
Creating and studying ion acoustic waves in ultracold neutral plasmasa)

T. C. Killian,1,b) P. McQuillen,2 T. M. O’Neil,2 and J. Castro1

1Department of Physics and Astronomy and Rice Quantum Institute, Rice University, Houston, Texas 77005,
USA
2Department of Physics, University of California at San Diego, La Jolla, California 92093, USA

(Received 7 December 2011; accepted 4 January 2012; published online 23 March 2012)

We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during

plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations

created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude

is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we

determine that the waves are weakly damped, but the damping is significantly faster than expected

for Landau damping. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694654]

I. INTRODUCTION

Collective modes in plasmas1 are important dynamical

excitations and can often be used to obtain information on

plasma density, pressure, and temperature. Here, we describe

the excitation and study of ion acoustic waves (IAWs) in

ultracold neutral plasmas (UNPs).2–4

UNPs are created by photoionizing laser-cooled atoms

at the ionization threshold. They have ion and electron tem-

peratures that are orders of magnitude colder than traditional

neutral plasmas, so they represent a new regime in which to

study collective effects, where the ions display correlated

particle dynamics reflecting strong coupling.5–7 Furthermore,

the density distribution and temperatures can be precisely

controlled and probed to enable a broad range of

experiments.

Experiments and theory on collective modes in UNPs

have explored Langmuir oscillations8 excited by RF electric

fields.9 Newly applied techniques of rf absorption10 have

confirmed the relationship of the Langmuir oscillations to

edge modes and their dependence on non-neutrality induced

by plasma dynamics.11,12 Similar experiments identified

Tonks-Dattner modes in a series of RF resonances observed

at frequencies above the Langmuir oscillation.13 A high-

frequency electron drift instability was observed in an UNP

in the presence of crossed electric and magnetic fields.14

Numerical simulations have identified the possibility of

propagating spherically symmetric ion density waves.15

A theoretical treatment of IAWs in UNPs, including the

effects of strong coupling, was published16 and ion-acoustic

shock waves were recently discussed.17 The first experimen-

tal excitation of IAWs in UNPs was recently reported.2 This

represents the first study of ion wave motion in UNPs.

To excite IAWs, we create density perturbations by spa-

tially modulating the intensity of the laser that photoionizes

the atoms to create the plasma.2 Doppler-sensitive laser-

induced fluorescence18,19 is used to study the dispersion rela-

tion and damping of the waves and to measure the velocity

distribution of the ions. These techniques open new areas of

plasma dynamics for experimental study, including the

effects of strong coupling on dispersion relations20–23 and

non-linear phenomena4,15,24,25 in the ultracold regime.

Low frequency ion density waves in the absence of a

magnetic field are described by the familiar dispersion rela-

tion for frequency x and wavevector k (Ref. 1)

x
k

� �2

¼ kBTe=mi

1þ k2k2
D

; (1)

where mi is the ion mass, Te is electron temperature, and

kD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0kBTe=nee2

p
is the Debye screening length, for elec-

tron density ne and charge e. We have neglected an ion pres-

sure term because the ion temperature satisfies Ti � Te in

UNPs. In the long wavelength limit, which is the focus here,

this mode takes the form of an IAW with x ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=mi

p
,

in which ions provide the inertia and electron Debye screen-

ing moderates the ion-ion Coulomb repulsion that provides

the restoring pressure.

IAWs are highly Landau damped unless Ti � Te,1 how-

ever, they are often observable in high-temperature laboratory

plasmas.24–26 Acoustic waves of highly charged dust particles,

which show similar characteristics, have been studied experi-

mentally27,28 and theoretically.20–23 Beyond fundamental in-

terest, IAWs are invoked to explain wave characteristics

observed in Earth’s ionosphere29 and transport in the solar

wind, corona, and chromosphere.30

II. EXPERIMENTAL DETAILS

A. Creation and initial dynamics of an ultracold
neutral plasma

Ultracold neutral plasmas are created by photoionization

of laser-cooled strontium atoms in a magneto-optical trap

(MOT).31–33 Operating on the dipole-allowed 1S0�1P1 tran-

sition of 88Sr at 461 nm, we routinely trap 2� 108 atoms at a

temperature of � 10 mK in a spherically symmetric Gaus-

sian density distribution, nðrÞ ¼ natomsexpð�r2=2r2Þ, with

r � 0:6 mm and natoms � 6� 1010 cm�3. Prior to photoioni-

zation, the MOT lasers and magnetic field are turned off, and

the atoms are allowed to expand to obtain larger samples,

with corresponding lower densities.

