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Abstract

This paper presents a brief overview of recent theory and experiment for
plasmas with a single sign of charge. In principle these plasmas can be
confined forever in a state of thermal equilibrium that is guaranteed to be
stable and quiescent. In practice confinement times of hours are routinely
obtained. The plasmas can be cooled to the cryogenic temperature range
where liquid and crystal-like states are predicted and observed. The
plasmas provide experimental access to the parameter regime of strong
magnetization where a many particle adiabatic invariant constrains the col-
lisional dynamics. Also, the plasmas can be used to model the 2D vortex
dynamics and turbulence of an ideal (incompressible and inviscid) fluid

1. Introduction

This paper discusses plasmas with a single sign of charge.
Examples of such plasmas that have been realized in recent
experiments are pure electron plasmas [1-7], pure ion
plasmas of one or more species [8-10], and positron
plasmas [11]. The requirement is that the plasmas be totally
unneutralized, and in that sense the plasmas are a subset of
the more general class of non-neutral plasmas [12].

Plasmas with a single sign of charge are typically confined
in a Penning trap, and Fig. 1 shows a simple example of
such a trap [1]. A conducting cylinder is divided axially into
three sections with the central section held at ground poten-
tial and the two end sections held at positive potential (to
confine positively charged particles). Also there is a uniform
axial magnetic field. The plasma resides in the region of the
central grounded section and is confined radially by the
magnetic field and axially by the electric fields.

We will find that long-term confinement in a state of
thermal equilibrium requires the trap to have cylindrical
symmetry, but there are many variations consistent with
this requirement. For example, the cylindrical electrodes
may be replaced by hyperbolas of revolution; such traps
have traditionally been used to confine small numbers of
charged particles [13]. Also, the magnetic field need not be
uniform, so long as it has the required cylindrical symmetry.
As a specific example, let us consider the simple configu-
ration shown in Fig. 1; this configuration has been used in
most of the recent experiments.

Radial force balance requires that the plasma rotate
about its axis. Because the plasma is non-neutral, the rota-
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Fig. 1. Penning trap with cylindrical electrodes.

tion produces an azimuthal current, and the radially inward
J x B/c force balances all of the outward forces: the radial
electric force, the radial pressure gradient, and the centrifu-
gal force. Rotation through a magnetic field is in some sense
like neutralization by a background charge. This is a useful
way to think about these systems, and the idea will be made
more precise as we proceed.

One of the first questions that you may want to ask is
“Why do I insist on calling this collection of unneutralized
charges a plasma?” The answer is that these systems exhibit
much of the collective phenomena associated with ordinary
neutral plasmas. For example, the measured dispersion rela-
tion for Langmuir waves in a pure electron plasma [14] is
the same as it is for Langmuir waves in a neutral plasma
(except for the Doppler shift associated with rotation of the
electron plasma). To understand this result, simply recall
that Langmuir waves occur at such a high frequency in a
neutral plasma that the ions don’t participate in the motion.
Also, non-neutral plasmas exhibit Debye shielding [15]. To
be precise, the Debye length (i, = /kT/4nne?) must be
small compared to the dimensions of the plasmas for the
collection of charges to qualify as a plasma. For a review of
collective aspects of non-neutral plasmas emphasizing their
similarity to neutral plasmas I refer you to Davidson’s
recent monograph on this subject [12].

Here, I take a different approach and emphasize some
ways in which non-neutral plasmas (or more precisely,
plasmas with a single sign of charge) differ from neutral
plasmas. I want to identify and explore some unique
research opportunities presented by these novel systems.

2. A Confinement theorem

One of the ways in which a plasma with a single sign of
charge differs from a neutral plasma is that a plasma with a
single sign of charge has superior confinement properties. In
principle, such a plasma can be confined forever.

Referring again to Fig. 1, one can see that the axial con-:
finement is guaranteed simply by turning the voltage on the
end electrodes sufficiently high. It is the radial confinement
(the magnetic confinement) that one must worry about. To
understand this confinement, it is useful to introduce the
total canonical angular momentum

va,l e A,( 1)

where (z, r, 0) are cylindrical coordinates and the sum runs
over all of the particles in the plasma. The quantity (mv;r;
is the mechanical part of the angular momentum for the jth
particle and the quantity (e/c)A,(r;)r; is the vector potential
part. For a uniform axial magnetic field A, (r) = Br/2; the
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diamagnetic field is negligible for the low densities and
velocities that we have in mind here. For a sufficiently large
magnetic field, the vector potential contribution to the
angular momentum is larger than the mechanical contribu-
tion, and eq. (1) reduces to

N eB

Py, ~ — r2 ‘

S @
Since the plasma contains only a single sign of charge, the
charge can be pulled out in front of the sum along with the
other constants, and eq. (2) reduces to

eB X
Py =~ % j;’?- ©)]

To the extent that the confinement geometry has cylindrical
symmetry, the N-particle Hamiltonian is invariant under
rotation, and P, is a constant of the motion. Consequently,
eq. (3) implies a constraint on the allowed radial positions of
the particles; the mean square radius of the plasma is con-
served.

