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ABSTRACT OF THE DISSERTATION

Theory of Vortex Crystal Formation

in Two-Dimensional Turbulence
by

Dezhe Jin
Doctor of Philosophy in Physics
University of California, San Diego, 1999

Professor Daniel H. E. Dubin, Chairman

Recent experiments with pure electron plasmas have found that freely
relaxing turbulence in inviscid, incompressible, two-dimensional (2D) Euler flows
can spontaneously form ”vortex crystals” — symmetric, stable arrays of strong
vortices (coherent patches of intense vorticity) that co-rotate with a background
of low vorticity. This thesis presents a theory of these novel equilibrium states of
2D turbulence.

The thesis consists of three sections.

In the first section, we formulate a statistical theory of the vortex crys-
tals. It is shown that the vortex crystals are well described as ”regional” maximum
fluid entropy (RMFE) states, which are equilibrium states reached through ergodic
mixing of the background by the strong vortices. Given the dynamically conserved
quantities of the Euler flow as well as the number of the strong vortices and the vor-
ticity distributions within each strong vortex, the theory predicts the positions of
the strong vortices and the coarse-grained vorticity distribution of the background.
These predictions agree well with the observed vortex crystals.

In the second section, we study the dynamics of the interaction between
the strong vortices and the background. A simple model of the strong vortex-

background system is introduced. The model consists of several point vortices

xiv



and a background with constant vorticity and nearly circular boundary. The total
circulation of the point vortices is assumed to be small compared to that of the
background. We show that the leading order dynamics of the the point vortices is
equivalent to that of point vortices inside a circular free-slip boundary. However,
this equivalence ends in finite time since nonlinear interactions cause the contour
of the background to filament and wave break. The time required for the filamen-
tation to occur is determined analytically, and compared to the contour dynamics
simulation.

In the third section, we examine the formation process of the vortex
crystals in more detail. In the first section, the vortex crystal equilibrium could
only be predicted if the number of the strong vortices in the final state was given.
In this section, a theory is advanced that allows us to predict from the initial
conditions the approximate number N, of the strong vortices in the final state.
A relation is found between N, and quantities associated with the flow in the
early times of the turbulent relaxation, such as the number of the strong vortices,
their total circulation, the area of the flow, and the exponents of the power laws
associated with the strong vortices. This relation is confirmed by the experiments

and vortex-in-cell simulations.
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Chapter 1

General Introduction

In this thesis we present a theory for vortex crystal formation in the free
relaxation of turbulence in inviscid, incompressible, two-dimensional (2D) Euler
flows. In this chapter, we review briefly 2D Euler flow, 2D turbulence, and the

experiments on vortex crystals. We also give an overview of the thesis.

1.1 Two-Dimensional Euler Flow

Two-dimensional Euler flows are the high-Reynolds-number limit of 2D
incompressible Naiver-Stokes flows. They are often used as simple models for
large scale geophysical and astrophysical flows, such as the polar vortex, tropical
cyclones, and the Great Red Spot of Jupiter[1, 2, 3, 4, 5|. They are also applicable
to many experimental systems[6], including strongly magnetized plasmas [39], thin
layers of electrolyte[62], and flows in soap films[7].

The equation of motion for a 2D Euler flow is
Ow +u-Vw =0, (1.1)
where u(r,t) is the velocity field, and
w(r,t)=2z-V xu (1.2)

is the vorticity field. Here z is the unit vector perpendicular to the plane of the



flow, and r = (z,y) is the position vector in the plane. The flow is incompressible:
V-u=0; (1.3)
therefore, a stream function (r,t) can be related to the velocity field:
u=V xyz. (1.4)
Substituting Eq.(1.4) into Eq.(1.2), we get
Vi = —w. (1.5)

Two-dimensional Euler flows can be unbounded, or bounded in domains
of various shapes. When bounded, they can be subject to free-slip or periodic
boundary conditions. In this thesis, we will focus on the flows bounded in a

circular domain with the free-slip boundary condition:
=0, or n-u=0 on the circular boundary, (1.6)

where n denotes the radial unit vector of the circular domain.

From the above equations one can verify that the total circulation

I'= /dr2w, (1.7)
the total angular momentum,
1 2 2
L= —i/dr wre, (1.8)
and the total energy
1
H= 5 /erww (1.9)
of the flow are conserved.
Besides I', L and H, there are infinite number of conserved quantities in

2D Euler equations. For any closed path C(t) moving with the flow in time ¢, and

whose interior is contained in the fluid, the generalized enstrophy

7z = /C ), (1.10)



where f is an arbitrary function, is conserved by the flow since
4 / dr’f(w) = dr?f' (w) (w +u - Vw) = 0. (1.11)
dt Jew) c(t)

For the case that f(w) = w? and C(t) is the boundary of the circular domain,
7 = /dr2 2= 7, (1.12)

is called enstrophy.

1.2 The Free Relaxation of 2D turbulence

With the initial vorticity distribution and the boundary condition speci-
fied, the evolution of 2D Euler flow is completely determined by Eqs. (1.1)-(1.5).
Except for a few cases, the evolution involves highly complicated velocity and
vorticity fields. This is called the free relaxation of 2D turbulence. Note that
Eq.(1.1) implies that vorticity is neither created nor destroyed, but is merely car-
ried along the streamlines. The equation implicitly assumes that there are no
external sources or sinks of vorticity, therefore describes freely relaxing turbulence
rather than forced turbulence.

Over the years, both statistical and dynamical theories have been pro-
posed to describe the free relaxation of 2D turbulence, and many numerical simu-
lations and experiments have been performed to test them.

The statistical theory of 2D turbulence was initiated by Onsager[8], who
considered the final state of relaxed turbulence in the inviscid limit. Onsager de-
scribed 2D turbulence with the statistical mechanics of a finite number of point
vortices. Observing that the statistics allows negative temperature solutions in
which point vortices with same sign clump together, he suggested that this might
offer an explanation for observations of large vortices in nature. Onsager’s ap-
proach was further developed by Joyce and Montgomery[9]. Approximating the

continuous vorticity field as the mean field of a large number of point vortices and



assuming that the dynamics of the point vortices is ergodic, they predicted a rela-
tion between the stream function and the vorticity in the final state of the turbulent
relaxation by maximizing the Boltzman entropy associated with the average den-
sity of the point vortices, under constraints that the total circulation, energy, and
angular momentum (when the flow is unbounded or subject to circular free-slip
boundary) are conserved. Numerical simulations performed in a square domain
with periodic boundary conditions seems to agree with the theory[10, 11]. The
theory has also been further developed by others[12]. However, the applicability
of the point vortex statistics to 2D turbulence is limited, since the theory does
not include the incompressibility of the Euler flow and hence can not include the
conservation of the generalized enstrophy.

This issue was resolved by the works of Miller[13], Robert and Sommeria
[14], who rediscovered the results of Lynden-Bell[15] and Kuz’min[16]. The theory
distinguishes a microscopic state of the flow, which specifies the vorticity level at
each spatial point, from a macroscopic state of the flow, which only specifies the
coarse-grained (i.e. averaged over a small area) vorticity near each spatial point.
A macroscopic state corresponds to many microscopic states; therefore, a fluid
entropy can be associated with it. Assuming that 2D turbulent flow ergodically
mixes the vorticity field, the theory predicts that the turbulence relaxes into a
macroscopic state with maximum fluid entropy, with the constraints that not only
the total circulation, energy, and angular momentum (when applicable), but also
the generalize enstrophy, are conserved. The point vortex statistics is recovered
when the coarse grained vorticity is much less than the (microscopic) vorticity
levels[17]. However, the determination of the microscopic vorticity levels from any
real experimental flow (which is necessarily coarse grained by the experimental
diagnostics) is an outstanding issue. In this thesis, we call the theory as global
maximum fluid entropy (GMFE) theory. We will discuss the theory in more detail
in chapter 2. The GMFE theory has been applied to the statistical interpretation
of the Jupiter’s Great Red Spot[17, 18], merger of two vortices[19], and coherent



vortical structures in domains of various shapes [20, 21, 22, 23, 24].

The dynamical description of the freely relaxing 2D turbulence originated
from the work of Batchelor. Inspired by the success of Kolmogorov theory of three-
dimensional homogeneous turbulence[2], Batchelor proposed a cascade theory for
the freely relaxing 2D turbulence[25]. (Kraichnan proposed a similar theory for
forced 2D homogeneous turbulence[26].) Observing that stretching of the constant
vorticity lines increases the gradient of vorticity, Batchelor conjectured that the
enstrophy is transfered towards find scales with nonzero rate in the inviscid limit
of 2D turbulence. Through dimensional analysis he deduced that the enstrophy
spectrum |w(k,t)|?, where w(k,t) is the spatial Fourier coefficient of the vorticity
distribution, depends on the wave number k as k! for fine scales.

A logical consequence of the enstrophy cascade is that the coarse grained
final state of the turbulent flow is a state of minimum enstrophy. Therefore, it
should be possible to predict this structure from the initial condition by minimiz-
ing the enstrophy while keeping total circulation, energy, and angular momentum
(when applicable) constant. This was pointed out by Bretherton and Haidvogel[27].
Matthaeus and Montgomery called this procedure ”selective decay”, and performed
numerical simulations to verify it[28]. Leith used this procedure to describe iso-
lated vortices[29]. Experiments done by Huang and Driscoll have shown that, from
some initial conditions, observed final states are close to the minimum enstrophy
states as predicted by the selective decay principle[30].

Many high resolution numerical simulations have been done to test the
Batchelor-Kraichnan theory. Brachet et al observed in their simulations that
stretching of the constant vorticity lines does create high vorticity gradients by
forming vorticity filaments (or vorticity sheets). As these filaments are packed to
form layers, the k! enstrophy spectrum is observed for small scales[31]. However,
simulations by Santangelo, Benzi, and Legras, which are similar to those of Bra-
chet et al but much longer in time, have revealed that the k! spectrum is only

transient. Eventually the spectrum gets much steeper because of the formation of



a large number of small scale coherent vortices as a consequence of the fragmen-
tation of the vorticity filaments. They found that the long time behavior of the
turbulent flow strongly depends on the initial conditions.

Numerical simulations also revealed that strong vortices (coherent patches
of vorticity that are small in radius, intense in vorticity, and almost axially sym-
metric) can form from a large variety of initial conditions. These strong vortices
are often formed around the maxima of the initial vorticity distribution, and they
dominate the subsequent evolution of the turbulent flow[32, 33, 34]. Benzi et al
also showed that the dynamics of the strong vortices can be understood in terms of
the dynamics of point vortices[33]. Like sign strong vortices can merge when they
come close to each other. The emergence of the strong vortices stops enstrophy
cascade to small scales. Also, since the vorticity trapped in the strong vortices does
not mix with the rest of the flow (except during mergers, when a small fraction
of the circulation is torn away from the strong vortices via thin filaments), the
ergodicity of the vorticity field is not fulfilled. Therefore, these simulations have
shown that the evolution of 2D turbulence from a large variety of initial conditions
can not be predicted from either Bachelor-Kraichnan theory (and its consequence
— selective decay theory) or the GMFE theory.

To describe the flows dominated by strong vortices, Carnevale et al pro-
posed a punctuated scaling theory, which states that the dynamics of the strong
vortices can be thought of as the Hamiltonian dynamics of point vortices punctu-
ated by occasional dissipative merger events[35]. Based on a merger model that
conserves the energy of the strong vortices and the maximum vorticity of the flow,
the theory proposes a power law decay of the number of the strong vortices, and
predicts power law increase of the average radius and the average circulation of the
strong vortices, as well as power law decay of the total circulation of the strong
vortices. This power law decay of the number of the strong vortices is believed,
with support of some numerical simulations, to lead to a single vortex or a pair

of opposite-signed strong vortices in the final state of the turbulence[36]. Experi-



ment with a thin layer of electrolyte have obtained results that agree well with the
theory[37].

However, in recent experiments with pure electron plasmas, Fine et al
have found that 2D turbulence can relax into strikingly ordered equilibrium states
— ”vortex crystals”, in which a number of strong vortices arrange themselves into
symmetric, stable arrays in a low vorticity background [38]. In the next section,

these experiments are described in detail.

1.3 Experiments on Vortex Crystals

The experiments are performed on a strongly magnetized pure electron
plasma column confined in a Penning-Malmberg trap, as shown in Fig. 1.1. Elec-
trons emitted from a spiral tungsten filament are contained axially by the neg-
ative voltages on the two ends of the trap, and confined radially by a uniform
axial magnetic field. Individual electrons bounce rapidly in the axial direction
(f. = 0.AMHz) , and have small cyclotron orbits (&~ 5um) perpendicular to the
magnetic field. The electric fields of the plasma cause the electron guiding centers
to E x B drift across the magnetic field as effectively incompressible, inviscid,
2D Euler flow with free-slip boundary in a circular domain. The axially averaged
electron density is proportional to the flow vorticity, and the axially averaged elec-
trostatic potential of the plasma is proportional to the stream function. Since the
plasma consists of only electrons, the flow has the somewhat unusual characteristic
of having the same sign vorticity everywhere and non-zero total circulation. The
vorticity of the flow is measured by dumping the plasma onto the phosphor screen
and taking an image with a CCD camera [38, 39].

Two separate sequences of vorticity evolutions taken from the experiments
are shown in Fig.1.2. The vorticity is initially distributed in a spiral, resembling
the shape of the tungsten filament. Within one rotation time 7 (= 170us) of the

flow, 50 ~ 100 strong vortices form due to a Kelvin-Helmholtz instability. Subse-
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Figure 1.1: The Penning-Malmberg trap with phosphor screen/CCD camera diag-

nostics.

quently, the strong vortices move chaotically and merge occasionally, their number
decreasing according to a power law as proposed in the punctuated scaling theory.
A low vorticity background is generated from the thin filaments ejected during
the mergers of the strong vortices and from the low vorticity part of the initial
flow that becomes progressively more filamented and entangled. From some initial
conditions, a single strong vortex is formed as the result of the vortex mergers, as
shown in the top row of Fig.1.2. However, from slightly different initial conditions,
5 ~ 20 strong vortices remain in the final states, as shown in the bottom row of
Fig.1.2. Moreover, the strong vortices ”cool” into symmetric lattice patterns that
co-rotate with the background. These equilibria are called vortex crystals. The
vortex crystals last over 10*7x, until individual strong vortices are eroded away by
non-ideal effects in the experiments that are not included in the 2D Euler equations,
such as electron-electron collisions, electron-background neutral gas collisions, etc.

Vortices with smaller radii and circulations are observed to be eroded away first.
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Figure 1.2: Images of vorticity at five different times for two sequences of turbulent
relaxation from similar initial conditions. False color contour plots of vorticity are

displayed.

The remaining strong vortices adjust into new equilibrium patterns. The time
evolution of the number of the strong vortices for the two sequences presented in
Fig.1.2 are shown in Fig.1.3. Also shown in the figure are the time evolutions of
the total circulation of the strong vortices normalized with the circulation of the
flow and the average radius of the strong vortices normalized with the radius of
the circular boundary. For the sequence that forms no vortex crystal, the evolu-
tion of these quantities qualitatively agree with the punctuated scaling theory. For
the sequence that forms vortex crystals,however, the agreement holds only for the
early stage of the turbulent relaxation; at later times, the mergers are stopped and
a finite number of the strong vortices are arrested into equilibrium patterns, and
these quantities do not change much, until individual strong vortices are eroded

away due to non-ideal effects.

1.4 Overview of the Thesis

The discovery of vortex crystals challenges both the global maximum fluid
entropy theory and the punctuated scaling theory. The existence of isolated strong
vortices clearly indicates that the flow is not globally ergodic, since the vorticity

elements trapped in the strong vortices do not mix with the rest of the flow. The
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Figure 1.3: Evolution of number of vortices, vortex circulation, and average vortex

size for two sequences of flow evolution.

global maximum fluid entropy theory predicts a smooth vorticity distribution[17],
which leaves no room for the strong vortices. On the other hand, although the
power law behaviors of the quantities associated with the strong vortices in the
early stage of the flow evolution qualitatively agree with the punctuated scaling
theory[38], the theory fails to explain why several strong vortices remain and fall
into equilibrium patterns in the final state of the turbulent relaxation.

In this thesis, we propose that these two theories should work together to
explain the formation of vortex crystals. The main idea is to recognize that some

regions of the flow are well mixed, while other regions are not. The strong vortices
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ergodically mix the background to a state of maximum fluid entropy. This mixing,
in return, perturbs the otherwise punctuated Hamiltonian dynamics of the strong
vortices, cooling their chaotic motions and driving them into equilibrium positions.
The strong vortices maintain themselves in the turbulent background flow, keeping
their internal vorticity from mixing with the rest of the flow. Therefore, as in the
punctuated scaling theory, the strong vortices can be treated as distinctive units
that are dynamically preserved in between successive mergers.

This physical picture of vortex crystal formation is supported by the
quantitative agreement between the observed vortex crystals and corresponding
"regional” maximum fluid entropy (RMFE) states. A RMFE state differs from the
global maximum entropy state by the inclusion of the strong vortices as additional
dynamical constraints. To calculate the RMFE state corresponding to an observed
vortex crystal, we first isolate the strong vortices and determine their number and
the vorticity distributions in each of them. Then we obtain the total circulation,
the total angular momentum, and the total energy of the flow. We also need to
know the microscopic vorticity levels of the background flow; however, they can not
be obtained from the observed flow since the measured vorticity is coarse-grained.
We therefore assume that the microscopic vorticity of the background flow has a
a single level, and infer its value from the observed flow. With these experimental
inputs, the fluid entropy of the background is maximized via variational method
using the technique of Lagrange multipliers. The maximization predicts the coarse-
grained vorticity distribution of the background and the equilibrium positions of
the strong vortices, which agree quite well with those of the corresponding vortex
crystals. The RMFE theory of vortex crystals is presented in Chapter 2.

To understand the interaction between the strong vortices and the back-
ground, we study a simple model of vortex crystals. The strong vortices are mod-
eled as point vortices, and the background as a vortex patch with constant vorticity
and approximately circular boundary. In the limit that the total circulation of the

point vortices is small compared to that of the background, the dynamics can be
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solved perturbatively with two time scale analysis. On the fast time scale, which is
on the order of the rotation time of the vortex patch, the fast-time-averaged posi-
tions of the strong vortices do not change in the rotating frame of the vortex patch.
The distortion of the boundary of the vortex patch consists of two parts: one is
an ”image charge” part, which is slaved by the fast-time-averaged positions of the
point vortices, and the other is free-streaming Kelvin waves, which are the same
as those on a circular vortex patch without the point vortices. The free-streaming
Kelvin waves oscillate the point vortices around their fast-time-averaged positions.
On the slow time scale, which involves many rotations of the vortex patch, the
fast-time-averaged positions of the point vortices move in the rotating frame be-
cause of their mutual interactions and the influence of the image charge part of the
vortex patch distortion. The resulting motions of the point vortices are the same
as those of the point vortices inside a circular free-slip boundary, with the radius of
the boundary equal to that of the vortex patch. The free-streaming Kelvin waves
interact nonlinearly with the image charge part and the fast-time oscillations of
the point vortices. This nonlinear interaction eventually causes filamentation and
wave breaking of the Kelvin waves on the slow time scale. These predictions are
compared to the contour dynamics simulations. The dynamics of this simple model
of the vortex crystals is explained in Chapter 3.