a)Paper BI2 6, Bull. Am. Phys. Soc. 56, 24 (2011).
b)Invited speaker.
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Photoionization of the atoms is a two-photon process

performed by two tempo-spatially overlapping, �10 ns laser

pulses: the first from a pulse amplified cw beam tuned to the

cooling transition of 461 nm and the second one from a

pulsed dye laser tuned just above the ionization continuum at

� 412 nm. The pump for both beams is a 10 ns Nd:YAG

laser, operating at 355 nm with a 10 Hz repetition cycle. This

process ionizes �30%–70% of the atoms, creating an ultra-

cold neutral plasma. For a spatially uniform photoionization

laser intensity, the plasma inherits its density distribution

from the MOT, resulting in initial electron and ion densities

(n0e � n0i � n0) as high as � 4:2� 1010 cm�3. Effects of

un-ionized atoms on the plasma are not significant consider-

ing the fast time-scales of the experiment and small neutral-

ion collision cross-sections.

Due to their relatively small mass, the electrons acquire

most of the excess energy from the photoionizing beam,

while the ions’ kinetic energy remains similar to that of the

neutral atoms in the MOT.4 By tuning dye laser wavelength,

we create electrons with initial kinetic between 1 and

1000 K, with a resolution of about 1 K.

On a timescale of the inverse electron plasma oscillation

frequency (1=xpe), electrons equilibrate to produce a nearly

thermal distribution4 (Fig. 1), yielding average Debye

lengths, kD from 3–30 lm. Three-body recombination can

also produce large numbers of Rydberg atoms during this

initial stage if the electron temperature is low enough.34 (We

avoid this recombination-dominated regime for our study of

IAWs.) On a timescale of the inverse ion plasma oscillation

frequency (1=xpi), disorder-induced heating35,36 raises the

temperature of the cold ions to approximately 1 K. On a lon-

ger hydrodynamic timescale, given by the ratio of the initial

characteristic plasma size to thermal velocities,

sexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mirð0Þ2

kB½Teð0Þ þ Tið0Þ�

s
; (2)

the plasma expands into the surrounding vacuum.37 For a

strontium plasma with a typical initial size of rð0Þ ¼ 1 mm,

an initial electron temperature, Teð0Þ ¼ 50 K, and an initial

ion temperature, Tið0Þ ¼ 1 K, sexp ¼ 14 ls.

The expansion of the plasma has a large effect on IAWs

that must be accounted for in any quantitative model. Expan-

sion of an unperturbed UNP was studied theoretically in

Refs. 15, 35, and 38–40 and was seen experimentally in

Refs. 9, 32, 34, 37, and 41–43. Fundamentally, the expansion

is driven by the pressure of the electrons coupled to the ions

through a space charge field.

Under the assumptions of quasi-neutrality, adiabaticity,

and spherical Gaussian symmetry, the evolution of the size

of the plasma cloud and the hydrodynamic expansion veloc-

ity (uexp) can be written as

r2ðtÞ ¼ r2ð0Þð1þ t2

s2
exp

Þ; (3)

cðtÞ �
t=s2

exp

1þ t2=s2
exp

; (4)

uexpðr; tÞ ¼ cðtÞr; (5)

where r is the radial distance from cloud center. The ion and

electron temperatures (Ti and Te) drop during the expansion

due to adiabatic cooling as thermal energy is converted into

the kinetic energy of the expansion,

TaðtÞ ¼
Tað0Þ

1þ t2=s2
exp

: (6)

This expansion is similar to dynamics seen in plasmas pro-

duced with solid targets, foils, and clusters.37,44–48

B. Optical diagnostics of density and velocity
distributions

The optical diagnostics used to study UNPs have been

described in detail previously.19,37 The primary probe is

Doppler-sensitive laser induced fluorescence (LIF), excited

by linearly polarized light of frequency � near resonance, �0,

with the primary 2S1=2�2P1=2 transition of the Sr ions at k ¼
422 nm. The natural linewidth of this transition is c0=2p ¼
20 MHz. We define x̂ as coaxial with the LIF beam, and fluo-

rescence is imaged along the z axis onto an intensified CCD

camera (Figure 2). To minimize density variations along the

line of sight, the excitation light is aligned to the center of

the plasma and formed into a sheet in the x–y plane with

1=e2 intensity radius wz ¼ 0:625 mm. We derive spatio-

temporally resolved density and velocity distributions for the

ions from the resulting images, Fðx; y; �Þ. Frequency

FIG. 1. Overview of UNP dynamics. Note the three distinct time scales of

electron equilibrium, ion equilibrium, and global plasma dynamics.