This is a very powerful constraint, and it can be illus-
trated by a simple example. Fig 2 shows the end view of a
plasma column that is initially shaped like a cylindrical shell
of radius 1cm [ie., r{t =0)=1cm for j=1, ..., N]. The
plasma resides in a long trap with the conducting wall at
radius r = 10cm. Taking this situation as the initial condi-
tion, that will be the dynamical evolution of the plasma? It
turns out that a hollow column is unstable to diocotron
modes [3, 16]; so these modes grow to large amplitude,
nonlinear effects come into play, and a turbulent-like evolu-
tion ensues. Interparticle collisions also effect the evolution,
particularly the long time evolution. However, all of this
complicated dynamics involves only internal interactions, so
Pyoc Y ;r? is conserved. This means that only 1% of the
particles can ever move from r{0) = 1cm out to the wall at
r=10cm; the other 99% of the particles are confined
forever.

This happy result is not realized for neutral plasmas. The
constraint Y ,;r? =constant is replaced by ) ;e;r}=
constant, so an electron and an ion can move to the wall
together and still preserve the sum. This is precisely what
happens in electron-ion collisional transport as well as in
many instabilities. One can see that it is much easier to
confine a plasma with a single sign of charge than it is to
confine a neutral plasma.

Of course, in a real experiment there are effects which
break the cylindrical symmetry of the confinement
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Fig. 2. End view of plasma column shaped like a cylindrical shell.
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geometry, so P, is not conserved exactly. For example, there
are neutrals, and collisions of the plasma particles with these
neutrals apply a torque on the plasma and allow the mean
square plasma radius to expand [17, 18]. (Recall that the
plasma has a net rotational motion relative to the lab frame
and the neutrals.) Also, construction errors and field errors
break the cylindrical symmetry and apply a torque on the
plasma [18, 19, 10]. However, if one is careful to maintain a
very good vacuum and to minimize construction and field
errors, the net torque can be kept small and the confinement
time long. Pure electron plasmas have been confined for
hours with very little expansion observed [20].

Finally, the argument leading to the angular momentum
constraint was heuristic and various theoretical worries
arise on closer inspection. For example, one might worry
that the angular momentum radiated by the charges would
lead to a non-negligible plasma expansion. Also, one might
worry that the mechanical part of the angular momentum
would grow to be comparable to the vector potential part as
the charges move radially outward and gain kinetic energy;
recall that the radial electric field does work on a charge as
the charge moves outward.

To dispel such worries a confinement theorem was con-
structed using conservation of angular momentum and con-
servation of energy for the charge-field system [21]. The
theorem applies to a long column in a region of space
bounded by a perfectly conducting and perfectly absorbing
cylindrical wall. Perfectly absorbing means that plasma par-
ticles cannot bounce off the wall and re-enter the plasma.
The theorem assumes that 4, A%(RQ./c) < 1, where R is the
radius of the conducting wall, Q. = eB/mc is the cyclotron
frequency, and A% = W,/Y.; mQZr?/2. Here, W, is the initial
kinetic plus electrostatic energy of the plasma. Typically, the
kinetic energy is small compared to the electrostatic energy;
so A% ~ w?/Q?, where w, is the plasma frequency. The
theorem states that the sum ) ; r? can change significantly
only as a result of external torques (e.g., torques due to colli-
sions with neutrals, field errors, etc.).

3. Boltzmann distribution

In practice the external torques can be made sufficiently
weak that interactions between the plasma particles have
time to bring the particles into thermal equilibrium with
each other before there is significant plasma expansion [2,
8]. Consequently, we neglect the torques and study the
thermal equilibrium states.

For a weakly correlated plasma in which the angular
momentum and energy are both conserved, the Boltzmann
distribution takes the form [22-24]

m_\** L 4
f= n°<§nk_T> exp [— Tk wpo):l, @
where

2
h= % + edlr, 2) )
is the single particle Hamiltonian and
eB r?
Po =mpyr + — = (6)



is the single particle canonical angular momentum. In eq.
(5), the quantity ¢(r, z) is the mean field (or Vlasov) electrical
potential [25, 12]. The distribution is characterized by three
parameters (no, T, w), and these parameters are determined
by the total number of particles, the total energy, and the
total canonical angular momentum in the system (i.e., N, H,
P 0)' B
Substituting eqs (5) and (6) into eq. (4) and doing a small
amount of algebra yields the distribution

m \3? m ~o |
f=n(r, z)(anB T) exp l:— 2%, T (v + wrb) ],

where

™

n(r, z) = ny €Xp {— Tc-,,l—T [ed(r, z) + mw(Q. — w)r2/2]}. 8)

