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Inviscid damping of asymmetries on a two-dimensional vortex
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The inviscid damping of an asymmetric perturbation on a two-dimensional circular vortex is
examined theoretically, and with an electron plasma experiment. In the experiment, an elliptical
perturbation is created by an external impulse. After the impulse, theellipticity ~quadrupole
moment! of the vortex exhibits an early stage of exponential decay. The measured decay rate is in
good agreement with theory, in which the perturbation is governed by the linearized Euler
equations. Often, the exponential decay of ellipticity is slow compared to a vortex rotation period,
due to the excitation of a quasimode. A quasimode is a vorticity perturbation that behaves like a
single azimuthally propagating wave, which is weakly damped by a resonant interaction with
corotating fluid. Analytically, the quasimode appears as a wave packet of undamped continuum
modes, with a sharply peaked frequency spectrum, and it decays through interference as the modes
disperse. When the exponential decay rate of ellipticity is comparable to the vortex rotation
frequency, the vorticity perturbation does not resemble a quasimode; rather, it is rapidly dominated
by spiral filaments. Over longer times, linear theory predicts algebraic decay of ellipticity; however,
nonlinear oscillations of ellipticity emerge in the experiment before a transition to algebraic decay
would occur. © 2000 American Institute of Physics.@S1070-6631~00!01110-7#
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I. INTRODUCTION

Many flows that occur in oceans, atmospheres, and p
mas are approximately two dimensional~2-D!.1–6 These
flows are often dominated by a single vortex or by a group
interacting vortices. Although the vortex dynamics can
complicated, it is possible to gain a precise understandin
certain elementary processes. One example is the decay
asymmetric perturbation on a stable circular vortex.7–27

The decay of asymmetric perturbations on circular v
tices can be studied experimentally with magnetized elec
plasmas in a cylindrical Penning trap.7–9 We will show in
Sec. IV that these electron plasmas evolve like inviscid
compressible 2-D fluids.

Figure 1 shows a typical experiment. Att50, a circular
vortex is deformed into an ellipse by an ‘‘external impulse
~described in Sec. III!. After the impulse, the vortex relaxe
toward an axisymmetric state, in a manner that resem
previous numerical simulations of 2-D Euler flow.10–13 Dur-
ing the relaxation, filaments form at a critical radiusr c , and
vorticity contours become circular in the core of the vorte
Moreover, the ellipticity of the vortex decaysexponentially
by one order of magnitude, before oscillating and reachin
terminal value. Here, the ellipticity is measured by the a
plitude of the quadrupole moment of the perturbed vor
@the m52 multipole moment, defined by Eq.~12!#.

We will show ~in Sec. IV! that the initial stage of expo
nential decay in the experiments is governed by the line
ized Euler equations. Over longer times, linear theory p
dicts that the quadrupole moment will decay algebraica
~like t2a).17,28,29However, in the experiments, nonlinear e
fects emerge before a transition to algebraic decay wo
occur. These nonlinear effects include the ‘‘trapping osci
tions’’ and equilibration of ellipticity in Fig. 1~b!.
2391070-6631/2000/12(10)/2397/16/$17.00
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Before analyzing the experiments in greater detail,
will elaborate upon the linear theory of perturbations that
created by an external impulse. We will show that in line
theory, an external impulse often excites a ‘‘quasimode.’’
quasimode is a vorticity perturbation that behaves~early on!
like a single exponentially damped wave in the vortex co
with frequencyvq and decay rateg. The decay rate of the
quasimode is slow compared to its oscillation frequency; t
is, g/vq!1. Moreover, the decay rate is proportional to t
vorticity gradient at the critical radiusr c , where the vortex
rotation frequencyV0(r ) satisfies the resonance conditio
mV0(r c)5vq (m52 for an elliptical perturbation!. This in-
dicates that the early exponential decay of the quasimod
due to a resonant wave–fluid interaction,14,30 as explained in
Appendix A.