FIG. 2. Partial experimental schematic showing transmission mask along

the path of the ionizing beam. The ionizing beam is allowed to first pass

through the plasma and the transmission mask is placed as close as possible

to a retro-reflecting mirror. Due to optical access constraints, the k-vector of

the IAW is at a 16	 angle with the k-vector of the fluorescence beam. The

fluorescence beam is a sheet perpendicular to the imaging axis.
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dependence arises from the natural linewidth, c0, and

Doppler-broadening of the transition, and images can be

taken with time-resolution of 50 ns.

A single fluorescence image can be related to underlying

physical parameters through

Fð�; x; yÞ ¼ C
c0

2

ð
dzniðrÞ

IðrÞ
Isat

�
ð

d3v
f ðvÞc0=ceff

1þ IðrÞ
Isat

þ 2ð� � �0 � vx=kÞ
ceff=2p

� �2
; (7)

where the multiplicative factor, C, depends upon collection

solid angle, dipole radiation pattern orientation, and detector ef-

ficiency; it is calibrated using absorption imaging.19,32,37 I(r) is

the intensity profile of the fluorescence excitation beam and Isat

is the saturation intensity for linearly polarized light. Taking

Clebsch-Gordon coefficients for the transition into account,

Isat ¼ 114 mW/cm2. ceff is the sum of the natural linewidth and

instrumental linewidth. The detuning factor in Eq. (7) reflects

the Doppler shift (vx=k) of the laser frequency for an ion with

velocity along the laser of vx. The velocity distribution function

for the ions, assuming uniform ion temperature, is

f ðvÞ ¼ 1

ð2psvÞ3=2
exp � jv� uðrÞj2

2s2
v

( )
; (8)

with velocity width sv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTi=mi

p
. We allow for a general

hydrodynamic velocity u that can vary with position and will

contain expansion velocity (Eq. (5)) and any other ion

motion, such as motion induced by an IAW.

A measure of the ion density is obtained by summing

the fluorescence signal for a series of images taken at equally

spaced frequencies covering the entire ion resonanceð
d�Fð�; x; yÞ ¼ C

c2
0

8

ð
dzniðrÞ

IðrÞ
Isat

: (9)

For the imaging-laser sheet geometry used here, xz � r,

one obtains a measurement of the ion density in the plane of

the laser,

nðx; y; z ¼ 0Þ �

ð
d�Fð�; x; yÞ

C
c2

0

8

Ið0Þ
Isat

ffiffi
p
2

p
wz

� � : (10)

Figure 3 shows examples of two-dimensional false color

plots of the ion density distribution.

To perform spatially resolved spectroscopy, which pro-

vides information on the ion velocity distribution, we spa-

tially integrate the fluorescence signal given by Eq. (7) over

the region of interest,

Sregð�Þ ¼
ð ð

region

dxdyFð�; x; yÞ (11)

A particularly useful expression is found if the region

extends over the entire x–y plane to collect signal from all

ions illuminated by the laser sheet

Splasmað�Þ /
ð

d3r
IðrÞ
Isat

niðrÞ

�
ð

dvx

c0=ceff

1þ IðrÞ
Isat
þ 2ð� � �0 � vx=kÞ

ceff=2p

� �2

� 1

ð2psvÞ1=2
exp �

�
vx � uxðrÞ

�2

2s2
v

8><
>:

9>=
>;

; (12)

where vx and ux are the x-components of the velocities, and

we have evaluated integrals over vy and vz. If the hydrody-

namic velocity arises purely from self-similar expansion (Eq.