One can see that the velocity dependence is Maxwellian in a
frame that rotates with frequency —w. As one expects, the
thermal equilibrium distribution corresponds to a shear free
flow; we call such a flow a rigid rotor. The density distribu-
tion is determined by three potentials: the electric potential
@(r, z), the centrifugal potential —mw?r?/2, and the poten-
tial mwQ, r?/2. This latter potential is associated with the
electric field induced by rotation through a magnetic field; it
is this field that provides the radial confinement. To see that
the distribution does in fact correspond to a confined
plasma, note that ¢(r, z) forces the distribution to be expo-
nentially small at the ends of the column (assuming that the
potential on the end electrodes is turned up sufficiently high)
and that the potential mwQ, r?/2 forces the distribution to
be exponentially small at large r (assuming that B is suffi-
ciently large). Of course, the conducting wall is assumed to
be outside the radius where the distribution becomes expo-
nentially small.

Note that such thermal equilibrium distributions do not
correspond to confinement for a neutral plasma. The sign of
the charge enters ed(r, t) and mwQ, r?/2, so confinement of
electrons means non-confinement of ions. In fact, it is well
known that a neutral plasma cannot be in thermal equi-
librium and also be confined by static electric and magnetic
fields; if it could, the controlled fusion problem would have
been solved long ago. Because a confined neutral plasma is
not in thermal equilibrium, there is always free energy to
drive instabilities, and these instabilities have plagued con-
trolled fusion research over the years. In contrast, a thermal
equilibrium plasma with a single sign of charge is in a state
of minimum free energy and is guaranteed to be stable. One
must recall that this whole discussion is limited to time
scales on which P, is well conserved.

In eq. (8), the electric potential is determined largely by
the plasma charge density itself; so we must solve for the
potential self-consistently [24]. In particular, we have to
solve Poisson’s equation,

V3¢ = 4nen(r, 2), ©)

subject to the boundary conditions that specify the value of
¢(r, z) on the conducting wall. Here, n(r, z) is the density
distribution given by eq. (8).

Assuming that the Debye length is small compared to the
dimensions of the plasma, the self-consistent density turns
out to be nearly constant out to some surface of revolution

Fig. 3. Thermal equilibrium density distribution.

and then falls off on the scale of the Debye length (see Fig.
3) [24]. The fall off in density along the local normal to the
surface of revolution is shown in Fig. 4, for the case where
the Debye length is small compared to the local radius of
curvature of the surface.

It is easy to understand this result in physical terms. First
note that the second term in the bracket of eq. (8) is quadra-
tic in r. Suppose that instead of being confined by a mag-
netic field, the plasma particles were confined by an
imaginary cylinder of uniform negative charge. The poten-
tial energy of a positive charge e in the cylinder of negative
charge would be quadratic in r; so the second term in the
bracket of eq. (8) can be interpreted as such a potential
energy. In other words, the thermal equilibrium density dis-
tribution for a magnetically confined plasma is the same as
the thermal equilibrium density distribution for a plasma
confined by a cylinder of neutralizing charge.

There is also charge on the positively biased end elec-
trodes. This charge and the uniform cylinder of negative
charge produce a potential well @o(r, z), and the plasma of
positive charges resides in this well. Let us imagine building
up the plasma step by step. When we introduce the plasma
charges, they go to the bottom of the well and match their
density to the density of imaginary negative charge. Grad-
ually the well is filled up out to some. surface of resolution
where the supply of plasma is exhausted, and there the
plasma density falls off on the scale of a Debye length. This
is just the nature of the solution obtained by solving egs (8)
and (9) for the self-consistent potential and density [24].

The plasma density interior to the surface of revolution is
very nearly equal to the density of the imaginary negative
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Fig. 4. Fall in density near plasma edge. The Debye length is assumed to
be small compared to the local radius of curvature of the surface that
defines the plasma edge (from Ref. [24]).
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charge, and this density is given by
4ne*n_ = Vmo(Q, — w)r?/2. (10)

"Ii;raluating the Laplacian and introducing the plasma fre-
quency (w? = 4nne?/m) yields the useful result

w? =20(Q, — o). (11)

Equivalent to the statement that the plasma density is
constant in the interior of the plasma is the statement that
the sum of the two potentials in the bracket of eq. (8) is
constant. This in turn implies that E, = d¢/dz = 0; the com-
ponent of the electric field parallel to the magnetic field is
Debye shielded out in the interior of the plasma, as one
expects.

For given potentials on the end electrodes and a given
value of ma(Q, — w), one can determine the shape of the
potential well ¢q(r, z). Of course, the shape of this well is
important in determining the shape of the plasma (the
surface of revolution). For the simple case of a small plasma
at the bottom of the well, the potential is approximately
quadratic and can be written as

2 2
ebolr, 2) = C + 7% (22 —r2) + -mﬂf—w)—'—
where C and w, are constants. For this case, the plasma
takes the shape of a spheroid (an ellipse of revolution)
[8, 10, 26].