By its name, one can infer that a quasimode is no
genuine eigenmode of the vortex: the monotonic vortic
that we treat here do not support exponentially damp
eigenmodes.14 After a general discussion of eigenmod
theory~in Sec. II!, we will show that the quasimode appea
analytically as a wave packet of undamped ‘‘continuu
modes,’’ with a sharply peaked frequency spectrum.31 The
peak of the spectrum is well described by a Lorentzian
width g, centered atvq . The wave packet decays throug
interference as the continuum modes disperse. When the
ticity gradient atr c is zero, g is also zero, and the wav
packet~quasimode! is replaced by a single undamped ‘‘dis
crete mode.’’

The quasimodes of a circular vortex have been stud
previously in the context of a Laplace transform solution
the initial value problem.14–16In this approach, the frequenc
vq and decay rateg of a quasimode appear as the real a
imaginary parts of a ‘‘Landau pole.’’ A Landau pole is
7 © 2000 American Institute of Physics
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FIG. 1. ~Color! Electron plasma experiment.~a! The evolution of vorticity after an elliptical perturbation is applied to an initially circular vortex.
filamentation occurs atr c , the vorticity contours relax back to circular form in the vortex core (r &r c). ~b! The relaxation of the quadrupole momen
~ellipticity!. The dashed line indicates that the initial decay is exponential. Time is measured in central rotation periods,T[tV0(0)/2p. The amplitude
uQ(2)(t)u of the quadrupole moment is in units ofuQ(2)(0)u.
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complex frequency at which the temporal Laplace transfo
of the quadrupole moment is singular: its value depends o
on the equilibrium vorticity profile, and not the initial pertu
bation~see Appendix B!. Of course, the values ofvq andg
obtained from the Landau pole agree with those obtai
from our eigenmode analysis of the quasimode.

We will also consider a case where the vortex~a Gauss-
ian! has a Landau pole with a large imaginary part (g/vq

;1). In this case, we show that the vorticity perturbati
evolving from an external impulse does not resemble a sin
damped wave~quasimode!. Rather, the vorticity perturbation
becomes dominated by spiral filaments in a few vortex ro
tion periods.17–21 Surprisingly, the quadrupole moment~el-
lipticity ! of this perturbation decays exponentially, at a ra
given by the Landau pole. So, ‘‘Landau damping’’ is phy
cally relevant even if the vortex appears to have no qu
mode.

After reviewing and elaborating upon linear respon
theory, we will examine the initial behavior of the expe
mental vortices more thoroughly. We will show that the o
served exponential decay of the quadrupole moment is a
rately given by a Landau pole of the vortex. We will als
show that the spatial structure of an experimental quasim
as well as its frequency and decay rate are in good quan
tive agreement with linear theory.

We now give an outline of the main text. In Sec. II, w
review the eigenmode approach to the study of linear per
bations on a circular vortex.26,27 We then examine the quas
modes of circular vortices, in the context of eigenmo
theory. In Sec. III, we present the linear theory of~elliptical!
perturbations that are created by an external impulse. In
IV, we show that the experiments agree quantitatively w
linear response theory. In Appendix A, we provide a physi
picture of the resonant wave–fluid interaction14,30that causes
exponential decay. In Appendix B, we review how to calc
late Landau poles numerically.16

II. EIGENMODE THEORY

In this section, we review and extend upon the eig
mode theory of small perturbations on a 2-D vortex.26,27,32

This provides necessary background for Secs. III and IV
ly
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A. The eigenmode expansion

We assume that the vortex is governed by the 2-D Eu
equations, which neglect compressibility and viscosity:

]z

]t
1v"¹z50, v5 ẑÃ¹c, ¹2c5z. ~1!

Here,v(r ,u,t) is the velocity field,z(r ,u,t)[ ẑ"¹Ãv is the
vorticity, andc(r ,u,t) is a stream function. We also assum
that the fluid is bounded by a circular wall at which there
free slip, i.e.,c50 at the wall radiusRw .

The vorticity distribution in the flow can be decompos
into an axisymmetric equilibriumz0(r ) and a perturbation
Dz(r ,u,t); that is,

z~r ,u,t ![z0~r !1Dz~r ,u,t !. ~2!

Furthermore, the perturbation can be expressed as a Fo
series in the polar angleu,

Dz~r ,u,t ![dz (0)~r ,t !1 (
m51

`

$dz (m)~r ,t !eimu1c.c.%. ~3!