(5)), the spectrum reduces to a Voigt profile,37,50

Splasmað�Þ /
ð

dvx

c0=ceff

1þ IðrÞ
Isat
þ 2ð���0�vx=kÞ

ceff=2p

h i2

� 1

ð2psvÞ1=2
exp � v2

x

2s2
v;exp

( )
: (13)

The rms width of the Gaussian component of this profile

arising from Doppler broadening reflects both thermal ion

motion and directed expansion and is given by

s2
v;exp ¼ kBTi þ c2r2, which increases with time because of

plasma expansion (Eq. (5)).

For a general hydrodynamic velocity, the spectrum may

not explicitly take the form of a Voigt profile, but one can

show that the width of the spectrum can be quantitatively

related to the Lorentzian width, ceff , and the mean square x-

component of the velocity for all ions in the excitation vol-

ume, v2
x

� �
¼ s2

v=k
2 þ u2

x=k
2.

h�2i ¼
ð

d��2Splasmað�Þ=
ð

d�Splasmað�Þ

¼ 4ac2
eff þ v2

x

� �
=k2; (14)

FIG. 3. 2D density profiles of density perturbations in UNPs for Teð0Þ ¼ 48 K.

The mask wavelengths are (a) 2 mm, (b) 1.33 mm, (c) 1.0 mm, and (d) 0.5 mm.
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where the overbar indicates a spatial average and the mean

square x-component of the hydrodynamic velocity is

u2
x ¼

ð
d3r

IðrÞ
Isat

niðrÞuxðrÞ2: (15)

The rms width of a Lorentzian is not well-defined, so the fac-

tor a depends upon the integration limits in Eq. (14). But a is

constant and on the order of unity in our experiment, and the

Lorentzian contribution to the linewidth is small compared

to Doppler broadening, so any error introduced by this effect

is small. When the hydrodynamic velocity deviates only

slightly from the expansion velocity, which is the case for

small amplitude IAWs excited in this study, fitting the spec-

trum to a Voigt profile provides good approximations of both

the Lorentzian width and the mean square x-component of

the total hydrodynamic velocity.

C. Creating density modulations to excite ion acoustic
waves

In the plasma creation process, uniform intensities of

both photoionizing beams, over the length scale of the MOT,

result in plasmas with the same density profile as the MOT.

However, we can spatially modulate the intensity of either

ionizing laser and tailor the initial plasma density distribu-

tion. For these studies, we have modulated the intensity of

the second ionizing beam (412 nm) by placing a transmission

mask along its path (Figure 2). If we place the transmission

mask before a single pass of the ionizing beam through the

experimental region, we create high amplitude modulations

in the plasma that access non-linear effects. For this study,

however, we probe the linear regime by allowing the 412 nm

ionizing beam to first pass through the atoms, then through

a transmission mask and back onto the plasma. This creates

� 10% plasma density modulation with wavelength set by

the period (k0) of the mask. We translate the mask pattern to

align a density minimum to the center of the plasma, and for

this study, we used one-dimensional, 50% duty cycle, binary

patterns with wavelengths of 0.50, 1.00, 1.33, or 2.00 mm

(spatial frequencies of 2, 1, 0.75, and 0.5 cy/mm).

III. RAW DATA SHOWING IAWS

Figure 3 shows surface plots of the plasma density cre-

ated with various periodic square wave masks and an initial

electron temperature of Teð0Þ ¼ 48 K. We can clearly notice

the modulations in density. Due to optical access limitations,

the perturbations appear rotated with respect to the field of

view of the camera (FOV), i.e., the ionizing beam and fluo-

rescence beam intersect at a 74	 angle in the imaging plane,

so the imaging beam is 16	 from normal to the IAW propa-

gation axis.

To study the evolution of the density modulations, we

form 1D density profiles from a central strip of width r by

averaging the 2D data parallel to the modulations (Fig. 4).

By fitting such data to a Gaussian, we can separate the total

density into background nGauss and wave dn components

niðx; tÞ ¼ nGaussðx; tÞ þ dnðx; tÞ: (16)

Figure 5 shows the evolution of dnðx; tÞ for a one transmis-

sion mask period with different initial electron temperatures.

Note the oscillation of the wave in time and space.

