalently, one may
say that the mean electron density is exponential-
ly small at large ~. Of course, the cylindrical
wall is assumed to be outside the radius where
the density becomes small. The term%;(x„. . . ,
x~) makes the density small nea'r the ends, where
the end cylinders are biased strongly negative.

A simple way to understand the density profile
is to interpret the last term in the brackets of
Eq. (2) as the potential energy of the electrons
due to a hypothetical cylinder of uniform positive
charge. The electrons match their density to
that of the positive charge,

4mne = —V'[(- 1/e) m&u(O- ~)(r'/2)]

variables. This rotation does not enter the parti-
tion function; so the thermodynamic properties
for the magnetically confined electrons are the
same as those for the electrons in a cylinder of
uniform positive charge. The spatial correlation
functions are also the same for the two systems.

The theoretical studies done for electrons in a
uniform positive charge usually assume the sys-
tem is infinite in extent. For this case 'tL(x„. . . ,
x~) takes the simple form

By scaling lengths in terms of a, where 'mn-z'=1,
one can see that correlation effects depend only
on the parameter I'=e'/ak T. For reference, we
note that the plasma expansion parameter g=—1/
nA D' is given by g = 4wv 3 V~'. The expansion
schemes associated with weak correlation require
I"«1.' As I" approaches unity, these schemes
break down, and physics associated with strong
correlation becomes important. Monte Carlo cal-
culations show that the pair correlation function
begins to exhibit oscillations characteristic of a
liquid for I'=2 and that a liquid-solid phase tran-
sition occurs for I" =155."~"

All of the preceding analysis has assumed that
the electrons obey classical mechanics, but as
the temperature is reduced the system can enter
a regime where kT is less than AQ and the dis-
creteness of the Landau levels becomes impor-
tant. Also, the electron spins tend to become
aligned with the magnetic field. At somewhat
lower temperatures, kT is also less than ~~,
and quantum effects become important for the
collective dynamics of the electrons. In the quan-
tum-mechanical case, one cannot introduce vel-
ocity variables and remove the magnetic field
from the partition function. Nevertheless, argu-
ments similar to those presented by signer' for
the unmagnetized system lead one to speculate
that the electrons may arrange themselves as a
lattice when e'/a» Eau~. This inequality is more
familiar in the form r,»1, where x,=a/a~ and
a~= 8'/me' is the Bohr radius. Just how extreme
the inequality must be for a stable lattice to exist
is apparently a difficult theoretical question, and
estimates in the literature for an unmagnetized
system vary over a wide range. "'" A detailed
analysis for the magnetized system would be quite
useful.

It is instructive to collect some of these crite-
ria on a single figure. In Fig. 1, the ordinate is
log»(T), where T is measured in degrees kelvin.
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FIG. 1. Parameter space for the pure electron sub-
stance.

The abscissa along the bottom of the figure is
log»(n), where n is measured in electrons per
cubic centimeter. The abscissa along the top of
the figure is log„(B), where B is measured in
gauss. The two horizontal scales are related by
the Brillouin condition, &u&

——0/v 2. In other words,
the value of B which appears above a particular
value of n is the lowest field for which that densi-
ty can be confined. The various stages of increas-
ing correlation are indicated by lines at nA. D

= 1,
I'= 2 and I"= 155. The onset of quantum behavior
is indicated by lines at AQ = k T and h~~ = k T. The
smallest value of x, on the graph is r, =10' cor-
responding to n=10" cm '. The dashed lines are
rough indications of technical limits. A field of
100 kG is readily available with superconducting
coils. A heat reservoir may be reduced to 4 K
with liquid helium and to 10 ' 'K with a dilution
ref rigerator.