Experimentally, slightly different initial conditions lead to vortex crystals
with different numbers of strong vortices. For some initial conditions, no vortex
crystal forms, as shown in the top row of Fig.1.2. It is important to know why this
is so. From the vortex-in-cell simulations, we find that the number of the strong
vortices N, in the vortex crystals relates closely to the number N of the strong
vortices in the early evolution of the turbulent flow. This relation can be expressed
quantitatively by equating the mean time between merger events 7, with the time
scale 7. of "cooling” the strong vortices into the equilibrium positions of the RMFE
states. To merge, the strong vortices must come close to each other and their

motions must be out of equilibrium and chaotic; therefore, if 7. < 7,,,, the mergers
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of the strong vortices stop since the strong vortices are arrested into equilibrium
positions and the necessary condition for the merger is removed. We estimate 7,,
from the power law decay of N that follows from the punctuated scaling theory.
We estimate 7, from the mixing time (inverse of the Lyapunov exponent) of the
background, treating the background as passive scalars in the field of the strong
vortices (weak background approximation). The prediction of N, agrees with the
results of the simulations and the experiments. The relation between N, and the
characteristics of the flow in the early stage of turbulent evolution is discussed in

Chapter 4.



Chapter 2

Regional Maximum Fluid
Entropy Theory of Vortex Crystal

Formation

2.1 Introduction

In this chapter we show that vortex crystals are well described as regional
maximum fluid entropy (RMFE) states. We derive the equations for RMFE states,
discuss the zero temperature solutions, solve the finite temperature solutions nu-

merically, and compare the predictions of RMFE states with the experiments.

2.2 Equations for RMFE states

2.2.1 Dynamical Constraints

As discussed in chapter 1, 2D turbulent flows conserve the total circula-
tion I', angular momentum L, energy H, and the generalized enstrophy Z.

The conservation of Z can be conveniently parameterized in the following
way[17]. For each real number o, define A(o) as the area of the region of the flow

on which w < ¢. From the conservation of Z, Eqgs.(1.10) and (1.11), it follows

14
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that the area of any curve moving with the flow is conserved. ' Therefore, A(0)

is conserved. Furthermore,

(2.1)

is conserved. The quantity a(o)do is the area of the region of the flow on which
0 < w < 0+ do. The conservation of a(c) is equivalent to the conservation of
Z(17].

From a large variety of initial conditions, many isolated strong vortices
form [34, 33]. A strong vortex is a coherent patch of intense vorticity. It moves as
a distinctive unit, and the vorticity distribution inside is often nearly axisymmet-
ric and independent of time, until a close encounter with another strong vortex
causes a merger[40]. Therefore, in between two consecutive mergers of the strong
vortices, the number N and the vorticity distributions in each of them are addi-
tional (approximate) dynamical constraints on the 2D turbulent flow. We further
assume that the vorticity distributions inside each strong vortices are described by
axisymmetric functions (;(|r — R;|), where R;,i =1, ..., N are the positions of the

strong vortices.

2.2.2 Fluid Entropy

During the formation of the vortex crystals, the background flow is mixed
in an intricate way by the strong vortices and the random vorticity fluctuations
of the background. This causes chaotic transport and complicated distribution of
the microscopic vorticity field of the flow.

A microscopic state of the background flow is a particular distribution of
the microscopic vorticity. Introducing a uniform grid with a microscopic grid size
A, a microscopic state is specified by assigning appropriate vorticity level on each
unit cell. The accuracy of this description is guaranteed as along as A — 0.

However, description of the chaotic background flow down to the micro-

'"Take f(w) =1 in Eq.(1.11).
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Fine Gnd

Microscopic Vorticity

Figure 2.1: Tllustration of macroscopic and microscopic descriptions of 2D turbu-

lent flow.

scopic scales is not necessary since only the large scale structure, or the macroscopic
state of the flow, is of concern. To determine the macroscopic state corresponding
to a microscopic state, we sub-divide the uniform grid into a union of coarse grains
of macroscopic sizes, and obtain the coarse-grained distribution function n(r, o) of
the background (see Fig.2.1). Here, n(r,o)do is equal to the number of the unit
cells of the coarse grain at r assigned to vorticity level in the interval (o, o + do),

divided by the total number of the unit cells in the coarse grain. Obviously,
N = /don(r,o) =1, (2.2)

and

a(o) = /dr2n(r,0). (2.3)
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A macroscopic state of the background specified by the distribution func-
tions n(r, o) corresponds to a large number Win(r, o)] of the microscopic states.

Therefore, a fluid entropy of the background can be defined as
Sin(r,o)] = kglnW, (2.4)

where kp is the Boltzman constant.
The number W{n(r,o)] can be calculated in a combinatorial way. Con-
sider the coarse grain at r with an area dr?. The number of the unit cells in this

coarse grain is

dr?
Nuc == F, (25)
and the number of the cells assigned to the vorticity level o ~ o + do is
N, = n(r,0)doNy,. (2.6)

Permutations of the assignments within the coarse grain does not change the dis-
tribution function, or the macroscopic state. Since the number of permutations

within the coarse grains is
Ny.!

[T, No!’
the total number of the permutations in all of the coarse grains is

w=ll (HNJV"> ’ (28)

and therefore, the fluid entropy is

S=kyy <1n Nye! =¥ In N(,!) , (2.9)

r

(2.7)

according to Eq.(2.4). Since the coarse grains are macroscopic in size, we have
Nye>1, N, > 1, (2.10)
hence the Stirling formula is applicable:

In Ny! = Nuln N, (2.11)

InN,! = N,InN,. (2.12)
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Substituting above equations into Eq.(2.9), we obtain, after throwing away an

unimportant constant,

— kg 2
S = —P/dr /don(r,a) Inn(r, o), (2.13)

where we have used

> dr® — /er, > do — /da, (2.14)

as well as Egs.(2.2), (2.5) and (2.6). For other derivations and more detailed

explanations of the fluid entropy, see Ref. [13, 14, 17].

2.2.3 RMFE States

During the formation of the vortex crystals, the background vorticity is
chaotically mixed. If we assume that the mixing is ergodic, i.e. the flow has equal
probability of going into any one of the microscopic states that are dynamically
accessible, the flow will relax into the macroscopic state that has the maximal
number of corresponding microscopic states — the maximum fluid entropy state of
the background, or "regional” maximum fluid entropy (RMFE) state. The RMFE
state is distinguished from the global maximum fluid entropy (GMFE) state in
that only part of the flow, the background, is ergodically mixed.

As discussed previously, the microscopic states of the flow conserve the
total circulation I', the total angular momentum L, the total energy H, the total
area a(o)do of the region with vorticity in the interval (0,0 + do), as well as
the number N of the strong vortices and the vorticity distributions (;(|r — R;|)
in each of them. Accordingly, the distribution function n(r,o) that defines the
macroscopic states of the background is subject to a number of constraints.

The conservation of the a(o) is expressed by Eq.(2.3). The constraints

provided by the strong vortices can be put in the following forms:

®; = /ern(r, Nt —R) =0, i=1,.,N (2.15)
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where the auxiliary fields ¢; are defined as

oo , ifris inside the i-th strong vortex,
$i(r —R;) = (2.16)
0 , otherwise.
Eq.(2.15) guarantees that the background vorticity is zero inside the strong vor-

tices. Therefore, the coarse-grained vorticity field of the whole flow is

G(lr —R;|) , if ris inside the i-th strong vortex,
w(r) = (2.17)
[doon(r,0) , ifr is inside the background.
The coarse-grained vorticity distribution @ is the link between n(r, o) of the back-
ground and conservations of I', ., and H. Replacing the vorticity distribution w

in Egs.(1.7), (1.8), and (1.9) with the coarse-grained vorticity w, we obtain

r= /dr%, (2.18)
L= —% /er(Drz, (2.19)
and
H= % / dr’o, (2.20)
where
Vi) = —w. (2.21)

This replacement is justified since I' and L depend linearly on the vorticity, and
H depends on long range interactions between the vorticity fields. In addition to
the constraints above, n(r, o) has to satisfy the normalization condition, Eq.(2.2).

To obtain the RMFE state under the constraints, we use the variational
method with the Lagrange multipliers. The independent variables in the variation
are the distribution function n(r, o) and the positions of the strong vortices R;, 7 =
1,..., N. The constrained maximization of the fluid entropy of the background is

done by the unconstrained maximization of the functional S', defined as
) 1
S'=8 = Z|(H - Ho) =L~ Lo)+ (I’ - o)
+ [ doy(o) (a(o) - a0(0)) + X [ doas(or) (@ — 0)

+ /dr%(r)(/\/— 1)], (2.22)
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where T, Q, p,v(0), a;(0), and k(r) are Lagrange multipliers, and Ty, Ly, Hy, and
ao(o) are values of the conserved quantities I', L, H, and a(c), respectively.
Variation of S’ with respect to n(r,o) gives

J

k 17- 1
_ 2 B - 2
0S8 = /dr /da(Sn{—2 (1+1Inn)+ T [¢o+ 297‘ o+ o

+Zaz )i + ( )]} (2.23)

At the maximum of S’, we have 65" = 0 for arbitrary én, therefore,

n(r,o) = no(r) exp [—ﬂ (01/}6 )+ Zaz )] , (2.24)
where
- 1
e(r) = (r) + 597‘2 (2.25)
is the coarse-grained stream function in the rotating frame of angular frequency

Q,
A2

= — 2.26

p= (2.20)
is the renormalized inverse temperature, ? and

no(r) = e 1 AR (2.27)

is the normalization factor. Together with the auxiliary functions ¢;, the Lagrange
multipliers «; (o), which can be any number that is same sign as 3, merely ensure
that the background is excluded from the regions of the strong vortices. With the
understanding that n(r, o) = 0 inside the regions of the strong vortices, we shall
from now on omit 3>; a;(0)¢; in the expression of n(r, o) for convenience.

Using the normalization condition, Eq.(2.2), we obtain

1
") = Taoexp -5 (0be + 1)) (2:28)
Therefore, Eq.(2.24) becomes
A.0) = P =B (v +(0)) 229

J doexp [-8 (0t +v(0))]

2 Although in principle the temperature can be positive or negative, in this work only positive tem-
perature is considered.
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The Lagrange multipliers 3,2, u, and (o) can be determined indirectly from
H(), Lo, Fo, and (1,0(0').
Since in Eq.(2.22) only H and L change as R; change, maximization of

S’ with respect to the positions of the strong vortices yields

s 1.9
o, ~ Tom, H =0 (2:30)
or
O (H-L)=0 (2.31)
R, e '

Furthermore, since H — 2L is the total energy of the flow in the rotating frame
of angular velocity €2, the above equations are equivalent to the requirement that
the strong vortices are in equilibrium positions in the rotating frame, i.e., their
velocities are zero in the rotating frame.

Equations (2.29) and (2.31) are necessary conditions for the RMFE states.
However, to ensure that a solution of these equations is indeed at least a local
maximum of the fluid entropy of the background, the stability of the solution must
be checked. This is done in two steps. First we show that, for given positions of
the strong vortices, the distribution function given by Eq.(2.29) maximizes S', and
hence S under the constraints. To do this, we take the second variation of S with

respect to n(r,o):

§@5 = —/dr /d [kB‘SZ + 0(57151/1]

_ —/d /d k—Bé%——/drzdwéw

_ —/dr /d kB(S%——/d (Vé5)’
< (2.32)

In the last step of the derivation above, we have used
V25 = —6w, and 6 =0 on 0D, (2.33)

which follow Eq.(2.21) and the free-slip boundary condition. Obviously, S’ is a

concave functional of n(r, o); therefore, the stationary point given by Eq.(2.29) is



22

also the maximum point of S’. Second, we calculate S for given positions of the
strong vortices with the background given by Eq.(2.29), and obtain S as a function
of the positions of the strong vortices, S({R;}). To ensure that the equilibrium

positions given by Eqgs.(2.31) indeed maximize S, we calculate the Jacobian

0%S
- () -
at the equilibrium positions. If all of the eigenvalues of the matrix J are non-
positive, the equilibrium positions maximize S.
An observed vorticity field of a flow is necessarily coarse grained. There-
fore, it is impossible to obtain the conserved quantity a(c) from the observed
vorticity field. Different forms of a(o) can correspond to the same coarse grained

vorticity distribution. For example, consider
a(o) = (A—=T/wy)d(o) + T'/wsd(o — wy), (2.35)

where A is the area of the circular domain and wy is a positive number. This
corresponds to a flow whose microscopic vorticity has only single value w; and
total area I'/w;. For any value of wy that is greater than the maximum of an
observed vorticity distribution, there is a way of distributing the microscopic vor-
ticity with vorticity level wy and total area I'/w; which, when coarse grained, gives
the observed vorticity distribution. 3

The difficulty of obtaining a(o) from the observed vorticity distribution
limits the predicting power of the maximum fluid entropy theory. For the theory
to be useful, assumptions about the form of a(o) must be supplied. In this work,
we assume that the microscopic vorticity of the background has only single value
wys, which is the simplest assumption one can make. The value of w; is chosen

from physical considerations (see section 2.5.2).

With the simple assumption about a(o), the background of the RMFE

3Here we assume that the flow has single sign (taken as positive) of vorticity, which is true for the
experimental flows discussed in this work.
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state is given by the Fermi distribution of the coarse-grained vorticity:

W

o(r) = : 2.36
) = ol + 1 (2:36)
which is derived from Eqs.(2.29) and (2.17) for this simple case. Here
- 1 9
e =1+ §QT — phe (2.37)

2.3 Zero Temperature Solutions

Equations for the RMFE states contain solutions similar to the observed
vortex crystals. This can be illustrated for the case of zero temperature, i.e.
B — oo. To simplify the analysis, we assume that the strong vortices can be
treated as point vortices with circulations I';,7 = 1, ..., N. We also assume that the
radius of the circular boundary is much larger than the size of the flow so that we
can neglect the influence of the boundary and think of the flow as being placed in
the free space.

From Eq.(2.36), we see that there are two possibilities for getting nonzero
background vorticity distribution for # — oco. One possibility is 1. = 0 inside the
background, and . > 0 outside. In this case, since (1), is undetermined in the
background, @ can take any constant value that is less than w;. The microscopic
vorticity fields are uniformly mixed with the void, and the velocity of the back-
ground flow is zero in the rotating frame of angular frequency 2. We call this
possibility a shear-free equilibrium. The other possibility is ¥, = 0 only on the
boundaries of the background. Inside the background, . < 0, outside, ¥, > 0. In
this case, @ = wy inside the background, and the microscopic vorticity fields are

all clustered together. We call this possibility a Fermi degenerate equilibrium.

2.3.1 Shear-Free Equilibrium

For shear-free equilibrium, the solution of the equations for the RMFE

state is easily found. The coarse-grained vorticity of the background can be any
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positive number wy < wy. The outer boundary of the background is a circle with

r
po = 1| —. (2.38)
TTWo

Around each strong vortex, there is a circular hole with radius

radius

r;

7T(,<J0‘

pi = (2.39)

Here, p; is chosen such that, if the circulation of the strong vortex is uniformly
distributed in the circular hole, the vorticity will be wy. The strong vortex sits
on the center of the hole. The hole shields the influence of the strong vortex.
This can be understood by thinking of the hole as filled with vorticity wy and
—wy. The circulation of the negative vorticity in the hole is —I';. At a point
in the background, the stream function due to the strong vortex and that due
to the negative vorticity filled cancel each other because of the symmetry. The
net stream function of the hole-strong vortex system is hence due to the positive
vorticity filled. Therefore, the stream function inside the background is the same
as that of a uniform circular vortex patch without the strong vortices and the

holes, which is
1

) = —Zw0r2. (2.40)
From . = 0 we obtain
0= % (2.41)
and

in the background.

Since the strong vortices are shielded and the background flow is at rest
in the rotating frame, the velocities of the strong vortices are zero as long as their
shielding holes do not overlap. Therefore, no unique patterns for the strong vortices
are required to satisfy Eq.(2.31) for the positions of the strong vortices. Shear-free

equilibrium does not require solutions similar to the vortex crystals.
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2.3.2 Fermi-Degenerate Equilibrium
The Fermi-degenerate solution requires Q > sw;. Equation (2.37) yields
Vi, = V2 + 20 = —w; + 20, (2.43)
in which we have used Eqgs.(2.21) and w(r) = w;. Therefore,
(—ws + 2Q)Ap, = /D V= Vi (2.44)

where Dy is the domain occupied by the background, 0D, its boundary, Ap, its
area, and n the unit vector normal to 0D, and pointing out of Dy. Since 1, > 0

outside the background and v, < 0 inside,

n-Vy. > 0. (2.45)
Therefore
(—wr+2Q)Ap, >0, (2.46)
1.€.
1

Near a strong vortex, which we approximate as a point vortex, ¥, — o0;
therefore, w = 0 near the strong vortex, i.e. there is a shielding hole around it.
However, unlike the shear-free equilibrium, the radius of the hole is smaller than
that required by complete shielding. The argument is as follows.

Denote Dy ; as the domain of the hole around the i-th strong vortex,
0Dy, ; as its boundary, Ap, ; as its area, and n; as the unit vector perpendicular to

0Dy, ; and pointing out of Dy, ;. Then in Dy,
Vi, = V) + 20 = —-T;6(r — R;) + 29, (2.48)

and

T+ 204p, , = /D dr* V), = 72 iy Vi (2.49)
h,i b
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Since 1, > 0 in the hole and 1. < 0 in the background,

n; - Vi, < 0. (2.50)
Therefore,
- +2QAp,; <0, (2.51)
and

where Eq.(2.47) is used. If we assume that the hole is approximately circular with

radius p;, then from above equation we get

| T T
; . 2.53
pi < 272 < TWg ( )

In other words, p; is smaller than that required for complete shielding of the strong

vortex, the rightmost quantity in the equality above.

To calculate the stream function due to the hole-strong vortex system,
we again think of the hole as filled with vorticity w; and —wy. At a point in the
background, the net stream function due to the strong vortex and the negative

vorticity filled will be that of a point vortex with circulation
T, =T; — mptwy, (2.54)

provided that the hole is approximately circular. The positive vorticity filled can
be combined with the background. Therefore, the stream function at any point
in the background is due to the background with constant vorticity w; (no holes)
and point vortices with circulations Fi',i =1,...,N.