IV. EFFECT OF PLASMA EXPANSION ON THE IAW

To motivate the formalism for analyzing IAWs, it is

necessary to understand the effect of the plasma expansion

on the IAW amplitude. This can be found by treating the

wave action as an adiabatic invariant.51 We start by describ-

ing an ion-acoustic wave of wave vector k and amplitude dn
in an infinite homogeneous plasma, for which the dielectric

function is given by

eðk;xÞ ¼ 1�
x2

pi

x2
þ 1

k2k2
D

: (17)

This implies that the wave energy density is

Wk ¼
@

@x
½xeðk;xÞ� jEkj2

8p
¼

x2
pi

x2

jEkj2

8p
(18)

for wave field amplitude Ek; xpi 
 x, and 2p=k� kD. The

field amplitude can be related to the amplitude of the IAW

through

jdnj ¼ ni
e

mi

k

x2
jEkj: (19)

The action density is given by Wk=x, which yields the total

action in a volume V

Nk ¼
jdnj2mix

2nik2
V: (20)

FIG. 4. 1D slices through density profiles for Teð0Þ ¼ 48 K showing density

perturbations. The mask wavelengths are (a) 2 mm, (b) 1.33 mm, (c) 1.0 mm,

and (d) 0.5 mm. Dots are data and deviations from the fit Gaussian (solid

line) represent the IAW density modulation, dn (Eq. (16)).
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For a slow expansion (j _x=x2j � 1) and if damping effects

such as Landau damping are negligible, the IAW will evolve

adiabatically during the expansion, and the total IAW action

will remain constant. For our measurements, j _x=x2j � 1 is

a good approximation at early times, although for longer

wavelengths and long times, j _x=x2j � 1.

In our inhomogeneous UNPs, the length scale for den-

sity variations is large compared to the characteristic scale of

the IAW (r
 2p=k), which suggests that Eq. (20) should

apply locally.52 This allows us to identify VðtÞ / rðtÞ3 and

ni / 1=r3ðtÞ. As shown previously2 and discussed below,

kðtÞ / 1=rðtÞ and xðtÞ � kðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TeðtÞ=mi

p
/ 1=rðtÞ2, where

we have used the time evolution of the electron temperature

(Eq. (6)). For constant Nk, this yields the final result for the

evolution of the IAW amplitude jdnðx; tÞj / 1=r3ðtÞ
/ nGaussð0; tÞ. So, we expect the wave amplitude to scale

with the peak ion density, nGausssð0; tÞ, and deviation from

this behavior would indicate damping or gain processes.

V. MEASURING IAW WAVELENGTH, FREQUENCY,
AND DISPERSION

To analyze data for IAW evolution such as to measure

the wavelength, frequency, dispersion, and damping rates, we

fit the data to a standing wave model. As discussed in Sec. IV,

we scale the amplitude of the perturbations by the instantane-

ous peak density obtained from the Gaussian fit (Fig. 4) and

assume a damped standing wave with a Gaussian envelope,

dnðx; tÞ
nGaussð0; tÞ

¼ dnð0; tÞ
nGaussð0; tÞ

e�x2=2renvðtÞ2 cos ½kðtÞx�

¼ AðtÞe�x2=2renvðtÞ2 cos ½kðtÞx�:
(21)

This expression fits the modulation at a single time, t, and

yields the instantaneous amplitude A(t), envelope size

renvðtÞ, and wavevector k(t). The hydrodynamic description

for an infinite homogeneous medium used to derive the IAW

dispersion relation, Eq. (1), allows for planar standing-wave

solutions, but finite size, plasma expansion, and density inho-

mogeneity introduce additional factors that are not small

here and preclude an analytic solution, so the model behind

Eq. (21) is only phenomenological. The solid red lines in

Figure 5 are fits to this evolution model in which A, renv, and

k are allowed to vary independently for each curve.

The dotted black lines in Figure 5 follow trajectories of

constant k(t) x. Notice that as the wave evolves, the wave-

length/wavevector appears to increase/decrease with time. If

we hypothesize that the wavelength scales with plasma

expansion (Eq. (3)), then we have

kðtÞ ¼ k0

ð1þ t2=s2
expÞ

1=2
: (22)

Fits to k(t) measurements, with k0 and sexp as fit parameters,

yield values for 2p=kfit;0 that match the transmission mask

wavelength. We also find very good agreement between the

extracted fit value for sexp and the value expected from self-

similar expansion, Eq. (2).