The reason for this is easy to understand. The bracket of
eq. (8) is the sum of e¢, and e, where ¢, is the plasma
space charge potential. This latter potential satisfies
Poisson’s equation and vanishes everywhere on the con-
ducting boundary. Inside the plasma, the bracket is con-
stant, so when @, is quadratic, ¢, must be quadratic. It is
well known that a uniformly charged spheroid in free space
produces a quadratic potential inside the spheroid. If the
plasma is small compared to the distance to the conducting
boundary, the free space solution is a good approximation.
The aspect ratio of the ellipse is related to the coefficients in

¢, through [10]

2

(12)

()

m =g(Z,/R)), (13)
where
g(x) = Q[x/(1 — x)2/(x* — 1). (14)

Here, Z,/R, is the aspect ratio and Q{” is the associated
Legendre function of the second kind.

For given values of the density and magnetic field
strength (or, equivalently, given values of w? and Q,), eq.
(11) determines two possible rotation frequencies [27]

2

The frequencies are real only if 2w2/Q? < 1; this inequality
sets the maximum density that can be confined for a given
magnetic field strength and is referred to as the Brillouin
limit [27]). In Fig. 5, w./Q. are plotted as a function of
2w%/QZ; the solution w ., lies on the upper half of the parab-
ola and the solution w_ on the lower half. For a long
column, equilibria exist for the full range of frequencies 0 <
o < Q,. For a small spheroidal plasma in a quadratic trap

(15)
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Fig. 5. Plasma rotation frequency as a function of plasma density and
magnetic field strength.

potential, equilibria exist only for the frequency range w,, <
0 <Q, — ,, where o, =Q./2 — (Q/4 — wZ/z)'* is the
single particle magnetron frequency, that is, the drift fre-
quency of a single particle in the trap potential [10]. One
can see from egs (11), (13) and (14) that Z,/R, approaches
zero as w approaches o, or Q, — w,,.

Note that the existence of the two solutions does not con-
tradict our expectations that (N, H, P,) uniquely determine
a thermal equilibrium state. Consider two solutions with the
same value for w2 = 20(Q. — ), for T, and for the total
number of particles N, but with different rotation fre-
quencies w, and w_ as given by eq. (15). The two solutions
have the same density distribution but different velocity
distributions. Consequently, the values of H and of P, are
different for the two solutions. In fact,
Py=m(Q./2 — w) Jd%n(r, 2)r? (16)
differs for the two solutions by a minus sign, since
Q.2 —w,)= —(Q/2 — w_). In general, P, is positive on
the lower half of the parabola where w < Q./2, is negative
on the upper half where @ > Q./2, and vanishes at the Bril-
louin limit where w = Q,/2.

To obtain further insight into the relation between the
two solutions, we write the equation of motion for a particle
in the rotating frame

m % =m(Q, — 2w x Z — V[ed + ma(Q, — w)r?/2].

0]
The effective cyclotron frequency is called the vortex fre-
quency Q, = Q. — 2w [27]. Physically, the modification is
due to the coriolis force. For the two solutions w = w,, the
last term on the r.h.s. of eq. (17) is the same, but the vortex
frequencies differ by a minus sign [ie., (Q, — 20_) = —(Q.
— 2w,)]. Thus, the equations of motion differ only in that
the direction of the magnetic field is effectively reversed.
Interestingly, at the Brillouin limit (w = Q,/2), the effec-
tive magnetic field vanishes (ie., Q, = Q. — 2w = 0). Also,
for small Debye length, the bracket on the r.hs. of eq. (17) is
constant inside the plasma. Thus, in the rotating frame, the
particles follow straight line orbits within the plasma, reflec-
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Fig. 6. Evolution to thermal equilibrium of a pure electron plasma column.
The density and rotation frequency are shown as a function of radius for
three times (from Ref. [2]).

ting off of the Debye sheath at the edge. At the Brillouin
limit, the dynamics of a Penning trap plasma is the same as
that of an RF (Paul) trap, except for the RF micromotion of
particles in the Paul trap.
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Fig. 7. Doppler shifted resonance frequency vs. the displacement of the
laser beam from the plasma axis of rotation for a 30000°Be™ ion plasma
(from Ref. [8]).
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Fig. 8. Experimental check of eq. (13). Data were obtained for °Be*
plasmas with 2000 to 40000 Be* ions and for two different traps (from Ref.
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Fig. 9. Radius of a plasma of 2000 Be* ions as a function of the plasma
rotation frequency. The radius is scaled to the radius at the Brillouin limit
and the frequency to the cyclotron frequency. The solid curve is the theo-
retical prediction with no adjustable parameters (from Ref. [10]).