Since the strong vortices are only partially shielded, they must take non-
trivial positions to satisfy Eq.(2.31). We can estimate the scale d of the distance
between the strong vortices when [, ,i=1,..,N, are much smaller than the cir-
culation of the background. In this case, the outer boundary of the background is
distorted only slightly from the circle, and the stream function due to the back-

ground without holes is approximately given by

. 1
Y~ —war? (2.55)
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Therefore, in the rotating frame, 1. at a strong vortex is of order

!’

r

o

1 1
Ye ~ (59 - _wf> d’ —

; Ind, (2.56)

where I' is a typical value of F;,i =1, ..., N. Since the velocity of the strong vortex

must be zero in the rotating frame, we have

O, 1 r
~ Q== -~ 2.
ad ( zwf)d omd (2:57)
therefore,
FI

The details of the Fermi-degenerate solution can be worked out for the
case of I much smaller than the total circulation of the background. The outer

contour of the background is described by a function

p(0) = po +dp(0), (2.59)

where po is the radius of the unperturbed circular contour, and dp(6) is the small
deviation. The stream function of the background can be thought of as composed

of the stream function of the unperturbed circular patch,

_ —swpr? T <y,

Jo = (2.60)

1

2 1 2 r
JWTH — swrrgln (E) , T >To,

and the correction 49 due to the distortion. On the outer boundary of the back-

ground, the stream function in the rotating frame is

Ye(p,0) = Po(po + 0p,0) + 60 + by (po + p,0) + %Q(Po +0p)? —p=0, (261)

where 1), is the stream function due to the point vortices with effective circulations

I';,. Correct to the order of I,

1 1
Wo(po +0p, 0) = —Jwrpg — 5w Podp, (2.62)

89(po + 0p, 0) = 69(po, 0), (2.63)
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"ZU(PO +6p,0) = 1;1;(/)0, 0), (2.64)
and
1 2 1 2
5 Q(po + 8p)” = 505 + Qpodp. (2.65)

Therefore, Eq.(2.61) becomes

_ _ 1 1
09(po, 0) + 1y (po, 0) + (Q - §Wf> podp & i+ 7 (wr = 22)p5. (2.66)

From Eq.(2.57) we know that

’

1 r
hence
1 I podp
Q— = 0p ~ 2.
( 2“”") PooP ™ o2 (2.68)
is in fact of order 7. Therefore, we have
5 (po, 0) + Vo (p0,0) = 0 (2.69)
correct to the order of T'. Here we have taken
1 2
p= 729 —wy)pp. (2.70)

Equation (2.69) shows that the stream function 67 due to the deformation of the
background from the circular shape is the same as that due to the image charges of
the point vortices with effective circulations I'},4 = 1,..., N. The stream function
inside the background, therefore, is the same as that of the classical problem of

point vortices inside a circular boundary of radius p, with free-slip boundary:

1/}(1') — 1/;0 + 51/; + lEU
I, T ps + 1’ R? — 2p2r R; cos ©;
- I : 2.71
29T + > o (P(Q) (r2+ R? —2rR;cos©;) )’ &

i=1,N

where ©; is the angle between r and R;. Consequently, the equilibrium positions of
the strong vortices in the rotating frame is the same as the equilibrium positions

of the point vortices in the classical problem, which has been investigated by
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a b C

Figure 2.2: Equilibrium patterns of six point vortices of the same circulations.
The triangular pattern (c), which is not previously discovered, comes from the

deformation of the hexagonal pattern (b) when it becomes unstable.

Havelock[46], Campbell and Ziff[47], and others. When the point vortices all have
the same circulations, the equilibrium patterns are symmetric, as shown in Fig.2.2,
and are quite similar to the observed patterns of the vortex crystals. Therefore, the
Fermi-degenerate solutions of the RMFE states are similar to the vortex crystals.

Previous studies of the equilibrium patterns of six point vortices with the
same circulations have found only two stable equilibrium patterns: a pentagon plus
one central vortex, and a hexagon, as shown in Fig.2.2.a and 2.2.b[47]. However,
we find that there is another stable pattern — triangular pattern. As pointed out by
Havelock, a stable pattern becomes unstable as its size becomes too large and the
vortices are too close to the circular boundary[46]. The hexagon pattern becomes
unstable if the radial position of the point vortices is greater than 0.54py. The
triangular pattern emerges from the hexagon pattern as it becomes unstable. If we
label the six point vortices of the hexagon pattern in anti-clockwise direction with
numbers from 1 to 6, we find that the even (or odd) numbered vortices are pulled
towards the boundary, whereas the odd (or even) numbered vortices are pushed
towards the center. The triangular pattern is stable until the radial position of
the outer three point vortices is greater than 0.664p,. In Fig.2.2.c we show a

triangular pattern. In this pattern, the radial position of the even numbered point
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vortices is 0.661446p,, and the radial position of the odd numbered point vortices

is 0.486147 py.

2.4 Finite Temperature Solutions

To compare quantitatively the RMFE theory with the experiments, we
must solve numerically the RMFE state for given total energy Hj, total angular
momentum Ly, total circulation Iy, the vorticity level wy, and the number N of
the strong vortices and the vorticity distributions (; in each of them.

The numerical method consists of two steps. First, for given values of the
parameters (3, {2, u and the positions R;,72 =1, ..., N, we solve the stream function
1) from Egs.(2.21) and (2.36), which are combined into a nonlinear elliptic equation

for 1:

_ —Ci(|lr = R;|) , if risin the i-th strong vortex,
V= —w= -
—wy/ (eﬂwf(¢+5ﬂ’"2_“) + 1) , if r is in the background.

(2.72)
We solve this nonlinear elliptic equation using Brandt’s Full Storage Algorithm
(FAS), a nonlinear multi-grid method[48], on 513 x 513 uniform grids. With 1}
solved, @ is obtained using the right half of the above equation. Then H, L,I", and
the velocities of the strong vortices
o

are calculated.

Second, we search for the appropriate values of 3,2, u, and R;,i =
1,..,N, such that H = Hy, L = Ly, I' = TI'g, and V; = 0,2 = 1,..., N. The
searching is done with the Broyden’s Method, a multi-dimensional secant method
[49].

To ensure that the positions of the strong vortices obtained as above in-
deed maximize the fluid entropy of the background, we calculate the Jacobian

matrix as defined in Eq.(2.34), and calculate its eigenvalues using the Jacobi
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method[50]. For stable configurations, the eigenvalues of the Jacobian matrix are
all non-negative.

The background of the finite temperature solutions has the following fea-
tures: the edge falls off gradually, since the vorticity elements near the edge can
fluctuate in energy by an amount of order 1/3; also, near a strong vortex the back-
ground is slightly depressed, since 1) tend to increase because of the strong vortex.
The length scale over which the edge falls off depends all of the parameters of the
RMFE state. Qualitatively, the length scale decrease as [, €2, or the radius of the

background increases.

2.5 Comparison with the Experiments

In the comparison of the RMFE theory with the experiments, we use the
following units for the physical quantities: length — the radius p,, of the circular

boundary, vorticity — I'g/p2, so that the total circulation of the flow is 1.

2.5.1 Survey of the Strong Vortices and Measurement of the Conserved

Quantities

In the vortex crystals, the strong vortices are well separated. We use a
simplified version of the algorithm proposed by McWilliams[40] for isolating the
strong vortices from the background. The simplified algorithm is based on the
observation that a strong vortex has an axially symmetric vorticity distribution
around its maximum vorticity, which is 3 ~ 4 times larger than the average vor-
ticity of the background, and has a steep radial vorticity drop near its boundary.
To get the i-th strong vortex, we first identify a local maximum of the vorticity
that is larger than a threshold (y, (we use (i, = 4.0), and take its position as R;
of the strong vortex. We then calculate the angle-averaged vorticity (;(|r — R;|)
at a distance p = |r — R;|. If (; is larger than (,, we calculate (; at a larger p;

otherwise, we calculate d(;/dp. This process is continued until d(;/dp is greater
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than a critical value 6 (we use 06 = —15.0). The value of p at which the process is
terminated is taken as the radius of the strong vortex. In this process, the vorticity
distribution ;(|r — R;|) inside the strong vortex is determined.

In the calculations of I'y, Ly, and Hy from the observed vorticity field,
it is important to exclude the low vorticity field beyond the region of the main
flow. This low vorticity field consists of experimental noise and, possibly, thin
filaments that are ejected early in the flow evolution and since detached from the
mixing of the background flow. Although the vorticity level of of this field is small
(about 1072), it can affect the value of the conserved quantities, especially Ly, if

not excluded.

2.5.2 Choice of wy

The value of w; is determined by the following considerations:(1) w; must
be larger than or equal to wy,q;, the maximum of the observed background vorticity,
which is coarse grained by the experimental imaging system; (2) since the observed
vortex crystals appear to be close to the Fermi degenerate solution of the zero
temperature case, in some macroscopic region of the background the coarse grained
vorticity should approach wy. We therefore take wy = wyqe. Furthermore, we find
that all of the observed vortex crystals have w,,., = 2.15+£0.05, apparently because
their initial conditions are similar, as shown in Fig.2.3. Therefore, w; = 2.15 is

used in all of the calculations.

2.5.3 Results

For each observed vortex crystal, we measure the conserved quantities
[y, Ly, and Hy, and obtain the number N of the strong vortices and vorticity
distribution ¢; in each of them. With w; = 2.15, we numerically calculate the
corresponding RMFE state.

The RMFE solutions reproduce the observed vortex crystal patterns, as

shown in Fig.2.4. Also, the observed background vorticity is close to that of the
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Figure 2.3: The graph presents the number of CCD camera pixels correspond-
ing to the observed coarse-grained vorticity of the background. Several curves

corresponding to different vortex crystals are plotted.



34

a c d

_ N

5

5 .

= 1

2

:

<

Z

Figure 2.4: Row 1 and 3: examples of experimental images of vortex crystal states
(taken from Ref.[38]). Row 2 and 4: corresponding regional maximum fluid entropy

states. False color contour plots of vorticity are displayed.
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the #-averaged vorticity profiles of the vortex crystal states in Fig.2.4
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Figure 2.6: The evolution of the geometry deviation G (symbol +) and the back-
ground deviation B (symbol ¢) for the flow discussed in Ref.[38]. Symbols a,b,c,d,e
(for geometry deviations), and A,B,C,D,E (for background deviations) correspond
to the states shown in Fig.2.4.

corresponding RMFE state, as can be seen in the angle-averaged vorticity profiles,
Fig.2.5. Some of the patterns appear to agree more closely with the theory than
others. There are two natural ways of quantitatively measuring this accuracy: the
deviation of the crystal geometry and the deviation of the background vorticity.
The geometry deviation G is defined as

L (dEP — (dth)2

where d;” and d? are the distances between the i-th and the j-th strong vortices

in experiment and in theory, respectively. The background deviation B is defined
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as

. \j T, 5% () (@7 (x) = B(x))" 215

Jp, dr’w(r) ’
where @0°P(r) and @(r) are the vorticity distributions of the background in exper-
iment and in theory, respectively. Here the region of integration excludes regions
occupied by the strong vortices both in experiment and in theory. The average is
weighted by @(r) in order to reduce the effects of the experimental noise from the
regions of low vorticity.

The values of these deviations for the vortex crystals displayed in Fig.2.4
and Fig.2.5 are indicated in Fig.2.6 at the times when the patterns were observed.
Here 7p = 170us is the bulk rotation time of the flow as in Ref.[38]. The deviations
in Fig.2.4e and Fig.2.5e are relatively large. We argue that this is because this data
was taken at an early time, and the flow has not yet settled into the RMFE state.
To justify this claim, we have analyzed the time evolution of the flow that led
to vortex crystals discussed in Ref.[38]. For each experimental image of this flow
after strong vortices have formed, geometry and background deviations from the
corresponding RMFE state were calculated. The results are shown in Fig.2.6,
which clearly show that the deviations decrease as time elapses. The dynamics

leads the system towards RMFE states.

2.6 Discussion

2.6.1 Maximization of the Boltzman Entropy

Over the years, the Boltzman statistics has been applied to describe the
free relaxation of 2D turbulence[12, 10, 11]. This approach assumes that the mi-
croscopic vorticity distribution of the flow can be represented as a distribution of
point vortices. The incompressibility of the Euler flow is therefore ignored. Assum-

ing the ergodic mixing of these point vortices in the relaxed state of the turbulent
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flow, the Boltzman entropy
Sp=— / dr’5Inw (2.76)

is maximized with the constraints of the conservations of I', L, and H. Compared
with the fluid entropy, Eq.(2.13), the Boltzman entropy is much simpler; however,
it does not conserve the generalized enstrophy. This approach can be justified only
if the incompressibility of the microscopic vorticity is not important. When the
temperature is high (i.e. § — 0) or the microscopic vorticity levels are much lager
than the coarse-grained vorticity, the microscopic vorticity are spread out and do
not congregate in macroscopic domain. In these cases, the relaxed state obtained
by maximizing the fluid entropy is the same as that by maximizing the Boltzman
entropy[13].

An interesting question is whether we can explain the observed vortex
crystals by maximizing the Boltzman entropy, instead of the fluid entropy, of the
background. Following a procedure similar to the derivation of RMFE equations,
we find that the maximization of the Boltzman entropy, Eq.(2.76), of the back-
ground yields the Boltzman distribution for the coarse-grained vorticity distribu-

tion @ in the background:

o(r) = e 1=BW+57—p) _ woe—ﬂ(1/3+972/2), (2.77)

where

wo = PPt (2.78)

is a constant, [ the inverse temperature, and ) the angular frequency of the
rotating frame of the equilibrium. The positions of the strong vortices are still
determined by Eq.(2.31).

The maximization of the Boltzman entropy of the background can not
explain the observed vortex crystals we have been discussed so far. As shown in
the radial profiles, Fig.2.5, the edges of the angle averaged background vorticity

distributions of the vortex crystals fall off quite steeply, which indicates that a low
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Figure 2.7: Left: RMFE state corresponding to the vortex crystal shown in
Fig.I1.3.b, with w; = 1000. Right: Comparison of the angle averaged radial pro-
files. The solid line is for RMFE state, and the symbol ¢ is for the observed vortex

crystal.

temperature (or large (3) is necessary for matching the Boltzman distribution with
the observed background. We can understand the the low temperature Boltzman
distributions by studying the zero temperature case. From Eq.(2.77), we see that
for f = oo,

1
Y+ 5972 —p=0 (2.79)

in the background. This is exactly the same as the shear-free equilibrium solution
for zero temperature RMFE state, therefore, the strong vortices are completely
shielded and the strong vortices can take arbitrary positions as long as the shielding
holes do not overlap. No solutions similar to the vortex crystals are required.

To quantitatively show the importance of the incompressibility of the mi-
croscopic vorticity elements, we compare the observed vortex crystals with corre-
sponding RMFE states, taking w; arbitrarily large. In Fig.2.7, we show the RMFE
state corresponding to the vortex crystal shown in Fig.2.4.b, with w; = 1000. Since
wy is large, the maximization of the fluid entropy is equivalent to the maximization

of the Boltzman entropy. The result is reminiscent of the shear-free equilibrium at
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(vorticity level)

Figure 2.8: Vortex crystal formed from a ring initial condition. (a) Initial condition
in the experiment. (b) Observed vortex crystal state. (c¢) Corresponding RMFE
state with wy = 2.15. (d) Corresponding RMFE state with w; = 100.

zero temperature: the background vorticity is deeply depressed around the strong
vortices, and the strong vortices take irregular patterns.

Recently, experiments and simulations have found that vortex crystals can
also form from initial vorticity distributions that form a single ring[51]. However,
the vortex crystals are quite different from those observed in Ref.[38] and have
been discussed so far. The background flow is spread out, and its vorticity is low,
as shown in Fig.2.8 and Fig.2.9. As we can see in Fig.2.9, the edge of the angle
averaged vorticity profile of the background falls off gradually, indicating that the
background is in a high temperature state. For these vortex crystals, we expect

the incompressibility of the vorticity elements is not important. Indeed, as shown



41

VORTICITY

L

VORTICITY

el NENN

RADIUS

Figure 2.9: Comparison of the f-averaged vorticity profile of the vortex crystal
from ring initial condition (symbol ¢) with those of the corresponding RMFE
states (solid line) with wy = 2.15 (upper graph) and wy = 100 (lower graph). The

images are shown in Fig.2.8.

in Fig.2.8 and Fig.2.9, the RMFE state, with both wy = 2.15 and wy = 100, agrees
with the observation. 4 In this case, the predictions based on the Boltzman entropy
are the same as those based on the fluid entropy. Also, unlike the low temperature
case, the Boltzman statistics does not lead to shielding of the strong vortices since
the temperature is high; therefore, the strong vortices can form vortex crystal

patterns.

“Previously we have taken w ¢ as the maximum of the observed background vorticity in the vortex
crystal states, wmaqe (see section 2.5.2). Here the situation is different. The background is in a high
temperature state and is far from the Fermi degenerate solution of the zero temperature case. Therefore,
we do not expect that in any macroscopic region wy should approach wmaz, which is about 0.5.
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2.6.2 Minimization of Enstrophy

The minimum enstrophy principle is another statistical approach besides
the maximum entropy principle for describing the free relaxation of 2D turbulence.
Based on a selective decay hypothesis, this principle states that the coarse-grained
enstrophy of the 2D flow,

Zy = / dr?e?, (2.80)

which is the enstrophy Z, with the vorticity coarse-grained, is minimized subject
to the constraints that I', L and H are conserved [27, 28, 29]. Experiments have
found that, from some initial conditions, the 2D turbulent flow indeed relax towards
minimum enstrophy states[30].

Naturally, one may wonder if we can explain the vortex crystals as the
minimum enstrophy states, instead of the maximum fluid entropy states, of the
background. To answer this question, we do the constrained minimization of Zs,
following a procedure similar to the derivation of the RMFE theory. This gives

the equation for the coarse-grained vorticity of the background as follows:
_ - 1
w=/p (w + 5(27“ — ,u) , (2.81)

where 3, Q2 and p are Lagrange multipliers. The equation for the positions of the
strong vortices is the same as in the RMFE theory, Eq.(2.31).

The background vorticity distribution given by the minimum enstrophy
principle, Eq.(2.81), can not explain the observed vortex crystal states. As shown
in the angle-averaged vorticity profiles, Fig.2.5, the vorticity of the background
is approximately constant inside the flow and falls off quickly at the edge. To
obtain the approximately constant vorticity with Eq.(2.81), one needs 3 >> 1 and
0< v+ %QTQ —u << 1. However, outside of the flow, the the contribution from the
term 1Qr? dominates and ¢ + 2Qr? — y ~ 1. This, in return, gives large vorticity

distribution according to Eq.(2.81), which is not true in reality.
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Chapter 3

Dynamics of Vortex Crystals

3.1 Introduction

In the previous chapter, we have shown that the vortex crystals are well
described as regional maximum fluid entropy states. In this chapter, we study the
interaction between the strong vortices and the background using a simple model of
the vortex crystals. The model consists of several point vortices, which model the
strong vortices, and a vortex patch (region with constant vorticity), which models
the low vorticity background. The point vortices are inside the vortex patch, and
the flow of the model is subject to a free-space boundary condition (i.e. there are
no surrounding boundaries).