To show this behavior, we compare the evolution of the

wavelength with the evolution of the size of the plasma by

plotting, in Fig. 6, kðtÞ=k0; k0=kðtÞ and rðtÞ=r0, where all

quantities have been normalized to the values at t¼ 0. Initial

wavelengths match the period of the mask used and all the

data follow one universal curve, ð1þ t2=s2
expÞ

1=2
, with no fit

parameters and sexp as calculated from r0 and Teð0Þ (Eq.

(2)). This universal behavior for wavelength and plasma size

indicates the wave is pinned to the expanding density

distribution.

To obtain a dispersion relation, we now need to extract

the frequency of the wave, xðtÞ. We can extract the fre-

quency by analyzing the evolution of the perturbation ampli-

tude. The amplitude variation in time can be modeled as

AðtÞ ¼ A0e�Ctcos ½/ðtÞ� ¼ A0e�Ctcos
�ðt

0

xðt0Þdt0
�
; (23)

FIG. 5. Evolution of dn for mask wavelength of 2 mm. Time since ioniza-

tion is indicated on the right, and dnðx; tÞ has been scaled by instantaneous

peak density nGaussð0; tÞ and offset for clarity, for (a) Teð0Þ ¼ 48 K and (b)

Teð0Þ ¼ 105 K. Solid red lines are fits to Eq. (21) and the dotted black lines

follow points of constant spatial phase of the standing wave. As the electron

temperature increases, the frequency of the wave increases and for a fixed

electron temperature, as the number of cycles per millimeter increases, the

frequency of the wave also increases.

FIG. 6. Evolution of the IAW wavelength and plasma size, normalized to

initial values, for r0 ¼ 1:45 mm and for (a) Teð0Þ ¼ 25 K, (b) Teð0Þ ¼ 48

K, (c) Teð0Þ ¼ 70 K, and (d) Teð0Þ ¼ 105 K. Size and wavelength follow a

universal curve with no fitting parameters. For the solid line, sexp has been

set to its theoretical value (Eq. (2)). The universal behavior for wavelength

and plasma size indicates the wave is pinned to the expanding plasma.
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where the integral accounts for accumulation in the phase.

By fitting the evolution of the phase of the entire wave, we

are essentially finding the frequency in the frame moving

with each plasma element, and our measurement does not

need to be corrected for Doppler shifts. For the frequency,

we now assume the form of the dispersion for an infinite, ho-

mogeneous medium from Eq. (1), the observed variation of

wave-vector k(t) (Eq. (22)), and electron temperature evolu-

tion TeðtÞ predicted for a self similar expansion (Eq. (6)) to

obtain

xðtÞ ¼ kðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTeðtÞ=mi

p
¼ x0

1

1þ t2=s2
exp

 !
: (24)

Initial amplitude A0, frequency x0, and damping rate C are

allowed to vary in the fits, while sexp is taken as the value

predicted for the electron temperature set by the laser and

initial plasma size, (Eq. (2)) resulting in fits that match the

data very well (Fig. 7). As can be seen from Fig. 7 and Eq.

(24), the frequency decreases with time. Similar behavior

was observed in simulations of spherical IAWs.15

We extract x0 and k0 for a range of initial electron tem-

peratures and mask periods, and calculate the dispersion of

the excitations, as shown in Fig. 8. The excellent agreement

with theory (Eq. (1)) confirms that these excitations are

IAWs. The planar standing-wave model captures the domi-

nant behavior of the wave, and to a high accuracy, there is

no deviation from the standard dispersion relation in spite of

the plasma’s finite size, expansion, and inhomogeneous den-

sity. We suspect that this follows from the fact that the length

scale for background density variation and time scale for

plasma expansion are reasonably long compared to the IAW

wavelength and period, respectively. Observations for longer

times will be more sensitive to interactions between the

wave and the boundary.

In the first report of IAWs,2 the frequency was found by

fitting the evolution of dnðx; tÞ=nGaussð0; 0Þ (Fig. 9) instead

of dnðx; tÞ=nGaussð0; tÞ (Eq. (21)). Within our uncertainties,

there is no difference in the resulting dispersion relation.