Much of this theory has been verified experimentally. A
signature of thermal equilibrium is that the rotational flow
is shear free. Of course, for an arbitrary initial state, the
local rotation frequency w(r) is not uniform in r. The shears
in the flow give rise to azimuthal viscous forces (due micro-
scopically to collisions) that drive the plasma (through
radial drifts) to a state of rigid rotation. Figure 6 shows the
experimentally observed evolution of a pure electron plasma
column to a thermal equilibrium state [2]. On the left the
density profile n(r, t) is plotted for the times t = 0, 3, 10sec,
and on the right the local rotation frequency w(r, t) is
plotted for the same three times. By ¢t = 10sec, the density
profile has evolved to the expected thermal equilibrium
form, and the rotation frequency has become nearly uniform
inr.

Thermal equilibrium states also have been observed for
pure ion plasmas [8]. A laser beam was passed through the
plasma in a direction perpendicular to the axis of rotation
and displaced a distance d from the axis. The doppler shift v
of the laser frequency relative to a resonance of the °Be*
ions that constituted the plasma was then measured for
several values of d. Figure 7 shows that v(d) was nearly
linear, which is the expectation for shear free rigid rotation.
For the case of a small ion plasma in a quadratic well, the
plasma shape was observed to have the expected spheroidal
shape [8]. Figure 8 shows the results of an experimental
check of eq. (13), which relates the aspect ratio Z,/R, to the
frequency ratio w?/2w(Q, — w) = w?/w?.

By using lasers to cool and exert a torque on the plasma
(i.e., to vary H and Pg), the rotational state of the plasma
was continuously varied over the parabola in Fig. 5 [10].
Figure 9 shows a comparison of theory and experiment for
the ratio R, (w/Q.)/R,(1/2) vs, w/Q.. Here, R,(1/2) is the
radius at the Brillouin limit (w/Q, = 1/2). As expected, the
ratio is even about w/Q, = 1/2. Also, the agreement between
theory and experiment is good over the whole range.

4. Strong correlation

Another advantage of plasmas with a single sign of charge is
that they can be cooled to the cryogenic temperature range
without the occurrence of recombination [28]. When kT
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drops below e?/a, where a is the distance between neighbor-
ing charges, the physics of strong correlation comes into
effect. Since the characteristic mean-field potential is large
(.., ep > kT, €*/a), the correlations cannot change the
gross plasma shape that was discussed in the previous
section. Rather, order is established within that shape.

A measure of correlation strength is the coupling param-
eter I' = ¢?/akT, where to be precise a is the Wigner-Seitz
radius (4na®n/3 =1) [29]. Of course, weak correlation
occurs in the limit T < 1. Theoretical studies [29, 30] of a
strongly correlated and infinite homogeneous one com-
ponent plasma (OCP), that is, a system of point changes in a
uniform neutralizing background charge, predict that the
system begins to exhibit the local order characteristic of a
liquid for I' ~ 2 and that there is a phase transition to a
b.c.c. crystal for I' ~ 172.

Experiments with pure ion plasmas in a Penning trap
[9, 10] have achieved I" values in excess of a hundred, but
the experiments involved a relatively small number of par-
ticles (N ~ 102 to 10%), so the theoretical studies of an infin-
ite homogeneous OCP cannot be trusted. On the other
hand, these small plasmas are ideally suited for numerical
simulation with a realistic (or nearly realistic) number of
particles, and several authors have carried out such simula-
tions [31-35].

Dubin and I carried out molecular dynamics simulations
and Monte Carlo calculations with the trap fields and
boundary conditions chosen to model the experiments [31].
In the molecular dynamics simulation, the equations of
motion for N interacting charges in a Penning trap are inte-
grated forward in time until the charges come into thermal
equilibrium with each other. Average quantities such as the
local density are determined as long time averages

N

T
n(x) = —17-; j. dt ¥ o[x — x10)]

0 j=1

(18)

According to the ergodic hypothesis, such a time average is
equal to a phase space average weighted by a distribution
for a microcanonical ensemble [36]

Pm.c. = CO[H — H(0)J5[Ps — P4(0)], (19)

where C is a normalization factor, H is the N-particle Ham-
iltonian, P, is the total canonical angular momentum, and
H(0) and P,(0) are the initial values of these quantities. This
is the appropriate thermal distribution for an isolated
system with H and P, conserved.

In contrast, the Monte Carlo calculation is a statistical
game of chance based on the distribution for a canonical
ensemble [23]

1
p. = C exp [— T H - wPo)],

where C' is a normalization factor. One considers a
sequence of random steps for the N-particle phase point and
conditions the acceptance or rejection of a given step by the
change in the probability of the N-particle state, that is, the
change in the value of p, [37]. Averages are taken along the
sequence of phase points generated in this way, and for a
sufficiently long sequence, the average approaches the phase
space average weighted by p. .