We study in particular the perturbation limit of the model, in which the
contour of the vortex patch is nearly circular, and the total circulation of the point
vortices is much smaller than that of the vortex patch. This is a reasonable model,
since in the observed vortex crystal the background often has nearly constant
vorticity within an approximately circular region, and the strong vortices often
have intense vorticity, small radii, and small total circulation compared to that of
the background. With this model, we study how the point vortices and the vortex
patch affect each other, and in particular, the possibility of generating chaotic

mixing in the vortex patch. !

'Lansky et al have studied a similar model in which one point vortex is placed outside of the nearly

44
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Our model relates to two important problems in 2D vortex dynamics:
the dynamics of a collection of point vortices, and the dynamics of a vortex patch.
For a collection of point vortices, the equilibrium patterns have been exhaustively
searched, and their stability properties have been determined[46, 47]. The dynam-
ics of the system is Hamiltonian and is chaotic in most cases[53].

A vortex patch is the simplest example of an extended vortex. It has many
rotating equilibria, among which the circular shape (so called Rankine patch) is
the most fundamental one[54]. The circular patch supports steadily propagating
infinitesimal perturbations, or Kelvin waves, on its boundary. Contour dynamics
has been used extensively to study the evolution of small disturbances added to
equilibrium vortex patches[55]. Filamentation, or the formation of filaments of
vorticity drawn off the vortex patch, often results from the growth of linearly
unstable Kelvin waves[56]. Numerical-analytical evidence is also present for long
time filamentation of arbitrarily small, linearly stable disturbances[57].

Our model combines these two problems. In the perturbation limit, which
is the main topic of this work, the dominant dynamics of the model is the rotation
of the vortex patch. To describe the dynamics of the point vortices as well as
the disturbance on the vortex patch, it is useful to go to the rotating frame that
rotates with the vortex patch. The following description of the dynamics of the
perturbation limit is in this rotating frame.

There are fast and slow time scales in the dynamics. The fast time scale
is on order of a rotation period of the vortex patch, whereas the slow time scale is
on order of the rotation period of the vortex patch multiplied by 1/, where X is
the ratio between the average circulation of the point vortices and the circulation
of the vortex patch.

The disturbance on the vortex patch can be decomposed into two parts:

an "image charge” part, which is determined by the point vortices and changes in

circular vortex patch. They showed that the point vortex can merge into the vortex patch through
successive resonances[52].
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slow time scale; and free-streaming Kelvin waves, the same waves supported by a
circular patch, which is essentially fast time scale phenomenon and is affected by
the point vortices only in the slow time scale.

In the fast time scale, the point vortices oscillate with amplitudes of
order A\ times the radius of the vortex patch due to the influence of the free-
streaming Kelvin waves. In the slow time scale, however, the point vortices move
over distances comparable to the radius of the vortex patch under the influence of
other point vortices and the image charge part of the disturbance on the vortex
patch. Moreover, the effect of the image charge part on the slow time dynamics of
the point vortices is exactly the same as that of a circular free-slip boundary, with
radius equal to that of the vortex patch. In other words, the slow time dynamics
of the point vortices is the same as the dynamics of point vortices subject to a
free-slip circular boundary, with the radius of the boundary equal to that of the
vortex patch. Therefore, all results of the point vortex dynamics in a circular
boundary can be readily applied to the slow time dynamics of the point vortices.
For example, we know right away the equilibrium patterns of the point vortices; we
know that the Havelock instability[46] applies to these equilibrium patterns: the
point vortices can not be too close to the contour of the vortex patch, otherwise
they will be attracted towards the contour, and the equilibrium pattern will be
unstable; we also know that the dynamics of the point vortices is in general chaotic.

The disturbance on the vortex patch also evolves in the slow time scale.
The image charge part follows the change of the positions of the point vortices in
the slow time scale. The Kelvin waves, on the other hand, interact with the image
charge part and the point vortices in the slow time scale. This interaction, espe-
cially that with the image charge part, often leads to filamentation of the Kelvin
waves. The filamentation time is on the order of A\='InA~! times the rotation
period of the vortex patch. Our calculation can not be carried over the time be-
yond the filamentation. To follow the subsequent evolution of the system, we use

vortex-in-cell simulation. The simulation results suggests that the filamentation
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often introduces "holes” into the vortex patch and starts a chaotic mixing of the
vortex patch. This supports the idea presented by the regional maximum fluid

entropy theory of vortex crystal formation.

3.2 The Model

The model consists of M point vortices and a vortex patch. The point
vortices are inside the vortex patch. The flow is subject to a free-space boundary
condition. The positions of the point vortices are R,,(¢), and their circulations
are I'y,, with m = 1,..., M. The vortex patch has a constant vorticity wg, and its
shape is specified by a smooth single valued function r.(0,t), which is the radial
position of the boundary point at polar angle # at time ¢. A generic point in the
plane is denoted as r = (r,0), where r is the radial position of the point, and 6 is
the polar angle.

The perturbation limit of the model, which is the main subject of this
work, is defined by two conditions. One condition is that the average circulation
of the point vortices, I', = % > m I'm, is much smaller than the circulation of the
vortex patch, I' = [ dr?w,, where the region of integration is inside the vortex

patch. This defines a small parameter
(3.1)

which we refer as the perturbation strength. The other condition is that the shape
of the vortex patch deviates from the circular patch with constant vorticity wy and
circulation T by a small amount €(6,t); furthermore, this deviation compared to

the radius of the circular patch, 7y, is of order A, i.e.

€

Ty

~ . (3.2)

The circular patch is referred as the unperturbed patch, and its radius r, is deter-

mined by ' = mw,r?.
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3.3 Units of the physical quantities

In the perturbation limit, there are natural units for the physical quanti-
ties. The unit of the length is 75, and the unit of time is t, = 47 /wy, which is the
rotation period of the unperturbed patch. Consequently, the unit of the velocity is
rp/to = rpwo/4m, that of vorticity is 1/ty = wy/4m. Also, the unit of the circulation
is wor?/4m, and that of the stream function 1 is wyrg /4.

In theses units, the unperturbed patch has radius 1, vorticity 47, and
circulation 472. In the rest of the chapter, these units will be used for the physical

quantities and all of the equations will be dimensionless.

3.4 Equations of Motion

3.4.1 General Equations

The evolution equation for the contour of the vortex patch, defined by
function r.(6,t), can be derived by considering the motion of a contour point at

r. = (r¢,0). After a infinitesimal time interval dt, the point moves to a new position

r’c = (r’c,é)'), where 0 = 6 + vgdt/r., and r’c = r. + v,dt. Here v, and vy are the

radial and azimuthal components of the velocity of the boundary point. Therefore,

! / dt
r,=r(0,t+dt) =r.(0+ v

,t+dt) =1.(0,1) + v,dt. (3.3)

Te

Taylor expanding the above equation to the first order in dt, we obtain

or. vyOr,
Yo Ore _ 4
ot .00 (34)

The boundary condition for this nonlinear partial differential equation is
re(6 4 2m,t) = r.(0,1). (3.5)
The equations of motion for the point vortices are simply given by

dR
= = Vi, 3.6
p (36)
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where V,, is the velocity of the m-th point vortex.

To complete the equations of motion, the velocities of the point vortices
and the contour points must be calculated. This is done by calculating the stream
function ¥ and applying the relation between the stream function and the velocity,
Eq.(1.4). The stream function can be calculated from Eq.(1.5), recognizing that
the vorticity distribution of the flow of the model is

w(r) = wy(r) + > Td(r — Rpn), (3.7)
where
47, r inside the vortex patch
wp(r) = (3.8)
0 , r outside the vortex patch

is the vorticity distribution of the vortex patch. The free-space Green’s function
G )=l (39)
r—r)=——Inlr—r .
27

satisfies

!

V2G(r—r)=—d(r—r). (3.10)

Therefore, the stream function is given by

Y= /drle(r')G(r —1) =Yy + thy, (3.11)
where ), and 1, are contributions from the vortex patch and the point vortices,
respectively:

by = / dr’wy(r)G(r — 1), (3.12)
Yy = ZFmG(Rm —r). (3.13)

The velocity at point r, then, is
v =V X9z =vy+V,, (3.14)

where v, = V1, X z is the velocity induced by the vortex patch, and v, = V¢, X z

is the velocity induced by the point vortices.
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It is convenient to explicitly work out the radial and azimuthal com-
ponents of the velocities. Denoting V, and Vj as the radial and and azimuthal

components of the velocity induced by the point vortices, v, ,we have

Vi) = B Vixa= o0

- (_) R, sin(0 — ©,,)

B —~\27/) r2+ R2, — 2rR,, cos(f — ©,,)’
where R,,,©,, are radial position and polar angle of the position vector R,,, and
Oy
or
B Z <F_m) r — Ry, cos(f — ©Op,)
= \21/) 2+ R2, —2rR,,cos(f — ©,,)

Here r and # are unit vectors in radial and azimuthal directions, respectively.

(3.15)

Vo(r) = 6-Vip, x 2= —

(3.16)

The velocity induced by the vortex patch, v,, can be reduced into a line

integral along the contour of the patch as follows[58]:
vy = Vi x 3= /dr'2wb(r’)v,G(r ) %3
= —/dr wy(r)V, G(r—r1) x 2
- 47rj[d1 (r—r), (3.17)

where dl' is an infinitesimal vector in the anti-clockwise direction along the contour
of the vortex patch, and r, = (r.(¢',t),6') is the point on the contour at angle 6.
In the last step of the derivation, integration by part is used, and the relation
V. wy(r') = —470'6(r' —r,), where @i’ is the unit vector normal to the contour of
the vortex patch at r’c, is applied.

We further obtain the radial and azimuthal components of the velocity

due to the vortex patch, denoted as wu, and wugy, respectively. Using

dl =i.dr. +0r.do = ( gz ' ) do, (3.18)

where #, and é’c are the unit vectors in the radial and azimuthal directions at the
contour point r’c, and

1

t -t = cos(f —0), 6, -F=—sin@ —0),

C
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-0 = sin(@ —0), 6,-0=cos(6 —0),
we obtain
. 27 , , a/r' . ’ 7 !
up(r) =T vy = —2/ df |cos(f —0)—= —sin(@ —O)r,|In|r,—r|, (3.19)
0 00
and
or.,

~ 27r / ! ! 7 !
up(r) =0 - vy, = —2/0 de (Sin(H —0)—= + cos(f — 0)rc> Injr, —r|. (3.20)

o0
With Egs.(3.15),(3.16),(3.19) and (3.20) we find that the radial and az-

imuthal components of the velocity at the contour point r. are
Up = ‘/r(rc) + ur(rc)a Vg = %(rc) + Ua(rc), (321)
and those on the m-th point vortex are

Vine =V, (Rin) + 4 (Rn), Vg = V5 (Rn) + tp(Ron), (3.22)

I

where V. (R,,) and V,(R,,) are given by Egs.(3.15) and (3.16), respectively, with
the contribution from the self-field of the m-th point vortex excluded. These ex-
pressions for the velocities, together with Eqs.(3.4) and (3.6), complete the equa-

tions of motion of our model.

3.4.2 Perturbation Equations

In this section, we derive by Taylor expansion the perturbation limit of
the equations of motion for the model. The small parameter in the expansion is
A, the average circulation of the point vortices compared to the circulation of the
vortex patch. As we will see later, in order to obtain the leading order solutions
that are valid for time scale of order 1/\, we need to derive the perturbation
equation of the contour of the vortex patch correct to O()\?), and those of the
positions of the point vortices to O(\).

The contour of the vortex patch is given by

rc(e, t) =1+ 6(95 t)’ (3.23)
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where € is a smooth, single valued function of order A. Since € is a smooth function,
0r./00 is of order X; therefore, in Eq.(3.4) we need to obtain vy to O(\) and v,
O(A?). This is accomplished by Taylor expanding functions V,(r.),u.(r.) and
Va(ro), ug(r.).

Taylor expansion of V,(r.) is straight forward, and the result is
Vi(re) = AV (0, 1) + Ae(0,)VP (8, 1) + O(X), (3.24)

where

Y Ron(t) sin(0 — O (1))
e =-3 (2m> TS R (0)2 — 2R (1) cos(0 — O (1))

(3.25)

and

o (T Bon()si0(8 = Opn(t))(1 = Rn(t) cos(6 — Om(8))
o0 =%(35) (T Ro07? 2R, cos@—on@)e - 20

In the right hand side of Eq.(3.24), the first term is the radial velocity induced by

the point vortices evaluated along the contour of the unperturbed circular patch,
and the second term is the correction due to the deformation of the contour from
the circle.

Taylor expansion of u,(r.) needs a little more care, since it involves an
integration of function In |r, — r.|, which is singular when r, — r.. Nevertheless,
we can prove that

(€% + ) cos(6 — ) — 2€'e

In |r’c —r.|? =In[2(1 — cos(6' — 0))]+ (€ +¢) + 21 = cos(@ — 0))

+0(N),
(3.27)

where 7, = 1+¢(f',t) and € = €(f', ), is valid even near the singular point r, = .

(see appendix 1 at the end of the chapter). With this expansion, we obtain

27 , , , 12 f
up(re) = / do (e — €€ + %) cot (0—20> +O0(N). (3.28)
0

(Remember that € = ¢(f,t) is not a function of #'.) Combining Eq.(3.24) and

(3.28) we arrive at the total radial velocity of the contour point:

12

(1) (2) 2n ’ ’ ’ € 0’ — 0 3
0 (8,) = AWVD 4 AeV, +/ a0 (¢ e + 5 | oot (=) +00%). (3.29)
0
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Taylor expansion of Vy(r.) to O(\) gives
Vi(re) = AV, +0(0), (3.30)

where

%(1)(0’ 9 | [ ) 1 — Ry, (t) cos(6 — ©,,(t))

%: <2m 1+ Rpn(t)? = 2R (1) cos(0 — Om(t))

Quantity )\Va(l) is the azimuthal velocity due to the point vortices evaluated along

Il

(3.31)

the contour of the unperturbed circular patch.
Taylor expansion of wuy(r.) to O(A) is done with the help of Eq.(3.27).

The result is quite simple:
ug(r,) = 21 + O(N?). (3.32)

In the equation above there is no O(\) term. This is related to the fact that the

area of the vortex patch is equal to that of the unperturbed circular patch, «, i.e.

2r T(Gl,t) 2, " £)2 2 (1 )2
r=[ad [ = [ do rO D" gy Ut (3.33)
0 0 0 2 0 2

which yields

27 ’or 1 2 12
do'e = ——/ o'’ ~ 0N?). (3.34)
0 2 .Jo

Combining Eqgs.(3.30) and (3.32), we obtain
vo(0,1) = 21 + AV + O(A?). (3.35)

Substituting Eqs.(3.23), (3.29) and (3.35) in the evolution equation for

the contour of the vortex patch, Eq.(3.4), we arrive at the perturbation equation

Y 0 —0
O )9 /\Vr(l)-i-/\eVT(Q)—i-/ do (e — €€ + 6—) cot (—) 5
0

%€ (2m—2me+ AV )6—2 =

ot 2 2

(3.36)
which is correct to O()\?).
To obtain the perturbation equations correct to O(\) for the motions for

the point vortices, we need to Taylor expand the radial and azimuthal velocities
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of the m-th point vortex, V,,, and V;, 9, to O()). This is straight forward, and we
arrive at

Ve =V,

) (s

(Rp) + ul) (R, t) + O(N2), (3.37)

r

where

or  2¢(#,t)sin(d' — O,,)
OR..= [ ’ -
u Rons ) = | 40 e ok cos(@ — 611

is the radial velocity of the m-th point vortex due to the change in the shape of

(3.38)

the vortex patch, and
Ving = Vs (Ron) + uf) (R, t) + 27 R + O(V), (3.39)

where
o e 268 1) (R — cos(8 — O,,))
Uy (Rmat) = /0 dp 14+ R%n - 2R, COS(0 — @m)

is the azimuthal velocity due to the change in the contour of the vortex patch.

(3.40)

Therefore, correct to O()\), the perturbation equations for the point vortices are
dR,, '

— = V,(Rp) + ul) (R, 1), (3.41)
d@m ! (1)

Equations (3.36), (3.41), and (3.42) provide a closed set of perturbation equations
describing the evolution of the boundary of the vortex patch, and the motions of

the point vortices inside the patch.

3.4.3 Rotating Frame

In the perturbation limit, the dominant dynamics of the model is the
rotation of the vortex patch. To see the effects of the perturbations, it is convenient
to work in the rotating frame that rotates with the vortex patch. More precisely,
we go the frame that rotates with angular frequency 27, the angular frequency
of the rotation of the unperturbed circular patch. When transforming from the
lab frame to the rotating frame, the angles of the polar coordinates change as

0 — 0 — 27t and ©,, — O,, — 27t. Accordingly,

Oe Oe Oe dO,, dO©,,
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Here the quantities on the right hand side of the arrows are measured in the
rotating frame. With these transformations, the perturbation equations in the

rotating frame can be derived. Equation (3.36) becomes

12 '
Oe (1) Oe . (1) (2) /27r ’ ’ / 6_ 0 —0
a+(—2ﬂ'€+)\‘/‘9 )89—)\‘/, + AeV ¥ + ; df |e €€+ cot — )
(3.44)
and Eqgs.(3.41) and (3.42) become
dR,, ,
= ViRBa) + 0 (R 1), (3.45)
do,, )
Ro= = Vy(Ru) + ) R, 1), (3.46)

In these equations, all quantities are measured in the rotating frame. The defini-

VO, V@ and u, uf involve only differences of the angles; therefore,

tions of Va(l),

they do not change under the transformation to the rotating frame.