VI. IAW DAMPING

The scaling of the amplitude has a significant effect on

the interpretation of the damping of IAWs. The unscaled am-

plitude of the perturbations, dn, decreases rapidly in time

(Fig. 9), but as discussed in Sec. IV, a significant decrease is

expected due to plasma expansion, which is distinct from

damping. This effect is accounted for by scaling the ampli-

tude by the instantaneous peak density, dnðx; tÞ=nGaussð0; tÞ,
which yields A(t) shown in Fig. 7. With proper scaling, it is

clear that damping is small on the timescale of our

measurements.

The inverse of the damping rate, found by fitting Eq.

(23) to the data, is shown in Fig. 10. The typical damping

times are 3–10 times longer than the timescale of our meas-

urements, and thus poorly determined. The observation times

were limited by decreasing density and signal as the plasma

expanded. Shorter wavelengths49 will increase the oscillation

frequency and allow us to observe more periods and explore

the damping with greater precision.

FIG. 7. Evolution of the amplitude of dnðx; tÞ=nGaussð0; tÞ (Eq. (21)) and fits

to obtain xðtÞ for (a) Teð0Þ ¼ 25 K, (b) Teð0Þ ¼ 48 K, (c) Teð0Þ ¼ 70 K, and

(d) Teð0Þ ¼ 105 K. Lines are fits to Eq. (23) in which sexp has been fixed to

the theoretical value.

FIG. 8. Dispersion relation of IAWs for different initial electron tempera-

tures. Lines are from the theoretical dispersion relation, Eq. (1), with no fit

parameters. k0kD < 0:42 for all conditions used in this study, with the aver-

age density being used to calculate kD. Reproduced with permission from

Phys. Rev. Lett. 105, 065004 (2010). Copyright 2010 American Physical

Society.

FIG. 9. Evolution of the amplitude of dnðx; tÞ=nGaussð0; 0Þ for (a) Teð0Þ ¼
25 K, (b) Teð0Þ ¼ 48 K, (c) Teð0Þ ¼ 70 K, and (d) Teð0Þ ¼ 105 K, as was

done for analysis in the first report of IAWs in UNPs.2
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The damping of collective effects is interesting in plas-

mas because it can be sensitive to collisional or kinetic

effects.53 Damping can also probe important many-body

properties such as viscosity, which has become a topic of

great interest in strongly coupled systems.7,54 In the case of

IAWs, Landau damping is often the dominant damping

mechanism. When Te � Ti, there is a large population of

electrons traveling at just below the phase velocity of the

wave that can efficiently extract energy from the wave. The

Landau damping rate scales with the oscillation frequency,

x (Eq. (1)), as given by53,55

cL � x

ffiffiffiffiffiffiffiffi
p=8

p
ð1þ k2k2

DÞ
3=2

� me

mi

	 
1=2

þ Te

Ti

	 
3=2

exp
�Te=Ti

2ð1þ k2k2
DÞ

 !" #
:

(25)

To account for the time dependence of the damping rate over

the evolution time of the experiment, we average the calcu-

lated rate over the observation time,

cavg �
1

t0

ðt0

0

cLðtÞdt: (26)

The inverse of this average rate gives theoretical damping

times of larger than 1 ms for all conditions studied here,

which is much longer than the timescale observed for damp-

ing of IAWs.

Intuitively, one expects other effects to lead to damping

or dephasing of the wave in UNPs. For example, propagation

into low density regions at the plasma outer boundary should

lead to decay. Also, when the wavelength decreases and the

dispersion relation deviates from constant phase velocity due

to the nonvanishing Debye screening length (kkD � 1), the

dispersion relation should depend on plasma density and

vary through the plasma. This will lead to a more complex

wave evolution.

It would be very interesting to access a regime in which

Landau damping dominates. It is difficult to achieve signifi-

cantly lower Te=Ti in UNPs because of intrinsic electron

heating effects at low temperature, such as three body

recombination.34 But at short wavelength, as kkD approaches

unity, the damping increases sharply and should be observ-

able. Much more work remains to be done to understand

damping of IAWs in UNPs, nonetheless, this work represents

a valuable first step.

VII. ION VELOCITIES IN THE IAWS

In the previous sections, we have studied IAWs through

the variation of density in space and time. It is also possible

to measure the velocity of the ions in the plasma, which

should also display the effects of the oscillation.