This distribution represents a system with fixed values of
the temperature T and rotation frequency w, rather than

(20)
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fixed values of H and P,. The distribution is appropriate for
a plasma in thermal contact with a heat and angular
momentum reservoir. For example, Fig. 10 shows a trapped
plasma in thermal contact with an infinitely long plasma
column (the reservoir) characterized by temperature T and
rotation frequency . Thermal fluctuations in the fields
produce energy and angular momentum transfer back and
forth between the plasma and the reservoir.

For a sufficiently large plasma, the fluctuations in plasma
energy and angular momentum are small compared to the
mean values of these quantities, so one expects the fluctua-
tions to have negligible influence on the plasma structure.
We find that the molecular dynamics simulation and the
Monte Carlo calculation yield the same answer for average
quantities such as the local density, provided that N 2 100,
and we limit our consideration to such plasmas. In other
words, we consider plasmas that are large in the sense that
the micro-canonical and the canonical ensembles give the
same answer but are small in the sense that boundedness
affects the structure.

We can gain some useful insights from the canonical
ensemble. Distribution (20) is of the same form as the Bolt-
zmann distribution [eq. (4)], and one can carry out the same
algebra as was carried out in passing from eq. (4) to eqs )
and (8). One then concludes that the canonical ensemble for
the magnetically confined plasma differs only by rotation
from the canonical ensemble for a plasma confined by a
cylinder of uniform neutralizing charge. In other words, the
magnetically confined plasma has the same thermal equi-
librium structure as a bounded OCP. As discussed in the
last section, this OCP resides in a potential well @,(r, 2) that
is produced by the cylinder of uniform neutralizing charge
and the end electrodes.

Another relationship that follows from the canonical
ensemble concerns the guiding center dynamics that we
employ in the molecular dynamics simulation [31]. In the
experiments, the cyclotron radius typically is much smaller
than the distance between particles, or equivalently, the
cyclotron period is much shorter than an iteraction time.
Under these circumstances it is useful to average out the
high frequency cyclotron dynamics before turning to the
computer. This is accomplished by using the guiding center
equations of motion rather than the exact equations of
motion. Although the guiding center equations are only
approximate, the thermal equilibrium structure obtained
with them is not. By substituting the guiding center Hamil-
tonian and guiding center angular momentum into distribu-
tion (20), one finds that the guiding center system has the
same thermal equilibrium structure as the exact system,
except for a slightly shifted magnetic field strength.

What follows are numerical results for the case of a small
plasma at the bottom of the effective potential well (the
experimental situation). The well in the region of the plasma
is nearly quadratic as given in eq. (12). For convenience in
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7 QL 0050 )

Fig. 10. Plasma in thermal contact with a heat and angular momentum
reservoir.



displaying results, we choose conditions so that the well
(and plasma) have spherical symmetry. The fact that the
plasma radius is small compared to the radius of the con-
ducting cylinder also implies that the force due to an image
charge is small, so we take the interaction potential to be
simply €?/| x; — x;].

Figure 11 shows the results of a Monte Carlo calculation
for T values ranging from 1 to 10; the average density
n = n(r) is plotted as a function of the radius r for r values
near the plasma edge. The potential well and plasma have
spherical symmetry. For ' = 1, the density falls smoothly to
zero, as it does for weak correlation (see Fig. 3); but for
higher values of T, oscillations are present near the plasma
edge. These oscillations are evidence of local order; the
damping length for the oscillations is a measure of the
correlation length. One may think of the density maxima as
embryonic lattice planes, or more precisely, spherical lattice
shells.

Figure 12 shows the result of a molecular dynamics calcu-
lation for I' = 140 and N = 100, again for spherical sym-
metry. The density is essentially zero between the spherical
shells, and if you tag an individual particle on one of these
shells you find that the particle is localized to the shell but

r=12,3,5,10

Fig. 11. Results of a Monte Carlo calculation for I'=1, ..., 10; the
average density n(r) is plotted for r values near the plasma edge.
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not localized on the shell. For this value of I' the particles
still diffuse over the surface of the shell. The system behaves
like a crystal in the radial direction, but like a liquid along
the surface of a shell. Figure 13 shows density contours for a
spherical plasma with I' = 190 and N = 256.

For substantially higher values of I, the particle diffusion
along the surface of a shell also goes to zero, and an imper-
fect 2D hexagonal crystal is formed on the shell. Figure 14
shows the outer half shell for a N = 256 spherical plasma
with I" = 380. The ions are arranged in an imperfect 2D
hexagonal crystal and execute small amplitude thermal
motion about their equilibrium positions.

The shell structure has been observed experimentally.
Figure 15 shows an image of 11 shells for a plasma of 15000
Be* ions [9]. Three laser beams were passed through the
plasma exciting the Be* ions, and the ion fluorescence was
then focussed to form the image.