3.4.4 Mode Equations

The evolution equation for € in the rotating frame can be decomposed

into the equations for the Fourier modes. Let
e(0,t) = ex(t)e™, (3.47)
k

where € (t) is the amplitude of the k-th mode. Because of the periodic boundary
condition €(f + 27, t) = €(#,t), k must be an integer. Moreover, since € is real, we
have
€ = € k- (3.48)
We also know that
€0 ~ O(\?). (3.49)

This is obtained by substituting the Fourier expansion, Eq.(3.47), into Eq.(3.34),
which is the consequence of the fact that the area of the vortex patch is equal to

that of the unperturbed patch.
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With Eq.(3.47), we can obtain the Fourier series of Eq.(3.44). It is useful

to define the following quantities:

Iy i
N

(3.50)

a sum related to the driven response of the contour of the vortex patch to the point

vortices, and

1, k>0
Sk = 0 , k=0 .
-1 , k<0
The Fourier series for the terms in the left hand side of Eq.(3.44) are
s Z dek sz
8t ’
e ~ ikf
—2me— = Z —QWZquqek,q e’
00 < p
and
(1) 86 [ Pm

Z E Z 7;(]6(1 (616,(] —+ R!fl_qei(q_k)@m)] eik@
L m

q

>
k
= Z ikek Z F—m + Z iqquk_q] etkd
k
> zkek Z 4—m ik — q)en qV] etk
k

q

The Fourier series for the terms in the rlght hand side of Eq.(3.44) are

! 0 .
df € cot ( 5 > > 27m ‘ =N 2mispepe™,
P

k40

2w

0

27 '
- df' € e cot <¥> = Z( 27r7,2| ‘eqek q> o
k

0 q;ﬁO

= Z (—QWiqueqek_q> eika,
k

q

12 ’
2m 1€ 0 —0
dd —cot | —— | = €q€k— > etk?
0 2 ( 2 ) k;eo( ‘k| zq: e

= Z (msk Z €q€k— q) etk
k

q

and

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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We also have

Ly, ik ; ; . '
)\Vr(l) S z (Z T%Rlﬁe—zkem> ekt — _ ZzskaeZka (3.58)
k£0 \m =T k| k
and
@ N q la| ,—ig® iko
AV = 3T I3 (== ) Y g+ = | Rle " ©me_q| e
E | m Am q#0 |q\

= > l—i Zq: (q+ 5q) Vbek—q] e, (3.59)

k

Collecting terms of the same Fourier mode number £, we arrive at the following
equation for the mode amplitudes:

de

g = 127 SL€ + 15, Vi

r, .
+27m0 ) €egep_q(q — 54+ %k) LD i Y " ex_q(k + sg)Vy (3.60)
q m q

The first term on the right hand side of the above equation represents the restoring
force for the oscillation of the k-th mode, the second term represents driving by
the point vortices, the third term represents mode-mode coupling, and the fourth
and the last terms represent nonlinear interactions between modes and the point
vortices.

Equation (3.60) is correct to O(A\?). The nonlinear terms on the right
hand side are of order A\? except when ¢, the amplitude of the zeroth mode,
is involved, in which case the nonlinear terms are of order \® since ¢y ~ O()\?)
(Eq.(3.49)). Therefore the nonlinear terms with ¢, involved should be discarded.

Integrals useful for deriving these results are listed in the appendix 2 at

the end of this chapter.

3.5 Solutions

3.5.1 Kelvin Waves

If we set I';, = 0 for all of the point vortices, Eq.(3.60) becomes the mode

equations for small disturbances on the circular patch. To the first order in the
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amplitude of the small disturbances, the equation for the k-th mode is

% = 127 SR€, (3.61)
and the solution is
ex(t) = e (0)e?™5k!, (3.62)

where €;(0) is the initial amplitude of the mode. Therefore, a small disturbance

on the circular patch evolves as
e(0,t) = e, (0)e'kOT2mit), (3.63)
k

which is the sum of the Kelvin waves. The phase velocity of the k-th Kelvin wave
is
2m
Uphase = _m (364)

Therefore, in the rotating frame, all Kelvin waves rotate in the clockwise direction.
Also notice that all Kelvin waves oscillate with a period equal to 1, which is
the normalized rotation time of the rotating frame. This means that the small
disturbance composed of Kelvin waves comes back to its initial shape with period
1, although in between the periods its shape changes due to the different phase

velocities of the Kelvin waves.

3.5.2 Two Time Scale Analysis

As shown in Egs.(3.45) and (3.46), the velocity of the m-th point vortex
in the rotating frame is induced by other point vortices and the small disturbance
€(6,t) on the contour of the vortex patch, which are all quantities of order A.
Therefore, it takes a slow time scale of order 1/A to move the point vortices over
distances of order unity relative to the vortex patch. On the other hand, Eq.(3.44)
shows that the modes on the contour of the vortex patch oscillate within a fast
time scale of order unity. Clearly, there are two time scales in the dynamics of our
model in the perturbation limit; therefore we need to solve the perturbed equations

with two time scale analysis.



99

We first introduce the ”slow time”, defined as 7 = At, and accordingly
call ¢t as the ”fast time”. We then expand the dynamical variables in two time

scale series:

() = At + 2 2D (1) + -, (3.65)

Rn(t) = RO(t,7)+ARD(t, 7))+, (3.66)

On(t) = 09t )+ 200 (¢t 1)+ -, (3.67)

where e,(cl), 6562), RO RV 0 and ©}) are functions of order of unity. Here e(()l) =0,

since € is of order A\? (see Eq.(3.49)). The time derivatives of these quantities are

dey, 661(61) 9 66,(91) 661(62)

= = A 5 + A 5 T | T (3.68)
dR ORY ORO  oR(Y

mo m )\2 m m )
dt a T ( or ot >+ ’ (3.69)
dOm, 00 00 90l

it~ ot +A2< or ot >+ (3.70)

Substituting these two time scale series into the perturbation equations
and collecting terms in the same order of A\, we obtain series of equations corre-
sponding to the contributions from the terms of successively increasing order in .
The slow time dependence of a quantity is determined in the next order equations
by requiring that the sum of the resonant terms that drive unbounded fast time
growth of the next order quantities should vanish (resonance condition).

For the point vortices, substitution of the two time scale series into the

perturbation equations (3.45) and (3.46) yields the O(\°) equations

OR0) 06(0)
Z=m _ ROZEm  _ 3.71
ot ’ ™ot ’ (3.71)
and the O(\) equations
OR0) ORM)
m m — AR 72
5 T ot Ry) +C, (3.72)

and

o0(0) 000 )
(1) Z2m_ (0) [ Z2Zm_ m | — B(ROY + . )
R, 5 + R, ( 5 + 5t ) (R;)) + (3.73)
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Here, R{?) = (R, 0() is the leading order approximation to the position of the

m-~th point vortex;

RO sin(0 — 6)

MERD) = - 3 ( ) (3.74)
n,n#EmM R$)2+R$LO) 2R5’2)Rn COS((‘)(O @gzo))
and
r, RO — RO 0 — O
MBERY) = 5 (32) o O mO) o (gm)
nngm 27/ RO 4+ RO _ 2RO RY cos(0f) — 0

are the leading order approximations to V. (R,,) and V;(R,,), respectively, and
are the radial and azimuthal components of the velocity, induced by other point
vortices at their leading order positions, on the m-th point vortex at its leading

order position; and

2)\6(1)(9' t,7)sin(6 — 0)

2m ,
AC = dé
0 1+ R(0 — 2R cos(¢/ — oWy

)
/ i 22D (0,1, 7) (RO — cos(§ — 00
0

(3.76)

') (3.77)

AD =
1+ Rﬁn) — 2RY cos(f — o

), respectively, and are the

are the leading order approximations to u{!) and u(
radial and azimuthal components of the velocity, induced by the vortex patch with
the contour deformation described by
A0, t,7) = A > egcl) (t,T)e™, (3.78)
k#£0
on the m-th point vortex in its leading order position.

For the contour of the background, substitution of the two time scale

series into the perturbation equation (3.60) gives the O()\) equation

86(1) (1)
k= omisye” + zska , (3.79)
ot
and the O(\?) equation
o) . o
- — 27TZSk€k = hk, (380)

ot
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where

) 1)
hk(t, T) = ——Ek + iska(Z)

or
Sk
+2m1 26(1)65C 7 ( — 8¢+ E)
—ikeM Z Y 7,26 (k+ sq) V( ) (3.81)

is a nonlinear forcing term, and

I'm
v = 2:___fg)M\ —ikor) (3.82)
— A7\
T k| R
Vk@) 3 —)\R( 0kl —ike () (‘ ]‘%(0;” - ik@%)) (3.83)

constitute the two time series for the quantity Vj:

Vi = AV 42202 4. (3.84)

3.5.3 Leading Order Solutions in Fast Time Scale

In the leading order, the positions of the point vortices change according

to Eq.(3.71). The solution is simply

RY) = R{)(n), 67 =6)(r), (3-89)

m

which means that in the leading order, the point vortices are stationary in the
rotating frame in the fast time scale, as we have discussed in the previous section.

In the leading order, the amplitudes of the modes of the vortex patch
evolve according to Eq.(3.79). Since Vk(l) only depends on the leading order po-
sitions of the point vortices, which have no fast time dependence, the solution of

the equation is
V;c(l)

Eg) — bk(’T)@Qmskt _ o ’

(3.86)

where by (7) is the constant of integration that depends on slow time. Therefore,

eD(0,t,7) = B0, 7) + D by(r)e™ o, (3.87)
k#£0
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where

1
Vlc( : ikd

g0, 1) = —Z e

5 (Lo ) R RYcoso o)
AN 4 R 9RD cos(0 — 0F)

Notice that AG(f,7) is the same as the image charge distribution induced by the

(3.88)

point vortices at R{Y) on a circular free-slip boundary of radius 1. From Eq.(3.87)
we see that in the leading order, the contour of the vortex patch consists of two
parts: one part is 3(6,7), the ”image charge”, which is determined by the leading
order positions of the point vortices; the other part is the free-streaming Kelvin

waves which are not affected in fast time by the point vortices.

3.5.4 Leading Order Solutions in Slow Time Scale

The slow time evolution of the leading order approximations to the posi-

(0

(0 "and the contour of the vortex patch, ¢ (6,t,7),

tions of the point vortices, R
must be determined with the resonant conditions in the next order equations,
Eqgs.(3.72), (3.73) and (3.80).

Substituting the leading order solutions Eqs.(3.85) and (3.87) into Eq.(3.72),

we obtain

ORY

dR©) 1. .
5t {_ﬁ + A(R(mo)) + Cﬁ} -+ Z 27T’i8kbk (T)Rgg)“ﬂ‘ 161k9£3)62mskt’ (389)

dr k20
where Cj is obtained from replacing ) with its fast-time average 3 (see Eq.(3.87))
in the definition of C, Eq.(3.76), which yields

o , ! . / o (0)
ACy = o 206(0,7)sin(6 — ©F))

(0)2 (0) )y (3.90)
0 1+ Rwm’ — 2Ry’ cos(6 — Or’)

The quantity ACp is the radial component of the velocity on the point vortex
due to the image charge part of the contour deformation of the vortex patch.

Substituting the Fourier series of 3(#',7), Eq.(3.88), into the above equation and
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using the definition of Vk(l), Eq.(3.82), we obtain

AV ; sin(f' — )
Mg = =X = / ' (0)2 0) PNT)
k20 1+ Rm’ — 2Rm’ cos(0' — Om’)
- _ Z /\ zke(O)R(O)‘kl 1
770 |k|

(2 ) sin(@ - ©9)

— _Z<——> 2
n 27 (R%m) +R£2 —2( (0)>Rm COS(@(O @510))

Comparing the above equation with Eq.(3.74), we find that ACj is equivalent to

(3.91)

the radial velocity induced by point vortices with circulations —I',, and positions
R /RO (n = 1,..., M), which are the image point vortices that would arise if
the point vortices in our model at their leading order positions were enclosed by a
free-slip circular boundary of radius 1.

Quantities in the curly bracket in Eq.(3.89) depends only on the slow

time. They must add up to zero; otherwise the solution for R() will have a term

that is linear in ¢, and will grow unbounded in the fast time scale. Therefore, we

have
d;;?:A(Rgg)HCﬂ, (3.92)
and
= > bi(7) |’“\ L ik e2miskt e (1), (3.93)
k#0

where ¢,,(7) is a constant of integration.
Similarly, substituting the leading order solutions Eqgs.(3.85) and (3.87)
into Eq.(3.73), we obtain

do©
R = = BR{Y)) + D, (3.94)
and
lekb R(O ‘k| —2 uc@(o) szskt+d ( ) (395)

k20
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where d,,(7) is a constant of integration, and Dy is obtained by replacing ¢ by

B in Eq.(3.77):

2r XG0, ) (RO — cos(§ — OO
ADjs = / a5 220 (0)2( - ( (0))). (3.96)
0 1+ Rw’ — 2Ry’ cos(f — Or)

The quantity ADj is the azimuthal component of the velocity of the point vortex
due to the image charge part of the contour deformation of the vortex patch.
Substituting the Fourier series of (6, 7), Eq.(3.88), into the above equation and
using the definition of Vk(l), Eq.(3.82), we obtain

Dy = -3 AV /% ik B —cos(t — Of)
! T 14 RO’ 2R cos(0' — OF)
- AV (D kO p(0) k=1
- k m
k40
r R — () cos(@lf) - 6)
=L <_§) © (1 \° op® [ 1 PN (3.97)

Comparing the above equation with Eq.(3.75), we find that ADjg is equivalent to
the azimuthal velocity induced by the image vortices, as in the case for A\Cj.

Equations (3.92) and (3.94) show that the leading order positions of the
point vortices evolve in the rotating frame in the slow time scale with the velocity
induced by other point vortices at their leading order positions and the image
charge part of the contour deformation of the vortex patch. Therefore, the leading
order dynamics of the point vortices is the same as that of the point vortices under
a circular free-slip boundary with the radius equal to that of the vortex patch.
Also, equations (3.93) and (3.95) show that the free-streaming Kelvin waves excite
oscillations of the point vortices in fast time scale with period 1 around their
leading order motions.

To test this conclusion, we have compared the leading order solutions
with the results of a contour dynamics simulation[58] for the case of M = 2 and
I'' =Ty = 0.05 x 47 = 0.27 (i.e. A = 0.05), initially placed at R; = (0.2,0)
and Ry = (0.4, 7). The evolution of the radial position of the first point vortex is
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Figure 3.1: Time evolution of the radial positions one of the two point vortices,
initially placed at R; = (0.4, 7) and Ry = (0.2,0). The unit of time is the rotation
period of the unperturbed circular patch, and that of the length is the radius of the
unperturbed circular patch. The circulations of the point vortices are 'y =T’y =
0.27 (i.e. A = 0.05). The dotted line is the result of the leading order solutions.
The solid line is the result of the contour dynamics, in which the shape of the
vortex patch is initially circular. At ¢ = 40.22, the contour of the vortex patch

filaments.

plotted in Fig.3.1. As shown in the figure, the leading order solution agrees well
with the result of the contour dynamics.

The difference between the leading order solution and the result of the
contour dynamics is of order A = 0.05, and has two features that can be understood
from the solutions of the R{!) and ©()), Eqgs.(3.93) and (3.95). First, there is a fast
time scale oscillation with period 1. This comes from the terms involving the free-
streaming Kelvin waves in Eqgs.(3.93) and (3.95). Second, there is a deviation that

evolves in slow time scale. This comes from the constants of integration c,,(7) and
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dy(7) in Egs.(3.93) and (3.95). The slow time evolutions of these quantities can
not be determined by the perturbative calculations that we have carried out so far.
To determine them, the two time scale analysis must be carried on further, which
is quite complicated.

The equivalence of the dynamics of the point vortices with the classical
problem of point vortex inside circular free-slip boundary enables us to apply all
of the results in the classical problem to our model. For example, we know the
equilibrium patterns of the point vortices and their stabilities from the works of
Havelock[46], Campbell and Ziff[47], and others. We also know that the dynamics
of the point vortices is Hamiltonian and in general chaotic[53].

The slow time evolution of the image charge part of the contour defor-
mation is simply determined by the leading order positions of the point vortices,
as in Eq.(3.88). The slow time evolution of the Kelvin waves, on the other hand,

is obtained by the resonant condition of the second order term 6,(62) in Eq.(3.80).

Since the right hand side of the equation, Ay, does not depends on e,(f), we have

. t 7 ; / )
61(c2) _ 627”5kt/ dt'hk(t ,T)G_QWZSkt + fk(T)eQW'Lskt, (3.98)
0

where fi(7) is the constant of integration. Furthermore, since the fast time behav-
ior of hy is determined by €M), Rg,ll) and @SL), which are all periodic functions of the

fast time ¢ with period 1, we can express hy in terms of the Fourier transformation
he =3 hy(n, 7)e?™ (3.99)

where the n-th Fourier coefficient is defined as
o) = [ dthy(t, 7)e 2Tt (3.100)

Substituting this transformation into Eq.(3.98), we find that

flk(n’ 7.) (627ri(n—sk)t _ 1)

) = (s, )t o2t Y I
mi(n — Sk

n#Sg

+ fe(m)e®™5+ . (3.101)

(2)
k

To avoid the unbounded growth of ¢,/ in fast time, we need

~

hk(Sk, 7') = 0, (3102)



67

or in other words, the resonant driving term in Eq.(3.80) must vanish.
Substituting Eq.(3.81) along with Eqs.(3.82) and (3.83) into Eq.(3.100),
and using Eqs.(3.86), (3.93) and (3.95), we find that the above resonant condition

leads to the slow time evolution equations for the amplitudes of the Kelvin waves:

(g?: 1k Z Wk,q q (3103)

q,kqg>0

where the coupling matrix Wy, is defined as

| “a\
Wiy = 22 : (R(O)k|+|q -2 Rg;)"“ q|) pila—k)o (3.104)

The details of the derivation is in appendix 3 at end of this chapter. Notice that
in Eq.(3.103), only modes with the same sign of wave numbers are coupled. The
form of Wy, cab be understood by examining the forcing term hy, defined in
Eq.(3.81). There are three interactions: interaction between the Kelvin waves and
the oscillations of the point vortices, the interaction between the Kelvin waves and
the image charge part, and the interaction between the Kelvin waves with other
Kelvin waves. The first interaction contributes to the first term in Eq.(3.104),
and the second interaction contributes to the second term in Eq.(3.104). The
third interaction does not contribute to the resonant condition, since the sum of
the oscillation frequencies of two Kelvin waves does not equal to the oscillation
frequency of any other Kelvin waves.

A conserved quantity can be derived from the mode equations. From
Eq.(3.104) we see that Wy, = Wy . Therefore, it is easy to verify with Eq.(3.103)
that

2 .

(%) - iE) o (3109
Hence, the sum Y |bx|?/|k| is a conserved quantity. We can prove that this sum
multiplied by a constant 873)? is the self-energy of the Kelvin waves in the rotating
frame (see appendix 4 at the end of the chapter). The conservation of this quantity
is not surprising. In the rotating frame, the fast-time averaged energy of the

system, which is conserved in the slow time scale, is the sum of the interaction
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energy between the point vortices, the interaction energy between the point vortices
and the image charge part, the self-energy of the image charge part, and the self-
energy of the Kelvin waves. All these energies are of order \2. Furthermore, since
in slow time scale the dynamics of the point vortices in the rotating frame under
the influence of the image charge part is the same as if they are subject to a circular
free-slip boundary, the fast-time averaged energy of the sub-system consisting of
the point vortices and the image charge part is conserved. Therefore, the fast-time
averaged self-energy of the Kelvin waves in the rotating frame is conserved in the
slow time scale.