For total density given by Eq. (16) with perturbation dn
given by the standing wave model (Eq. (21)), the ion flux J
can be found from the one-dimensional continuity equation,

@n=@t ¼ �@J=@x. For IAW wavelength much less than the

characteristic size of the plasma (k� r) and slow variation

of r; x, and k, the flux is

J � x
k

A0nGaussð0; tÞe�x2=2r2
enve�CtsinðkxÞ sinðxtÞ: (27)

The hydrodynamic ion velocity at x and t due to an IAW is

given by uIAW ¼ J=n. We observe that the envelope size is

approximately equal to the characteristic plasma size

(renv � r). So, exponential factors in this ratio cancel, and

uIAW �
x
k

A0e�CtsinðkxÞ sinðxtÞ; (28)

where we have assumed a small perturbation. In addition to

the IAW velocity, ions possess the hydrodynamic velocity

due to plasma expansion (Eq. (5)) and random velocities

characterized by the ion temperature Ti.

Section II B describes how the Doppler-sensitive laser-

induced fluorescence spectrum can be used to obtain the

mean square of the velocity along the laser propagation

direction for all ions in the excitation volume, v2
x

� �
(Eq.

(14)), where the overbar indicates a spatial average. For a

small-amplitude IAW in an expanding plasma, v2
x

� �
arises

from thermal, expansion, and IAW contributions,

v2
x

� �
¼ kBTi=mi þ c2r2 þ u2

IAW þ 2cxuIAW : (29)

The average of the cross term, 2cxuIAW , tends to zero for

small IAW wavelength and is already small for our condi-

tions. We will neglect it in subsequent analysis. For clarity,

we have also neglected effects of the small angular misalign-

ment of the IAW and laser propagation directions.

Figure 11 shows measurements of v2
x

� �
extracted from

the spectra for Teð0Þ ¼ 70 K expressed in terms of an aver-

age kinetic energy of the ions, mi v2
x

� �
=2. The small offset for

the kinetic energy at early times arises from disorder-

induced heating of the ions.32,36 The kinetic energy then

shows a gradual increase on the timescale of sexp as electron

energy is transferred into expansion velocity of ions. Finally,

it approaches a terminal velocity � kBTe0=2mi when all the

energy has been transferred. Note that the overall evolution

of kinetic energy is affected very little by the presence of

FIG. 10. Measured damping times (C�1) found from fitting the wave ampli-

tude evolution to Eq. (23). Initial IAW wavelengths are given in the legend.
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IAWs, which further confirms that the plasma expansion is

not affected significantly by the small IAWs. The only devia-

tions are small oscillations at early times.

Figure 12 shows the difference between the data and the

fits to 1
2

mihv2
xi¼ 1

2
kBTi þ 1

2
mic2r2, which emphasizes the

effect of the IAW. This difference is now fit to

DEKE ¼
1

2
miu2

IAW ¼
1

4
mi

x
k

A0e�Ct
� �2

sin2xt (30)

plus an arbitrary offset, where the evolution of x=k is

replaced by the expected IAW speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTeðtÞ=mi

p
, the evo-

lution of x is set by Eq. (24), and the only fit parameters are

the fractional amplitude A0 and decay rate C. Notice the

clear oscillations in the kinetic energy at twice x that are out

of phase with the oscillations in amplitude of the density per-

turbation shown in Fig. 7.

Figure 12 can be interpreted as a measurement of the

amount of energy in the waves. This energy oscillates back

and forth between potential energy of ions in the electric

field when the density perturbation is largest and kinetic

energy when the kinetic energy is largest. Measuring veloc-

ity perturbations may prove to be a more valuable probe of

IAWs than density perturbations when the wavelength is

very small and difficult to resolve optically.

VIII. CONCLUSIONS

We have presented expanded studies of ion acoustic

waves in ultracold neutral plasmas,2 including a description

of the effects of plasma expansion on the amplitude of the

wave. We observe the wave through density and velocity

perturbations, and we find excellent agreement with the well

known IAW dispersion relation. The IAWs damp signifi-

cantly faster than expected for Landau damping, and this

effect remains to be explained. In the future, we plan to

extend these measurements to the short wavelength,49 non-

linear-dispersion regime of ion plasma oscillations, where

strong coupling is predicted to have an effect and Landau

damping increases. With these tools, we can also study dif-

ferent initial plasma geometries to access other phenomena

such as streaming plasmas, nonlinear waves, and possibly

shock physics.
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