One way to cool the electrons themselves is to
arrange for fluctuations in electron charge densi-
ty to induce charge onto a conductor, with the in-
duced charge flowing to the conductor through a
cooled resistor. The resistor is then a low-tem-
perature heat reservoir in thermal contact with
the electrons. To the extent that the conductor is
cylindrically symmetrical and perfectly conduct-
ing, its coupling to electrostatic fluctuations can
remove energy but not angular momentum from
the electrons. A similar technique has been used
to cool a small number of electrons in a Penning
trap to a few degrees kelvin. ' Spontaneous cyclo-

tron radiation also can be an effective cooling
mechanism, for sufficiently large magnetic field.
Of course, the radiating electron must be above
the lowest Landau level. Also, the cyclotron fre-
quency must be above the cutoff frequency for the
waveguide formed by the cylindrical wall, "and the
the waveguide must be terminated in cooled re-
sistive end sections.

The cooling mechanisms are in competition with
various heating mechanisms. Processes which
remove angular momentum from the electrons
may free some of the electrostatic energy and ki-
netic energy of rotation to heat the electrons.
Considering the good vacuum achievable in cryo-
genic systems, we estimate that heating due to
electron-neutral collisions can be overcome by
the cooling mechanisms, provided that the radius
of the electron column is sufficiently small. If
finite wall resistance proves to be a problem, one
can go to superconducting walls. It is difficult to
estimate theoretically the heating rate due to
small asymmetric-construction errors, but ex-
trapolation from the parameters of existing ex-
periments suggests that these effects may be
made small enough to be unimportant. However,
the reader should be cautioned that the extrapo-
lation covers several orders of magnitude and is
not particularly convincing.

Preliminary calculations indicate it would be
feasible to measure the expected electron corre-
lations using laser scattering, provided there are
at least 10" electrons in the system.

In conclusion, we note that the part of parame-
ter space in Fig. 1 bounded by the dashed lines
at 8=100 kG and T=10 ' 'K contains regions
where the electrons should be in a liquid state
and regions where they should be in a crystalline
state. Also, there are regions where the dynam-
ics should be classical and regions where it
should be quantum mechanical. It is not obvious-
ly impossible to study these states of matter ex-

perimentallyy.
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When the plasma outflow velocity relative to the critical surface is supersonic, com-
pressional density profiles can form in the critical region. These compressions involve
dissipative processes like those in collisionless shocks; associated plasma instabilities
and reflected ions may inhibit energy transport and enhance laser-light absorption.

The manner in which laser-radiation pressure
modifies plasma density profiles is important to
laser-light absorption, because the expected mix
of absorption processes and transport phenomena
depends sensitively on density profiles near the
critical surface. In this Letter we show analyti-
cally that plasmas which enter the critical region
supersonically can exhibit compressional density
profiles, having a nonmonotonic dependence of
density on distance from the target surface. Su-
personic compressions in the critical region nec-
essarily involve dissipation properties like those
in collisionless shocks, and the plasma instabili-
ties responsible for the dissipation can affect las-
er-light absorption and energy transport.

In contrast, plasmas which enter the critical
surface subsonically exhibit the familar density
step' there. For some near-sonic flows, no
steady profile exists. Our analysis offers new in-
sights into recent computer hydrodynamics calcu-
lations in the sonic and supersonic regimes.

Jump conditions across the critical surface—These may be obtained by integrating steady-
state equations of mass and momentum conserva-
tion, V (pv) =0, pv ~ Vv= —Vp —V Tf„, from a
point x, on one side of the critical density to a
point x, on the laser side (see Fig. 1). The laser-
radiation pressure tensor is'

II„=T(E'+B')/8v —(e„EE+BB)/4~,

where e„-=Re[1—~~'/&u(~+ iv) j, the laser frequen
cy is w, and the collision frequency is v. For
light normally incident on a one-dimensional plas-
ma, the normal component of 11„ is (E +Bs)/8v
If x, and xm are close together, we need not speci-
fy the overall geometry. For spherical plasmas
w r q I x x2l«r.

We assume that the flow is approximately
steady for the short time lX, -x, l/c, required to
cross the critical region. This is well justified
for current experiments which typically have
ix, —xml =1-2 pm, c, =3 &&10~ em/sec, so that
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