Equation(3.103) describes the slow time evolution of the amplitudes of
the Kelvin waves. With the image charge part slaved by the position of the point
vortices, the leading order solution for the contour deformation is completely de-
termined. To verify that this solution is indeed correct, we again compare with
contour dynamics. In particular, we study the evolution of the contour for the
case of M = 1,T'; = 0.05 x 47 = 0.27 (i.e.A = 0.05). Initially, the point vortex
is placed at Ry = (0.5,0), and the initial shape of the contour is circular. The
leading order motion of the point vortex is quite simple, since the point vortex is
moving in the rotating frame only under the influence of its own image charge. The
radial position R§°) of the point vortex does not change, but its angular position

increases in slow time as
(0) _ 27’

-7
1-RY

With the position of the point vortex known, the image charge part (3 is determined

(3.106)

by Eq.(3.88). The evolution of the Kelvin waves are then calculated by evaluating
the mode amplitudes, Egs.(3.103), up to £ = +80. With the image charge part
and the amplitude of the Kelvin waves known, the leading order evolution of
the contour of the vortex patch is obtained by Eq.(3.87). We plot the results in
the rotating frame in which the point vortex is stationary in the leading order
approximation. The comparison with the result of the contour dynamics is quite

good at early times, as shown in Fig.3.2. However, at late times the contour of the
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the case of one

point vortex with circulation I'y = 0.2z (i.e. A = 0.05) placed at R; = (0.5,0).

The deviation € from the initial circular shape is plotted at ¢ = 0,0.3, 3, and 6.

The dotted lines are the results of the contour dynamics. The solid lines are the

results of the mode equations with —80 < k£ < 80.
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vortex patch steepens and the approximations used in our analysis break down.

This is discussed in detail in the next section.

3.5.5 Filamentation

If the leading order solutions obtained above are valid for all time, the
point vortices, placed at some arbitrary positions initially, can never settle down
to an equilibrium pattern, since they follow the dynamics of the point vortices
inside a circular free-slip boundary, which is Hamiltonian and in general chaotic.
However, for some initial positions of the point vortices, the contour of the vortex
patch evolves into a shape that violates the assumptions of the perturbation limit,
as seen in Fig.3.2. Subsequently, strong nonlinearity takes over and the contour
filaments, leading to the breakdown of the leading order solutions. Depending on
the positions of the point vortices, filamentation can take place in fast or slow time
scales.

The fast time scale filamentation happens when some of the point vortices
are very close to the boundary of the vortex patch. In this case, the image charge
part of the contour deformation, A\3(f,7), can be very large. We can estimate
the maximum of |[A3| from the contribution of the point vortex, denoted as the
m-~th point vortex, that is closest to the boundary of the vortex patch. Let I',,
and (R(O) 6(0)) be its circulation and leading order position, respectively, then its

m ) m

contribution to AS, as evident from Eq.(3.88), is

T\ (RO? — RO cos(d — O0))

) (3.107)
4m2(1 + RO’ —2RY cos(d — O))
The maximum of the absolute value of the above quantity is
T, R(0)
—m(o). (3.108)
47T2(1 — Rm )
Therefore, if
R(0)
— ™~ X ¢ or RO A1) (3.109)



71

where ¢ > 0 is a constant, then the maximum of A3 is of order \'~¢ > \ since
A < 1. In this case, the contour deformation, which is the sum of the Kelvin waves
and the image charge part, will develop a maximum deformation of order \!'~¢
within one rotation time of the vortex patch, although initially the deformation
is of order A. As a consequence, the assumption of the perturbation limit will
break down within one rotation time of the vortex patch, leading to fast time scale
filamentation of the contour. Equation (3.109) is the criterion for onset of the fast
time scale filamentation.

We can estimate the value of the constant £ with contour dynamics sim-
ulations for the simple case of one point vortex placed in a initially circular vortex
patch. For a given circulation I'y = 47\, the position of the point vortex, R, for
which the contour of the vortex patch filaments at ¢ = 1 £ 0.02, is obtained. From
several values of A\ and the corresponding values of R;, we find that £ ~ 0.566, as
shown in Fig.3.3.

If none of the point vortices is close enough to the edge of the vortex patch,
the contour does not filament on the fast time scale. However, it can still filament
on the slow time scale. To investigate this possibility, we study the evolution of
the "envelope” of the Kelvin waves, defined as

x(0,7) =3 by (r)e™. (3.110)
k#£0
The evolution of this envelope function is determined by the mode equations of
the Kelvin waves, Eq.(3.103).

The filamentation of the Kelvin waves in the slow time scale is tied to
the development of a singularity in the envelope function from a smooth initial
condition. Since Y |bk|?/|k| is conserved, mode amplitudes of the Kelvin waves
can not grow unbounded; therefore, the only way of developing a singularity in
x(0,7) is to excite high £ modes and form a large gradient.

We argue that the nature of the singularity formation in x is the same

as that in the ”pseudo-envelope” ' (0, 7), which evolves according to the following
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0.005

0.01

Figure 3.3: The relation between A and R/(1— R), where R is the radial position of

the point vortex at which the initially circular contour of the vortex patch filaments

at £ = 14 0.02. The dotted line, which has a slope —0.566, is the best fit to the

data.
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simple differential equation:

%+2 (U(@,T) —%L—”&) % =0, (3.111)
where U is obtained from Eq.(3.30) by replacing the positions of the point vortices
with their leading order values, i.e.

[ (1 — RO cos(d — ©0)))
m 2w A(1 + RO’ —2RY cos(f — @S?))'

U9,r) = (3.112)

The pseudo-envelope can be decomposed into Fourier modes:

Zb ™o (3.113)

where b, is the amplitude of the k-th mode. From Eq.(3.111) we obtain

db,
= zZqu o (3.114)

where
Weq = _Z 27T)\ RO cita-or (3.115)

The mode equations (3.114) are different from the mode equations (3.103), there-
fore, the details of the pseudo-envelope X', described by Eq.(3.111), is different
from the envelope x for the Kelvin waves, described by mode equations (3.103).

However, for |k| > 1, since R(Y) < 1, we have

ka,q , kqg>0
0 , kg<O0

0)lk—dl (0>
Wy, = kzk%)\ (O ila—k)Om (3.116)

Furthermore, in both cases modes are coupled most effectively only to nearby
modes, i.e. |¢ — k| must be small, hence the high |k| modes are not effectively
coupled to the low |k| modes, which presumably behave quite differently for X
and y since W,;,q are quite different from kW, , for small |k|. Therefore, high |k|
modes are excited in the same way in both y and x, and we can understand the
development of singularity in x by studying the behavior of X', which is much

simpler.
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To illustrate these points, we numerically integrate the mode equations for
X, Eq.(3.103), and the mode equations for x', Eq.(3.114). The calculation is again
for the case of one point vortex with I'; = 0.05 x 47 = 0.27 placed at R; = (0.5,0)
in an initially circular vortex patch. We plot in Fig.3.4.a and Fig.3.4.b x and x’
at ¢ = 6, right before the contour filaments, in the rotating frame in which the
point vortex is stationary. As can be seen in the figures, the overall shapes of x
and ¥ are different. However, the way and the place that the singularity forms
are quite similar. The similarity is more obvious if we plot only the high £ mode
contributions to y and x. In Fig.3.4.c and Fig.3.4.d, we plot the parts of x and
X that include only modes with || > 30. As can be seen in the figures, although
the absolute values are different, the two curves are very similar in shape.

Equation (3.111) is amenable to the method of characteristics. Consider
a point on the pseudo-envelope at angle #. As the pseudo-envelope evolves, this
point moves to another position at angle (1) and amplitude x' (6(7), 7). Therefore,

setting
do I,
=9 - E Sl A1

we get
o o
dr — 0r = 00 dr
Equations (3.117) and (3.118) are differential equations that describe how a point

(3.118)

on the pseudo-envelope moves.

We observe from Eq.(3.118) that the value of x on a pseudo-envelope
point remains constant for all time. Therefore, the singularity can form only if the
pseudo-envelope points converge within arbitrarily small distances, which makes
the gradient of the pseudo-envelope with respect to the angle very large. If the
angular distance d6(7) between two pseudo-envelope points, originally separated
by a distance dfy of order unity, come close to each other within a distance of order
00o\", where 17 > 0 is a constant, then the gradient of the pseudo-envelope will be
amplified by a factor of order A\/A7 = A7 >> )\ since A < 1. At this point, the

pseudo-envelope is not smooth, and a singularity forms. Equation (3.117) shows
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Figure 3.4: Comparison of x(6,t) and x (6,t) at t = 6 for the case of one point
vortex with I'y = 0.27 (2.e.A = 0.05) placed at Ry = (0.5,0). Initially the vortex
patch is circular. Mode equations with —80 < k£ < 80 are integrated. (a) x; (b)
x; (c) Part of x that only include contributions from modes with |k| > 30; (d)

Part of x' that only include contributions from modes with |k| > 30.
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that the angular position of a point on the pseudo-envelope evolves according to
a first order differential equation in slow time. Therefore, when two points on the
pseudo-envelope converge, their angular distance can only decrease exponentially
in slow time. Therefore, the time 75 at which the singularity forms on the pseudo-

envelope can be estimated as follows:

50(’7’) ~ 5006_77—3 ~ 500)\”, (3119)
or equivalently,
_™ __ My -1
tg=—~-A""InA"". 3.120
B h\ 7 n ( )

Here v is a constant, determined from the characteristics of Eq.(3.117) and depends
on the dynamics of the point vortices.

Since the nature of singularity formation in x is the same as that in x|
Tg or tg is also the time at which the singularity forms in x. At this point, our per-
turbation solution for the Kelvin waves breaks down, and strong nonlinearity takes
over. We can assume that filamentation follows very quickly after this point, since
the gradient is already high, and strong nonlinear interaction occurs. Therefore,
Tp or tg is also the filamentation time for the Kelvin waves in our model.

The constant 7 is an exponent that measures the strength of the non-
linearity needed for the break down of the perturbation equations. Since its role
is similar to that of the exponent & we have discussed for the case of fast time
scale filamentation (see the discussion that follows Eq.(3.109)), we assume that
n~ & = 0.566. Note that the value of 7 is not important for the scaling of {5 with
A

To show that the above approach is useful for understanding the slow
time scale filamentation of the Kelvin waves, we present two simple examples. In
both examples, we study the formation of singularity in the pseudo-envelopes, and
infer from the results the nature of filamentation of the Kelvin waves.

The first example is the case of one point vortex with circulation I'y = 47 A

placed at radial position R. The leading order solution of the point vortex is very
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simple, as we have shown in the previous section: the radial position of the point
vortex does not change, i.e., R§°)(T) = R, and its angular position is given by
Eq.(3.106). With the motion of the point vortex known, the equation of for the
points on the pseudo-envelope, Eq.(3.117), becomes

do 2(1 — R?)

— = 3.121
dr 14 R?—2Rcos(§ —Qr)’ ( )

where
2

T1-R?

is the angular velocity of the rotation of the point vortex in slow time in the

Q (3.122)

rotating frame. Defining = ' 4+ Qr, Eq.(3.121) becomes

do’ 2(1 — R?)
— =-0 . 12
dr 1 + R? — 2R cos(f') (3-123)
The fixed points of the above equation is given by df’ /dt =0, and the solution is
/ R(3— R?
cos(0p;,) = %, (3.124)

where 9;% denotes the angular position of the fixed point. It is easy to see that
for all 0 < R < 1, the right hand side of the above equation is always positive
and smaller than 1. Therefore, the equation always has two fixed points, one is
in between 0 and 7/2, the other is in between 37/2 and 27. To see the behavior
of the pseudo-envelope points nearby the fixed points, we Taylor expand the right
hand side of Eq.(3.123) near the fixed point and get

A — 07;,) .,
——— = (0 — 0 3.125
dr 7( fz:c)’ ( )
where
4R sin(&'ﬁw)
= ———0\s - 12
v (1 — R?)3 (3.126)

Therefore,

01 (T) - g}zw = (02) - H‘Ifi;c)e_,wa (3127)

where 6 is the initial position of the boundary point. For the fixed point in

between 0 and 7/2, Eq.(3.126) shows that v > 0; therefore, the boundary points
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nearby will converge to this fixed point exponentially in time. This fixed point is
the stable fixed point. For the other fixed point, which is in between 37/2 and 2,
Eq.(3.126) shows that v < 0, therefore, this fixed point is unstable.

These results indicate that for the case of one point vortex placed off
the center of the vortex patch, there is always one boundary point to which the
other boundary points converge exponentially in slow time. Therefore, the pertur-
bation solutions always break down in finite time {5. We can estimate tp using

Eqs.(3.120), (3.126), and (3.124):

ny-1 1 77(1 - R2)2
tp~ - A" ln\T = —————
B y 2R\V4 — R?

From the equation above we see that when R is small, 7.e. the point vortex is

A n A (3.128)

nearby the center of the vortex patch, it takes long time to filament the Kelvin
waves; on the other hand, when R approaches 1, i.e. the point vortex approaches
the boundary of the vortex patch, the filamentation time is small.

We have tested Eq.(3.128), which is inferred from the singularity forma-
tion in the pseudo-envelope, with contour dynamics simulations. In the simula-
tions, a point vortex is placed at R and the initial shape of the vortex patch is
circular. In Fig.3.5, we plot the dependence of the filamentation time in the sim-
ulations with R = 0.5 on A. The figure shows that the A™'In A™! scaling of ¢ in
Eq.(3.128) is well satisfied. In Fig.3.6, we plot the dependence of the filamentation
time in the simulations with A = 0.05 (i.e. the circulation of the point vortex is
I'; = 0.27) on the position R of the point vortex. The figure shows that Eq.(3.128)
agrees qualitatively with the results of the contour dynamics.

The second example is the case of two point vortices, with circulations
I'y = I'y = 4n), initially placed at (R,0) and (R, 7). Evaluating Eqgs.(3.92) and
(3.94) for this case, we find that the leading order solution of the positions of the

point, vortices are given by

RY=R RV=R (3.129)
o =qr, OV =r+0r (3.130)
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Figure 3.5: The dependence of the filamentation time ¢g on A. Initially, the point
vortex is at Ry = (0.5,0), and the contour of the vortex patch is circular. The

dotted line, which is for visual guide, has a slope —1.

where
1+ 3R

T R(1—RY

In other words, the point vortices are in equilibrium in the rotating frame with

Q (3.131)

angular frequency 27 + A(2. Therefore, the equation of motion for the envelope
points, Eq.(3.117), becomes

do’ 4(1 — RY
—=-=-0 132
dr + (1+ R?)2 — 4R?cos?(0')’ (3.132)

where §' = 0 — Qr. The fixed point of the above equation is given by

2y y_ (L+R*)?  (1-RY?
cos™(0;,) = iR 3Rt (3.133)

For 1 > R > R, = 0.44, there are four solutions for 0y;;, two of which are stable

fixed points. As in the previous example, Taylor expansion of the right hand side
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Figure 3.6: The dependence of the filamentation time ¢z on the position R of the
point vortex. The point vortex has a circulation I'y = 0.05 x 47 = 0.27, and
is placed initially at Ry = (0.5,0) in a circular vortex patch. The symbol (o)
indicates the results of the contour dynamics simulation, and the solid line is the

prediction inferred from the evolution of the pseudo-envelope, Eq.(3.128).

of Eq.(3.132) near the stable fixed points reveals exponential convergence of the
pseudo-envelope points to the fixed points with

16R2(1 — R*) sin(26,,)
[(1 + R?)2 — 4R? cosQ(Qﬁ'ﬁw)]Q.

(3.134)

Because of symmetry, v is the same for the two stable fixed points. As in the
previous example, the pseudo-envelope develops singularity at time ¢g, which can
be inferred as the time at which the Kelvin waves filament. We can estimate tp
using Eqgs.(3.120), (3.134) and (3.133):

ty ~ Ixtpat
v
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Figure 3.7: Dependence of filamentation time ¢tg on R for the case of two point
vortices with equal circulations 47\ initially placed at Ry = (R,0) and Ry =
(R, 7). The shape of the vortex patch is initially circular. The data for five values
of \ are presented by the symbols, with ¢z scaled by A='In A~!. The solid line
is the prediction inferred from the evolution of the pseudo-envelope, Eq.(3.135),
scaled by A 'ln A\ L.

2n(1 — RY)?R*A"1In A 7!

_ (3.135)
(1+3R%),/(—1+4R2? + 5R* + 4R%)(1 — 4R? + 11R* — 4R5)

For R < R,, there is no solution for H}iw, and, therefore, there is no fixed point for
the pseudo-envelope points to converge to. This suggests that the slow time scale
filamentation of the Kelvin waves is suppressed for R < R,.

Contour dynamics is again used to verify these results. In Fig.3.7 we have
plotted the results of contour dynamics for the dependence of the filamentation
time, scaled by a factor of A='InA7!, on R for several . The initial shape of

the contour is circular. As we can see, the A~!In A\~! scaling of ¢p, suggested by
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Eq.(3.135), works quite well for R < 0.7, as indicated by the coincidence of the
scaled filamentation times for different values of A. For R > 0.7, the scaling does
not work well for relatively large A. This is because as R goes close to the edge
of the vortex patch, the fast time filamentation, as discussed in the beginning
of this section, takes over, and the Kelvin waves filament within one rotation of
the vortex patch. For R < R,, the filamentation times increase dramatically as R
decrease, indicating the suppression of the slow time filamentation of small R. The
dependence of tg on R agrees qualitatively with the formula given by Eq.(3.135),
as in the first example.

The two examples we have discussed above show that dynamics of the
slow time filamentation of the Kelvin waves can be understood from the singularity
formation in the pseudo-envelope x'. These examples confirm that the filamen-
tation of the Kelvin waves happens due to the excitation of high £ modes, and
the filamentation time tp scales with A as shown in Eq.(3.120). They also show
that dependence of £z on the dynamics of the point vortices can be qualitatively
deduced from the dynamics of x .

The use of the pseudo-envelopes greatly simplifies the study of the slow
time scale filamentation of the Kelvin waves. However, when the point vortices
are in generic positions, the analysis of the slow time filamentation of the Kelvin
waves becomes quite complicated since the dynamics of the point vortices are
chaotic in most cases. So far, we have not been able to work out the conditions for
slow time filamentation for the most general initial positions of the point vortices.
Contour dynamics simulations seem to suggest that the slow time filamentation of
the Kelvin waves in the most general cases resembles that of a single point vortex
placed off the center of the vortex patch, as studied in the first example. Also, the
suppression of the slow time filamentation when the point vortices are clustered
near the center of the vortex patch, as studied in the second example, seems to
hold in general. These numerical results should be investigated more fully in future

studies.
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Vorticity Level

t=0 t=10 t=15

Figure 3.8: Vortex-in-cell simulation for one Gaussian vortex placed inside a vortex
patch. The perturbation strength A of the vortex is 0.0335. (a) Initial flow. The
vortex is placed at the half-way to the edge of the vortex patch, and the vortex
patch is circular. (b) Flow at ¢ = 10 (in the unit of the rotation period of the
vortex patch). Filamentation of the vortex patch is observed. (c) Flow at ¢ = 15.