New experiments [see paper by John Bollinger in these
proceedings] with substantially larger plasmas (N — 10°)
are now being carried out, and it is interesting to ask how
large the plasma must be to realize the bee lattice structure

0

Fig. 13. Density contours for a spherically symmetric plasma obtained
from molecular dynamics simulation for I' = 190 and N = 256.
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Fig. 12. Results of a molecular dynamics simulation for I =140 and  Fig. 14. Results of a molecular dynamics simulation for I' = 380 and

N = 100 with a spherical symmetry; the average density n(r) is plotted as a

function of r.

N = 256 with spherical symmetry. Particles in the outer shell are shown
executing thermal motion about their equilibrium positions.
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Fig. 15. Image of shell structure for a plasma of 15000 Be* ions (from Ref.
%)

predicted for an infinite homogeneous OCP. Dubin has pre-
dicted that the plasma must be quite large (60 lattice planes)
[38]. The reason is that the bulk binding energies for an fcc
and a bcc lattice are nearly the same, so a relatively small
surface contribution to the free energy can mask the differ-
ence. John Schiffer [39] has recently carried out a very
ambitious molecular dynamics simulation involving
N = 20000 charges, and shell structure was observed (see
Fig. 16). In this simulation, the plasma was carefully cooled
(annealed) to very low temperature, corresponding to values
of I in excess of a thousand.

In summary, it is fair to say that the small, cold, thermal
equilibrium plasmas in a quadratic trap potential are some
of the best understood plasmas. A simple analytic theory
predicts the gross plasma shape (spheroidal) and its depen-
dence on trap parameters, and the predictions are in good
agreement with experiment. Within the context of fluid
theory, an analytic description has been obtained for all of
the modes of oscillation about the equilibrium [40, 41], and
the predicted frequencies (for the low order modes that have
been checked thus far) are in good agreement with experi-
ment (see paper by John Bollinger in these proceedings) [42,
43, 10]. Also, theory and experiment are converging to
provide an understanding of the microscopic order within
the spheroidal shape.

20000 Ions in Isotropic Confinement -- 1/26/94

2.0 T T T 3 T T

radius

Fig. 16. Results of a molecular dynamics simulation for a N = 20000
spherical plasma with I" in excess of a thousand (personal communication
from J. Schiffer).
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5. Strong magnetization

Cryogenic electron plasmas provide experimental access to
the novel parameter regime of strong magnetization. We say
that a plasma is strongly magnetized when the cyclotron
frequency is the largest of the dynamical frequencies [44].
For a weakly correlated plasma (I" < 1), the largest of the
remaining frequencies is #/b, where % =./kT/m is the
thermal velocity and b = e?/kT is the classical distance of
closest approach. Thus, strong magnetization requires that

Q. > v/b. @1)

This inequality is most easily satisfied for electrons, and for
this case it can be written as

10~ 7B [Gauss] » (kT)*? [eV]. 22)

One can see that strong magnetization requires low tem-
perature as well as large magnetic field. Even for a magnetic
field strength as large as 100 kG, the required temperature is
such that a neutral plasma would recombine. Of course, the
pure electron plasma cannot recombine, and as the tem-
perature drops into the cryogenic range the plasma becomes
strongly magnetized.

In this parameter regime the total action associated with
the cyclotron dynamics,

=val

(23)

is a many electron adiabatic invariant that constrains the
collisional dynamics [44]. Here, v,; is the velocity perpen-
dicular to the magnetic field. One may think of the cyclo-
tron variables as high frequency oscillators and the
remaining variables (the guiding center variables) as slowly
varying parameters that modulate the high frequency oscil-
lators. During a collision, the high frequency oscillators can
exchange quanta (action) with each other but not with the
low frequency variables, that is, the total cyclotron action is
conserved, or more precisely, is an adiabatic invariant.

We are used to thinking about adiabatic invariants
associated with a single particle. For example, for a particle
in a slowly varying field, the magnetic moment mv3/2B (or
equivalently, cyclotron action) is an adiabatic invariant. In
contrast, we are discussing here a many particle invariant.
One might think that the sum in eq. (23) is conserved simply
because each of the terms is separately conserved, but that is
not the case. During a collision between electron 1 and elec-
tron 2, the cyclotron motion of electron 2 introduces a high
frequency component to the interaction field felt by electron
1, and this breaks the adiabatic invariant of electron 1. Like-
wise the invariant of electron 2 is broken by the high fre-
quency field from electron 1. However, the sum of the two
invariants is conserved.

For the case of a uniform magnetic field, the quantity
Q. ! may be factored out of the sum in eq. (23), so the total
perpendicular kinetic energy is an adiabatic invariant.
Because of this invariant, the collisional relaxation of the
electron velocity distribution takes place in two stages. On
the time scale of a few collisions, the adiabatic invariant is
well conserved, so the velocity distribution becomes Max-
wellian in the parallel direction and in the perpendicular
direction separately with T, not necesarily equal to T,.
However, the evolution does not stop at this stage, since an
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Fig. 17. Comparison of theory and experiment for the collisional equi-
partition rate (from Ref. [44]).

adiabatic invariant is not an exact constant of the motion.
During each collision there is an exponentially small break-
ing of the adiabatic invariant, that is, an exponentially small
exchange of parallel and perpendicular energy, and these act
cumulatively to allow T, and T, to relax to a common
value.