A hole is introduced into the vortex patch.

The dynamics of the model after the filamentation of the contour of the
vortex patch is beyond the scope of our analysis. To qualitatively understand
the nature of the dynamics beyond filamentation, we have performed a vortex-
in-cell simulation[51], in which a Gaussian vortex with a perturbation strength
A = 0.0335 is initially placed at half of the radius of a circular vortex patch, as

2 The simulation shows that the contour vortex patch is

shown in Fig.3.8.a.
repeatedly filamented, as can be seen in Fig.3.8.b, and the filaments introduce
holes into the vortex patch that create chaotic mixing of the vorticity with the
void, as can be seen in Fig.3.8.c. The simulation suggests that the dynamics of the
model beyond filamentation is chaotic and mixing. This supports the idea of the

regional maximum fluid entropy theory for vortex crystal formation, in which the

chaotic mixing of the background flow is essential.

2The flow in the simulation is not the same as the flow of the model we have studied so far, since in
the simulation the vortex is not a point vortex and the flow is subject to a free slip circular boundary
with a radius 2.5 times that of the vortex patch. Nevertheless, the qualitative behavior of flow in the
simulation is the same as that of the flow of the model, since the Gaussian vortex has a small radius and
the circular boundary is far away from the flow.
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3.6 Appendix 1

In this appendix, we prove Eq.(3.27). Remembering that r, = (r.,6'),
re=(r,,0),m,=1+¢,t)=1+¢,and r. = 1 +€(f,t) = 1 + ¢, we find that

‘rlc —r|?
In -
2(1 —cos(' —0))
. r2 47" — 21 cos(6 — 6)

2(1 — cos(#' — 0))
e+ ¢€” — 2 cos(tf — 0)
2(1 — cos(#' — 0))

= In|l+(e+€)+ (3.136)
The third term in the last bracket in the equation above is of order €? for all 6’

d¢

excluding the isolated point §" = #. (Remember that both ¢, 570 € and % are

of order X.) This is easy to see except when 0 — 0, since the denominator of the
term becomes singular. However, we can show that

e +¢% — 2 cos(8' — 0)

0—9  2(1—cos(¢ —0))

2¢ %6 _ 263—;’, cos(f' — ) + 2 sin(f' — )

a9’
9 0 2sin(6 — 0)

— 24 lim o€ . € —ecos(d —0)
IR YT sin(¢' — 0)
Oc . € —ecos(d —0)

2
= R |

o0 S sm@ —0)

Oe oe esin(6’ — 0)

— 2 Z . ol

T cos(@ —0)
= &+ o¢ 2 ~ 0(\?) (3.137)

0 ! '

using the L’Hospital’s rule. Therefore we can Taylor expand Eq.(3.136) correct to

the second order as follows:

1 e~ xof” (3.138)
n )
2(1 —cos(8' —0))
2 12 _9 ’ '
I 1+(6+€/)+6 +€ ee cos(f —0)

2(1 — cos(#' — 0))
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_ o1 o €+ ¢’ — 2¢€ cos(f' — 6) 3
= o)l )l +—a—@ gy oW
12 2 r . ’
~ (e+E)+ (€"+€)cos(f —0) —2¢e + 00, (3.139)

2(1 — cos(6' — 0))
The above equation can be rewritten as

(6'2 + €?)cos(f — ) — 2€'¢

Inr, —r.|? = In[2(1 — cos(6' — )] + (¢ +¢)+ 21— cos(@ — 0))

+0(N),
(3.140)

which is Eq.(3.27).

3.7 Appendix 2

The following are the useful integrals in deriving the mode equations. For

0 < a <1 and integer k, we have

g : 1—acosz ma*l |k #0
dze ke = . 3.141
/—7r e 14+ a2 —2acosz { ( )

For 0 < a < 1 and non-zero integer k, we have

T , k

/_ e cotg =~ (3.142)

™ . sin x k
— ko 3.143
P T a2 —2acosz m|k|a ’ ( )
/w a— a — COsST _ _7m|k|—1’ (3_144)

. 1+ a? —2acosx
and
= ., sinz(l —acosm) kg 1+ K]

d ikx — T |k|—1 . 3.145
/_w re (14 a? — 2acos z)? z7rV€|a 2 ( )

3.8 Appendix 3

In this appendix, we derive Eq.(3.103), which is equivalent to Eq.(3.102).

Here we only derive for the case £ > 0. The derivation for k£ < 0 is similar.
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Since k£ > 0, we have s = 1. Therefore, we obtain

A~

~ 1 .
B (5, 7) = (1, 7) = /O dthy(t, 7)e 2", (3.146)

using the definition of Ay (n,7), Eq.(3.100). Substituting the definition of hy(t,7),

Eq.(3.81), into above equation, we obtain
ilk(l,T):Il+I2+I3+I4+I5, (3147)

where Iy, I5, I3, I, and I5 are five integrals arising from the five terms in the defi-
nition of Axz(n, 7). In the following, we calculate these integrals.

With Eqs.(3.86), (3.82) and (3.85), we obtain

1 (1) ,
I, = _/ dtaek 6727rzt
_ _/ di dbk 27rit_idvk(1)(7_) o= 2mit
2 dr
dbk(T)
= - . 3.148
dr ( )

With Egs.(3.83), (3.85), (3.93), and (3.95), we have

1 .

I, = 1 / dth(Q)e’Qm
— /dtZ_R(O zk@ﬁg) kR%)_ZkG(I) e—27rit
de= ™ RY m

_ / dtz47r)\R1(3 —ik0fY [ (Zb R(o)lql 1 ;q00 eQmsq +em(T )>

q#0

—ik (Z ZSq |CI| QezqG,En)eQﬂzsq +d ( ))] e—27rit

q#0
T
= 2k 3 b0 (2 25 —m ROFHI2 i(g-k)er) ) (3.149)
050 4\

The non-vanishing contributions to this integral come from the interaction between
the fast-time oscillation of the point vortices and the Kelvin waves.

With Eq.(3.86), we obtain

1 1 X
I, = 27m'/ dty et (q — 5.+ 5) e
0
q
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17480)

1 1 TS
= 2m/0 dtzq: (q — sty (bq(7)62 at — 2'1—7T> (3.150)
TS V:’C(i) —27s
(bkq(7)62 k—qt _ 2ﬂq e 2mit
)

= =i Y (a-1+ %) Vi b ()

¢,9>0
: 1
—1 Z (q — s+ 5) Vq(l)bk_q(T)
q,k—q>0
= —i Y (k= sk Vi by(7). (3.151)
4,4>0,97#k

The non-vanishing contributions to this integral come from the interaction between
the image charge part and the Kelvin waves. The interaction between Kelvin waves

do not contribute, since

2, >0,(k—q)>0
Sq Shog = 7>0.(k=0g) (3.152)
0, gqk—q) <0
can never equal to 1. In other words, the interaction between two Kelvin waves

does not resonate with another Kelvin wave.

With Eq.(3.86), we have

I, = —zk/ dte 47r)\ e~ mit

— ; Fm 2mit ‘/;6(1) —2mit
= Zkgéhr)\/o dt (bk(r)e 5 | €

. |
Finally, with Eq.(3.86), we obtain
Iy = / dtZe (k + sg) Ve

y e Vk(i) —o7i
= —Z/O dtzq:(k+sq)Vq(1) (bk_q(7)62 t_ _27rq o~ 2mit

. I'm
- —zkbk(T)Zﬂ—z S bylk+ s Vi (3.154)

4,9>0,g#k
Combining the results for I, Iy, I3, I, and I5 with Eqgs.(3.147) and (3.102),

we obtain Eq.(3.103).



88

3.9 Appendix 4

Here we prove that the sum 8m3)\? ", |bx|?/|k| is the self-energy of the
Kelvin waves in the rotating frame.
We first derive the angular momentum L, and energy Hj of the unper-

turbed circular patch. It is easy to see that

1 1 2 1
Lo=—5 [ drtamr® = — [T a0 [ dranr® = s, (3.155)
0 0

Do

where D, denotes the region inside the circular patch. The stream function ¢y of

the unperturbed vortex patch is

Po(r) = dr’4rG(r — 1)
Dy
2 ’ 1 o 12 ’ !
= —/ do / drr ln<r2+7“ —2rr cos(@—@))
0 0
7(1 —7?) , r inside the circular patch
— (3.156)
—2mlnr , r outside the circular vortex patch

where the Green’s function G(r —r') is defined in Eq.(3.9). Therefore, the energy

of the circular patch is
1 1 por 1
Hy= = | dridmpy = —/ dO/ dramrm(1 —r?) = 7°. (3.157)
2 JDg 2 Jo 0

We now derive the angular momentum L of the perturbed patch with
the contour specified as in Eq.(3.23). We denote D as the region inside the the
perturbed patch. We have

D

27 1+e€
= — df / drdmr3
2 Jo 0

2w 2w
= —n*-27 dfe — 37r/ die® + O(X?)
0 0

1
L = —- / dr2dr?
9
1

27
= Ly—2m | dfe+ 0N, (3.158)
0

where we have used Eq.(3.34). Therefore, the angular momentum L, due to the

contour deformation is

27
Lo=L—Lo= —27r/ de? = —4n* Y |y 2 (3.159)
0 k40
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correct to O(A?). In the last step, the Fourier series of €, Eq.(3.47) is used.
The stream function ¢(r) of the perturbed patch can again be expressed

in terms of the Green’s function, Eq.(3.9):
Y(r) = / dr’47G(r — )
D
2 ! 1+€, 1 12 ! /
= —/ db / drr In (r2 +7r —2rr cos(f — 6 )) . (3.160)
0 0
Therefore, the energy H of the perturbed patch is
1 2
H = —/ dr*4mip(r)
2Jp

2 21 , 1+€ 1+€' , ,
= —27r/ dH/ db / dr/ dr rr
0 0 0 0

-In (7‘2 o cos(f — 0')> . (3.161)
To evaluate the above integral, we define
/ 1te 1+€’ ro 12 / ’
I(e,e) = / dr/ drrr In (7‘2 +7r —2rr cos(f —0 )) . (3.162)
0 0

Taylor expansion of I(e, € ) gives

! ! ]. ! 1 7
I(G, 6) = I(O, 0) + 116 + 126 + 5[1162 + 11266 + 5[226 ? + O(/\g), (3163)
where
ol ol
I, = —(0,00)=1,=—1(0,0
1 86( ) ) 2 (96,( ) )
1 o ! ! !
= / drr In <1+T2—2’f‘ cos(&—&)), (3.164)
0
021 0?1
I, = —862 (0, 0) = Iy = _86'2 (Oa 0)

1,27 (1 — 1’ cos(f — 9'))

= L+ | d ; 3.165
' ' 147" —2r cos(0 — 6') ( )
and
I ﬁ(o 0) = In(2 —2cos(f — 6)) (3.166)
27 9e0e T ' '
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Since
2 27 , 27 1
_or / do [~ d6'1(0,0) = 21 / do / drribo(r) = Ho, (3.167)
0 0 0 0
and
2T 2 , 2T 2T ;)
- 27?/ do [~ db'el, = —27r/ do [ doé T, (3.168)
0 0 0 0
2
= —2r dfey(r =1) =0,
0

(because 1y(r = 1) = 0), as well as

- /27r 48 /27r deéfn - —27r/ d0/ a6 —122
N ”/o ‘ 8860( =1
— _op? /02”62, (3.169)

we have the energy H, due to the contour deformation of the vortex patch as

follows:

H, = H-H,
2w 27 2w , ,
- —47r2/ e 27r/ do [ a0 (2 = 2cos(6 — 6)) + O(N2)
0 0 0
= -8 ) (1 - —) x> + O(N?), (3.170)
k20 k|
with the substitution of the Fourier series for € and ¢ .
Since the angular frequency of the rotating frame is 27, the self-energy
of the contour deformation in the rotating frame is
|ex|?
H, — ISP (3.171)
w20 K[
correct to O(A?). Substituting Eqgs.(3.65) and (3.86), we obtain the fast-time av-

eraged self -energy of the contour distortion as
Vi P2

2|k|

< H.—2rL, >= 87T3)\22|
k#0

In the equation above, the first term is the self-energy of the Kelvin waves, the

+ 83 \? Z (3.172)

K|

second term is that of the image charge part.
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3.10 Appendix 5

In this appendix, we discuss the contour dynamics simulation method
developed by Zabusky et al [58]. The method is applicable to simulations that
involve vortex patches. Here we illustrate the method as applied to the evolution
of one vortex patch with vorticity 4.

The dynamics of a vortex patch is completely determined by the evolution
of its contour. The velocity at a spatial point r = (z,y) due to the vortex patch

can be expressed in term of the line integral along the contour:
vy = 47r?{dl'G(r —r) = —27{0[1' Inr —rl, (3.173)

where we have used Egs. (3.17) and (3.9). Here dl is an infinitesimal vector along
the contour in the anti-clockwise direction, and r, is a point on the contour. With
the equation above, the evolution of the vortex patch can be reduced into the
evolution of the contour.

Numerically, the contour is represented by N node points on the contour.
The contour segment between two consecutive node points is approximated as a
straight line. The evolution of the contour is therefore represented by the evolutions
of these N node points.

With the contour approximated as connected straight lines, the velocity
integral of Eq.(3.173) becomes a sum of the contributions from each line segment.
We denote the position of the n-th node point as r, =(zn,y,). ( The first node
point is also labeled as the (N + 1)-th node point for convenience.) Defining

o = \/(@ns1 = 0)? + (Ynt1 = Yn)? (3.174)

as the length of the n-th line segment (i.e. the line segment between the n-th and
(n + 1)-th points),
0, = tan~! (M> (3.175)

Tp+1 — Tn

as the angle between the n-th segment and the z-axis, (:c', y') as the coordinate of



a point on the n-th segment, and

p=\/lz—2)2+ @y —y)?),

we find that
vy = % un(Xcosb, +ysinb,),

n=1
where

Uy = _z/l" diln p,

0

with

dl = \/dz'” + dy’>.

Denoting
o = (@ = 20)2 + (y — y)?

and

¢y, = tan™" (L _ y") ,

T — Ty
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(3.176)

(3.177)

(3.178)

(3.179)

(3.180)

(3.181)

as the length of and the angle made with the the x axis for the vector from (x,, y,)

to (x,y), we obtain
p* = pp(1+¢* = 2( ),

where
1
T — 2,

Pn cos B,

and
Mn = COS(¢TL - 011.)
Using Eq.(3.182) and the relation

!
dx
cos b,

= pnd(,

the integral in Eq.(3.178) can be calculated as follows:

ln/ﬂn
U, = —2/ dCp,Inp
0

= —I, [lnpi + (1 - 'MT;'On> Ing, —2+42(1 —,ui)%

n

(3.182)

(3.183)

(3.184)

(3.185)

Pr tan=' B, | (3.186)

b
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where \
2y pin In
g, = 1— Znkn <_> : (3.187)
Pn P
and
L(1— p2)s
Bn = (1= 1n)? “”)2. (3.188)
Pn — ln.U/n
Special care must be paid if (z,y) coincide with the n-th node point. In
this case,

U = —2/01 ¢l In(lnC) = =20, (Inly, — 1) (3.189)

With Egs.(3.177), (3.186) and (3.189), the velocities due to the approximated
contour can be easily calculated. In particular, the velocities of the node points
v, (n=1,...,N) are determined.

To obtain the evolution of the approximated contour, the ”leap-frog”

marching scheme in time is used. Let At as the time step, then
r,(t + 2At) =1, (1) + 2Atv, (t + At). (3.190)

The accuracy of this scheme is of order At2.

To start the leap-frog marching scheme, one needs not only the initial
positions of the node points, but also those at time At, so that the velocities at At
can be calculated. This is accomplished by using the Euler scheme at the beginning

with a much smaller time step At = At/2™ (m = 10 is typically used):
r,(At) =1, (0) + At v,,(0). (3.191)

Then r,(2At) can be obtained by the leap-frog scheme from r,(At) and r,(0).
Doubling the time step and using the leap-frog scheme, we obtain rn(4At') from
r,(2At) and r,(0). This procedure is carried out until the time step becomes At.
Then with the leap-frog scheme we can obtain r, (2At) from r,(At) and r,(0), and
then obtain r,(3At) from r,(2At) and r,(At), so on and so forth.

In our code, the following parameters are used: N = 240, At = 27 /N/10.

To test the code, we have simulated the evolution of a vortex patch with elliptical
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shape. The semi-axes of the ellipse are ¢« = 2 and b = 1. Kirchoff has shown

analytically that the elliptic patch will rotate steadily with an angular frequency

ab 8T

or in other worlds, the rotating period of the patch is 9/4[54]. The code gives
rotation period
9

to = 7 — 0.0003, (3.193)

which is quite accurate.



Chapter 4

Characteristics of
Two-Dimensional Turbulent
Flows that Self-Organizes into
Vortex Crystals

4.1 Introduction

Experimentally, the formation of the vortex crystals depends on delicate
control of the initial vorticity distribution of the turbulent flow. Slight variations of
the initial vorticity distribution can result in different numbers of strong vortices in
the vortex crystals. From some initial conditions, no vortex crystal forms; instead,
all of the strong vortices merge into a single strong vortex, which sits on the center
of the background flow (see Fig.1.2 in chapter 1). In this chapter we show that
the number of the strong vortices remaining in the vortex crystals, N., can be
approximately predicted from the characteristics of the turbulent flows in their
early stages of evolution.

Our analysis relies on a physical picture, suggested by the regional max-

imum fluid entropy (RMFE) theory (see chapter 2) and supported by a recent

95
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vortex-in-cell simulation[51], that vortex crystals form because of the interaction
between the strong vortices and the low vorticity background. While advecting
chaotically and merging occasionally with each other, the strong vortices ergodi-
cally mix the background. The mixing of the background, in return, ”cools” the
chaotic motions of the strong vortices. The chaos in the motions of the strong
vortices is necessary for sustaining the mergers of the strong vortices, since to
merge, two strong vortices must approach each other within a critical distance
[59, 60, 61, 19, 52]. The cooling by the mixing, therefore, eventually stops the
merger process, leaving a number of strong vortices to survive the mergers and fall
into geometric equilibrium patterns.

Quantitatively, this physical picture suggests that if the average time
between merger events, 7,,, is longer than the average time for cooling the chaotic
motions of the strong vortices, 7., merger stops and a vortex crystal forms. We
estimate 7, from the power law decay of the number N(¢) of the strong vortices,
which is suggested by the punctuated scaling theory[35], and estimate 7, from the
mixing properties of passive scalars in the field of the point vortices that model
the strong vortices. Equating these two time scales, N, is predicted in terms of
the number and the average circulation of the strong vortices, the area occupied
by the flow, and the exponents of the power laws for the quantities associated with
the strong vortices, all measured in the early stage of the turbulent relaxation.
The prediction agrees reasonably well with the data from experiments as well as

vortex-in-cell simulations.

4.2 The Theory

4.2.1 Estimation of 7,

Due to pairwise mergers, the number N (t) of the strong vortices decreases
in time ¢ in the early stage of the turbulent relaxation. The merger is a quite com-

plicated process that is subject to detailed theoretical and experimental studies.
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However, it is well established that in order to merge, the distance between the
two strong vortices must be less than a critical distance, which is about 3.3 times
their average radii. Numerical simulations[34, 33] and experiments|[62, 38] have
found that N(t) evolves according to a power law:

N =N (1) (41)

to

where £ > 0 is a constant. Other quantities associated with the strong vortices
also evolve in time according to power laws. For example, the average circulation

of the strong vortices, I',(t), increases in time as

T, (t) = Ta(to) (i)m5 , (4.2)

to

where 1 > 0 is a constant. Although there are some heuristic arguments[63], the
power law behavior of N(¢) remains as an empirical fact. The punctuated scaling
theory, which is based on a merger model that conserves the total energy and the
maximum vorticity of the strong vortices, suggests that £ = 0.70 ~ 0.75, and n =
0.5[35]. Although the theory is supported by some numerical calculations[36] and
experiments done with a thin stratified layer of electrolyte [37], experiments that
observed vortex crystals [38] have shown that these exponents can take different
values in different situations. In this work, we take Eqgs. (4.1) and (4.2) as empirical
laws, and measure the the exponents from experiments and simulations.

From Eq.(4.1), we have

AN _dN _ EN(t) (t>‘1_5, (4.3)

At dt Tty \t
where AN is the change of N in time interval A¢. Therefore, taking AN = —1,

the average time 7,,, between mergers can be estimated as:

"= (;d—ivl) B EJ\;(()to) %)Hg' 44

As t increases, the average time between the mergers increase because there are

fewer strong vortices available for mergers.
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4.2.2 Estimation of 7,

As we have shown in chapter 2, vortex crystals are well described as the
RMFE states, with the simple assumption that the background flow has a single
microscopic vorticity level wy. The vorticity field of the background is chaoti-
cally mixed by the strong vortices and the random field of the background. A
coarse-grained vorticity distribution w(r,t) describes the macroscopic state of the
background flow. There are many possible ways of arranging the microscopic vor-

ticity field to achieve a given w(r,t), therefore, a fluid entropy can be associated

S=-[ ar P (1= m(1-2), (4.5)
Dy i wr wr i

which follows from Eq.(2.13) for the case of the background flow having the a

with it:

single microscopic vorticity level. ! Here D, denotes the domain occupied by the
background. For given positions of the strong vortices {R;}, i = 1,..., N, the
background can be in any macroscopic state that satisfies the constraints of the
turbulent flow: conservations of the total circulation I, total angular momentum
L (since the flow is subject to a free-slip boundary in a circular domain), and total
energy H. Among these states, there is one state that has the maximum fluid
entropy of the background. The coarse-grained vorticity distribution of this state
is given by the Fermi distribution, Eq.(2.36). We define the fluid entropy of this
state, S ({R4}), as the "entropy roof” of the background.

The function S,,({R;}) indicates the maximum degree of mixing that the
background can achieve for a given configuration of the strong vortices.

The configurations of the strong vortices in RMFE states correspond to
the local maxima of the entropy roof. As we have shown in chapter 2, these
configurations are quite symmetric, and the distances between the strong vortices
are well beyond the critical distances for mergers. If the positions of the strong

vortices deviates from the configuration {RZ(O)} for a RMFE state, the entropy roof

!We have also renormalized the fluid entropy with the constant kp/A?, which is present in Eq.(2.13).
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decreases in height. Taylor expansion of S,,({R;}) near {R§°)} gives

1

Su({Ri}) = Su({R"}) - ;X R -R”)-C- R —R{),  (46)
where o
__S.({R"Y
C= T ROR, (4.7)

is a positive definite tensor. The entropy roof for the near merger configurations
is lower than the entropy roof for the configurations near the RMFE states, since
to merge, a pair of strong vortices must be within the critical distance and the
configuration of the strong vortices must deviate by large amounts from the RMFE
states. For a give size of the deviations {R; — Rgo)}, the amount the entropy roof
lowered is proportional to the magnitude of the tensor C, or the ”curvature” of the
entropy roof.

We examine with an example the shape of the entropy roof as the posi-
tions of the strong vortices vary. In the example, there are five identical Gaussian
strong vortices. Each strong vortex has circulation 0.02 and radius 0.04. The flow
has total circulation I' = 1, angular momentum L = —0.08, and energy H = 0.093.
The background has a single microscopic vorticity level w; = 2.0. We first calcu-
late the RMFE state following the procedure described in chapter 2. In the RMFE
state, the strong vortices are arranged in a symmetry pentagon pattern, as shown
in Fig.4.1.a. We then produce configurations of the strong vortices that deviate
from this equilibrium pattern by shifting each strong vortex from its equilibrium
position by a distance AR in a random direction. Depending on the random di-
rections, different configurations are generated with the same AR. The maximum
fluid entropy state for the given configuration is then calculated. ? The config-
urations produced with large AR are far from the equilibrium pattern, whereas
those produces with small AR are near to the equilibrium pattern. Accordingly,

the entropy roof corresponding to the configurations with large AR is in general

2The method of calculating the entropy roof for given positions of the strong vortices is the same as
the calculation of the RMFE state, except that the searching of the equilibrium positions of the strong
vortices is omitted.
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Figure 4.1: Entropy roof corresponding to the configurations of the strong vortices
generated with deviation AR. The strong vortices are identical Gaussian vortices
with radius 0.04 and circulation 0.02. The flow hasT"' = 1.0, L = —0.08, H = 0.093,
and wy = 2.0. The flow shown in (a) is the RMFE state. In the flow shown in (b),
the positions of the strong vortices are generated with with AR = 0.15, and the
fluid entropy of the background of the flow is 0.2414.
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lower than that corresponding to the configurations with small AR, as shown in
Fig.4.1.c, in which we plot the dependence of the entropy roof on AR. In Fig.4.1.b
we show a flow with AR = 0.15. The background of the flow is the maximum
fluid entropy distribution for the given positions of the strong vortices. As can be
seen in the figure, the strong vortices are randomly positioned and far from the
equilibrium positions. Its entropy roof has a value of 0.2414, which is lower than
that of the RMFE state.

In the free relaxation of the turbulence, the fluid entropy of the back-
ground S always increases. If S is far away from the entropy roof S,,({R;}), the
increase of S imposes no restriction on the motions of the strong vortices, and
they can go into configurations that lead to their mergers. However, if S is close
to Sp, the increase of S restricts the configurations that the strong vortices can
explore — the strong vortices can not take configurations whose entropy roof is
lower than the entropy that the background have already achieved. In this case,
the possible configurations that the strong vortices can explore are restricted to
a set nearby a local maximum of the entropy roof, and the increase of S reduces
the size of the set, until the set reduces into one point — the RMFE configuration.
This makes configurations that lead to mergers unlikely, since such configurations
deviate from equilibrium by a large distance and hence have a relatively low en-
tropy roof. Therefore, if the background is well mixed so that its fluid entropy is
near the entropy roof, the mergers tend to stop. Hence, we can estimate 7. as the
time scale for the background to be well mixed from any initial state.

The mixing in turbulent fluids is in general very complicated and hard to
analyze. However, chaotic advection, or the chaotic motion of passive scalars in
a prescribed flow that retains the essence of the turbulent flow, can often provide
insights into the nature of the turbulent mixing[64, 65]. In our case, since the
strong vortices, which are intense in vorticity and small in radius, are the primary
mixers of the background, we can study the chaotic advection in the fields of point

vortices to understand the mixing of the background.
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The velocity field of N point vortices with circulations I';, ¢+ = 1,..., N

and subject to a circular, free-slip boundary of radius 1 is given by
v(r,t) = Vi, (r,t) X z, (4.8)
where
b(r,t) ==Y L e = Ra(t)] + 3 L (In |r — R;()] + In Ry(t)) (4.9)
v Y - 27T (] - 27T 7 (] I
where R;(t) and R;(t) = R;/R? are the positions of the i-th strong vortex and its

image charge, respectively. The point vortices move according to

dR,;

= = V(R ) = vV, (R;, 1) X 2, (4.10)

where v, (Ry,1) is 9, (R;,t) excluding the contribution from the i-th point vortex
in the first term of the right hand side of Eq.(4.9). The equations of motion for a
passive scalar at r(t) = (x(¢),y(t)) is given by

dr_

L (411)

or equivalently,
de o, dy 0w,
dt oy’ dt = Oz’

Observe that 1, can be regarded as the Hamiltonian for a particle in one dimen-

(4.12)

sional motion, with z(¢) and y(¢) being the generalized coordinate and momentum.
Then the trajectory of the passive scalar is the phase space trajectory of the par-
ticle. The Hamiltonian structure for the motion of the passive scalar enables us
to apply many results from the study of the dynamical systems to the chaotic
advection problem[64].

If the point vortices are in equilibrium positions, 1, is time independent
in the rotating frame of the equilibrium. Then, Eq.(4.12) is integrable, and the
trajectory of the passive scalar is not chaotic. The trajectory can go around one
of the point vortices, or a number of them, depending on the initial position. The

initial positions for different types of trajectories are separated by separatrix.
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If the strong vortices are slightly out of equilibrium, 1), is time dependent.
As the generic behavior of systems with time dependent Hamiltonian|[66], the tra-
jectory of the passive scalar is chaotic if its position is in a narrow region along the
separatrix. As the deviation from the equilibrium increased, this stochastic region
grows. If the strong vortices are completely out of equilibrium, their motions are
chaotic; then the trajectory of the passive scalar is chaotic starting from all of the
initial positions excepts those very close to the strong vortices[67].

The trajectory of a passive scalar is chaotic if its Lyapunov exponent A is
positive, non-chaotic otherwise. The Lyapunov exponent of a trajectory is defined
as follows[68]. Consider two infinitesimally close trajectories, r(¢) and r(t) + ep(t).

Linearizing Eq.(4.11) in the limit ¢ — 0, we obtain

dp Ov

-~ _ T, 4.13

dt  Or P, ( )

where
py Oy
8_v — Oz 0y dy? (414)
or _ %4y _ %Py
ox2 0zdy

is the Jacobian matrix. Then,

A= lim A(t) = lim L 1n PO

Faress vt |p(0)]

(4.15)

Numerically, to avoid unbounded growth of p(t¢), Eq.(4.13) is integrated over a
period T with |p(0)| = 1. p(T) is then normalized and Eq.(4.13) is integrated for
another period T to get p(27"). This process is iterated for many times. Then the
Lyapunov exponent is given by[69]

1 n
=lim — ) 1 T)|. 4.1
A= lim nTkgl n |p(kT)] (4.16)

n—oo

A collection of passive scalars occupying a small region in the stochastic
region will spread out the whole chaotic region exponentially in time. The rate of
this complete randomization is given by the average of the Lyapunov exponents

of the passive scalars in the chaotic region, since the Lyapunov exponents are the
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rates of the exponential divergence of trajectories of passive scalars initially placed
closely.

It is difficult to obtain an analytic estimation for the average Lyapunov
exponent ) in the stochastic region. However, when the point vortices have ap-
proximately equal circulations and their motions are chaotic in a region of area
A, the main physical quantities that determine ) is the average circulation I', of
the point vortices and the average distance D between the nearby point vortices.

Dimensional analysis then gives

_ T,

where « is a constant. Since the point vortices are uniformly distributed on time

average in the region of area A, we have

D~ \/%. (4.18)

Therefore, Eq.(4.17) can also be written as

S o N _ Ir
Ro— - =a,

(4.19)

where I'r = Y7, I'; is the total circulation of the point vortices.

To check the validity of Eq.(4.19), we have calculated X in the field of
N point vortices with circulations 47. The point vortices are randomly placed
initially in a circular region. We vary both /N and the radius of the circular region.
The result, shown in Fig.4.2, confirms Eq.(4.19), with « ~ 0.031.

With the estimation of the Lyapunov exponent for the passive scalars in
the fields of the point vortices, the complete randomization time of the background

in the free relaxation of the turbulence can be estimated as

1 A
N =R —, 4.20
T A OJFT ( )

where A is now identified as the area occupied by of the background flow, and '

as the total circulation of the strong vortices.
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Figure 4.2: Relation between the average Lyapunov exponent A of the passive
scalars and the ratio I'r /A, where I'z is the total circulation of the point vortices,
and A is the area of the region in which the point vortices are randomly distributed

initially. The dashed line, with a slope 0.031, is the best fit to the data.

To show that 7, as given in Eq.(4.20) is indeed the time scale on which
the mergers of the strong vortices tend to stop, we have performed a vortex-in-cell
simulation. In the simulation, five identical point vortices with total circulation 0.5
are randomly distributed within a ring vorticity with inner radius 0.4 and width
0.05. The total circulation of the flow is 1. In Fig.4.3, we plot the flow evolution as
well as the evolution of the minimum distance between the point vortices. For the
flow, 7. = 32.43 as evaluated by Eq.(4.20), with A = 0.4?7. This value is indicated
with an arrow in the figure. The figure shows after t = 7., the lower limit for
the minimum distance that the point vortices can approach each other steadily

increase, and the close encounter between the point vortices are prohibited.
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Figure 4.3: A vortex-in-cell simulation in which five identical point vortices with
total circulation 0.5 randomly distributed in a ring vorticity with inner radius 0.4
and width 0.05. The total circulation of the flow is 1. The flow evolution is display
on the top rows. In the figure, the minimum distance between the point vortices is
plotted against time. The arrow in the figure indicates the complete randomization

time 7. as evaluated by Eq.(4.20), with A = 0.427.
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The randomization time 7. depends on the total circulation of the strong

vortices, which decreases as the strong vortices merge. From Eqgs.(4.1) and (4.2),

we obtain
t\ ¢
Lo(t) = Niwa(to) (1) - (4.21)
Therefore, from Eq.(4.20) we get
A t )5—775
P S . 4.22
O{N(to)ra(to) (to ( )

4.2.3 Prediction of N,

Equation (4.22) shows that 7. grows much slower than 7, since n > 0
(cf. Eq.(4.4)).3 Therefore, starting from 7, < 7., 7,,, will eventually catch up with
T. at t = t., and mergers of the strong vortices stop. Here ¢, is found by setting
Te & Tp, and from Eqgs. (4.4) and (4.22) we arrive at

4\
tomty | ———— , 4.23
0 <o¢t0Fa(t0) ( )

and accordingly, the number of the strong vortices in the vortex crystals is obtained

by setting ¢ = t. in Eq.(4.1):

¢
toly(to) | 7€
L(O)) s (4.24)

N, =~ N(t
) (285

This equation shows that in order to form vortex crystals with many surviving

strong vortices, initially the flow should have a large number of strong vortices

with large average circulation.

4.3 Comparison with Experiments and Simulations

The prediction of Eq.(4.24) is checked with both experiments with pure
electron columns[38] and vortex-in-cell simulations. The physical quantities are

normalized according to the following units: length — r,,, the radius of the free-slip

3if 7 > 1, which is not normally observed, 7. can actually decrease with time.
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circular boundary; vorticity — I'/r2, where T is the total circulation of the flow;

time — r2 /T. The exponents &, 7, as well as quantities N, T, and A are measured
in the power law regime of the turbulent relaxation. Then each flow in this regime
predicts N, according to Eq.(4.24). Predictions at different times vary a little since

the power laws are not exact.
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Figure 4.4: Flow evolution in a typical run of the simulation. Up: Vorticity
distributions at three different times. Down: The evolution of the number of the

strong vortices.
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Figure 4.5: Comparison of the predicted number N, of the strong vortices in the
vortex crystals with the N, of the experiments and the simulations. Each data point
represents a particular evolution of the turbulent flow. The value for the predicted
N, for each evolution is obtained by averaging the predictions at different times in

the power law regime.

In the simulation, initial conditions are generated by randomly distribut-
ing in a circular region a large number of Gaussian vortices with a given radius and
random maximum vorticity. The number of the strong vortices initially formed is
controlled by the radius of the random Gaussian vortices and their distributions
within the circular region. Generally, a large number of strong vortices form if the
Gaussian vortices have small radius and sparsely distributed. In Fig.4.4, we show
a typical run of the simulation. The vorticity distributions at three times and the
evolution of the number of the strong vortices are displayed.

The prediction of Eq.(4.24) agrees reasonably well with the experiments
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and the simulations. This is shown in Fig.4.5, in which we plot the predicted N,
averaged over the power region of N(t), against the observed N, for the experi-
ments the simulations. The scattering of the data, however, is quite large. This
is expected, given that our estimation of 7. is not as yet a detailed theory, and
the process of vortex crystal formation is rather chaotic. Nevertheless, the predic-
tion at least clearly distinguishes the characteristics of the flows that form vortex
crystals with many strong vortices from that of the flows that form no vortex

crystals.

4.4 Discussions

Until now, vortex crystals have been only observed in the turbulent flows
with single sign of vorticity, subject to a circular, free-slip boundary condition.
It is interesting to know if vortex crystals can form in more general cases with
both sign of vorticity and/or different boundary conditions. Our theory suggests
that two conditions are crucial for vortex crystal formation. The first condition is
that there should be stable RMFE states. Calculations similar to those we have
done in chapter 2 should be carried out to reveal that ordered, stable structures
for the strong vortices can emerge by maximization of the fluid entropy of the
low vorticity background. The second condition is that the mixing time scale 7,
of the background must be sufficiently fast. This can be investigated with the
chaotic advection of the point vortices, as we have done in this chapter. It is
conceivable that the mixing time scale can be very different depending on the
characteristics of the turbulent flow. For example, if there are approximately
equal number of similar-sized positive and negative strong vortices, the mixing of
the background may not be as efficient as the case we have studied in this chapter,
since the opposite signed strong vortices tend to form dipole pairs and hence at
least partially cancel each other’s mixing ability. If there are stable RMFE states

and the mixing time scale can eventually catch up with the merging time scale
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of the strong vortices, vortex crystals can form. Also, as we have shown in this
chapter, another requirement, that many strong vortices in the initial stage of the
turbulent flow.

Our theory relies on the power laws for the quantities associated with the
strong vortices in the early stage of the turbulent relaxation, and the cooling time
scale for the strong vortices inferred from the chaotic advection in the field of the
point vortices; therefore, it is not yet a rigorous theory. Further study is needed

to put the theory on more solid theoretical ground.
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