Figure 17 shows a comparison of the theoretically pre-
dicted equipartion rate to the measured rate [44, 45]. Here,
the rate v is defined through the equation dT,/dt = W(T,
— T,). The ordinate in Fig. 17 is the scaled rate v/(nib?),
where the combination (nob?) is very nearly the collision fre-
quency for an unmagnetized plasma. According to theory,
the scaled rate depends on temperature and magnetic field
strength only through the combination #/(Q, b). This quan-
tity is the abscissa in the figure. One can see that theory and
experiment are in good agreement over nearly eight decades
in 9/(Q.b), and that the rate drops dramatically in the
strongly magnetized regime [i.e., for 5/(Q, b) < 1].

The theory has now been extended to the case of a
strongly magnetized crystal [46]. In this case, the cyclotron
phonons (w ~ Q) are of much higher frequency than the
plasma phonons (w ~ ®,), and the total action associated
with the cyclotron phonons is an adiabatic invariant. The
rate of equilibration between T and T, is calculated to be
v~ w, exp [-(Q./w,) In Tw,/Q.)]. The calculation assumes
that Q./w, > 1 and T'w,/Q, > 1.
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6. Turbulence and vortex dynamics

A pure electron plasma in a cylindrically symmetrical
Penning trap is an ideal system for turbulence studies
because the confinement theorem guarantees that the
plasma remains confined in spite of the turbulence. The
plasma evolution can be followed from an initial instability
through the nonlinear stages of vortex formation and
merger to decay of the turbulence. Also, by a happy coin-
cidence, the low frequency E x B drift flow of the plasma
models the 2D dynamics of an ideal (incompressible and
inviscid) fluid [3].

When the plasma column is long and the cyclotron fre-
quency and axial bounce frequency for a typical electron are
large, the cross magnetic field flow of the plasma can be
described by the 2D drift-Poisson equations

V3¢ = 4nen, (249

where n=n(r, 0, t) and ¢ = #(r, 6, t). These equations are
isomorphic to the equations that govern the 2D dynamics of
an ideal fluid, with (¢/B)¢ corresponding to the stream func-
tion and (47ec/B)n to the vorticity [3].

There are several experimental advantages of studying the
flow with a pure electron plasma, rather than with, say,
water. The vorticity (electron density) can be imaged directly
by dumping the electrons out along the magnetic field lines
to a phosphorous screen (imaged by a CCD camera). Also,
the pure electron plasma has very low viscosity, is con-
strained by the magnetic field and rapid bounce motion to
be highly 2D, and is not complicated by boundary layers at
the ends and walls.

Figure 18 shows a sequence of images in which two vor-
tices (electron columns) undergo merger [47]. To obtain the
time sequence of images, one relies on shot to shot repro-
ducibility. The apparatus is operated repeatedly in an inject-
hold-dump sequence always starting from the same initial
condition but allowing successively longer hold times. In
this way, one can make a “movie” of the dynamical evolu-
tion.

The time for merger is a sensitive function of the initial
separation of the vortices. Figure 19 shows the merger time

Fig. 18. Two vortices (electron columns) undergo merger. The pictures were obtained by dumping the electrons out along the magnetic field lines to a

phosphorus screen imaged by a CCD camera (from Ref. [47]).
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Fig. 19. Time for merger of two vortices vs. the ratio 2D/2R,, where 2D is
the initial separation and 2R, is the initial diameter (from Ref. [47]).

as a function of 2D/2R,, where 2D is the initial separation
and 2R, is the initial diameter [47]. The time for merger
increases by 10* as D/R, passes from 1.5 to 1.8. Figure 18
shows a case of rapid merger where D/R, = 1.48. These
results are in good agreement with analytic theory and
numerical computation for 2D ideal fluids [48-50].

Figure 20 shows a time sequence of images that start from
a highly unstable initial state [51]. The first image shows a
plasma that already is highly filamented and has many
small vortices. During the turbulent evolution, the small
vortices merges to form larger vortices. Ultimately, the turb-
ulence decays leaving a single, cylindrically symmetrical,
stable vortex (plasma column). For other initial conditions,
some of the vortices do not merge, but rather are annealed
into a crystal structure. An interesting challenge to theory is
to predict the final meta-equilibrium that results from the
2D-turbulence. For a wide class of initially unstable plasmas
(hollow columns) the principle of minimum enstrophy pro-
vides an accurate prediction of the meta-equilibrium state
[52]. However, it is clear that this principle must fail in

some cases, as, for example, when the evolution leads to a -

crystal structure of vortices. This is a rich and interesting
area of research and much work remains to be done.
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