If the perturbation is sufficiently small, it is approx
mately governed by the linearized Euler equations. Th
equations are obtained by neglecting second-order pertu
tion terms in Eq.~1!, and can be written for each Fourie
component separately:

]dz

]t
1 imV0~r !dz2

im

r
z08~r !dc50, ~4a!

F1

r

]

]r
r

]

]r
2

m2

r 2 Gdc5dz. ~4b!

Here,V0(r ) is the unperturbed angular rotation frequency
the vortex, andz08(r ) is the radial derivative of the equilib
rium vorticity distribution. In addition,dc(r ,t) is the (mth)
Fourier coefficient of the stream function perturbation. T
superscript ‘‘(m)’’ has been dropped to simplify notation.

Equation ~4b! can be solved formally with a Green’
function technique, yielding
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dc~r ,t !5E
0

Rv
dr8 r 8G~r ur 8!dz~r 8,t !, ~5!

where Rv is the radius of the vortex. For the asymmet
components of the perturbation (m>1), the Green’s func-
tion G(r ur 8) is given by

G~r ur 8!52
1

2m S r ,

r .
D mF12S r .

Rw
D 2mG , ~6!

where r . (r ,) is the larger~smaller! of r and r 8. This
Green’s function incorporates the boundary conditiondc
50 at r 5Rw .

The linearized Euler equations support azimutha
propagating waves, i.e., Eqs.~4a! and~4b! have solutions of
the form dz5j(r )e2 ivt. These waves are either ‘‘discre
modes’’ or ‘‘continuum modes.’’ Each Fourier component
the vorticity perturbation can be expressed as a sum of
crete modes, plus an integral of continuum modes;26,27,31,33,34

that is,

dz~r ,t !5(
d

A~vd!jd~r !e2 ivdt1E dv A~v!jv~r !e2 ivt.

~7!

The discrete modes have radial eigenfunctionsjd(r ) that are
spatially smooth. Therefore, a discrete mode is a phys
solution to the linearized Euler equations. On the other ha
the eigenfunction of a continuum mode has a singular p
at the radius where the fluid co-rotates with that mode~see
Sec. II C!.27,33,34 Consequently, only an integral of con
tinuum modes has physical meaning.

The eigenvalue equation for these modes can be wri
as26

I @j~r !#5vj~r !, ~8!

whereI is the linear integral operator defined below:

I @j#[mV0~r !j~r !2
m

r
z08~r !E

0

Rv
dr8 r 8G~r ur 8!j~r 8!. ~9!

Equation~8! is obtained by substituting an eigenmode so
tion dz5j(r )e2 ivt into Eq. ~4a!, and using Eq.~5! for dc.

In practice, the integral eigenvalue equation@Eq. ~8!# is
solved numerically. The radial coordinater is discretized
into N ~typically 102–104) grid points between 0 andRv ,
and the operatorI is converted into anN3N matrix.35 The
resulting matrix eigenvalue equation is solved with a st
dard routine.36

The solution givesN eigenfrequencies$vk% andN eigen-
functions~eigenvectors! $jk(r )%. They are used to form an
approximate~i.e., numerical! solution to the initial value
problem:

dz~r ,t !5 (
k51

N

Akjk~r !e2 ivkt. ~10!

This sum overk includes the discrete modes, and a fin
representation of the continuum modes.

Because the numerical solution@Eq. ~10!# has only a
finite number of continuum modes, it breaks down afte
time t;2p/Dvmax. Here,Dvmax is the maximum frequency
s-

al
d,
t

n

-

-

a

spacing between two neighboring continuum modes. For
numerical results in this paper,Dvmax is made sufficiently
small ~by increasingN) to keept larger than the time scale
of interest.

The expansion coefficients$Ak% in Eq. ~10! depend on
how the eigenfunctions$jk% are normalized. With the excep
tion of a single case, discussed in connection with Fig.
we let

E
0

Rv
dr r m11jk~r !5b, ~11!

whereb has the same value for all modes~the exact value of
b is unimportant!. In Sec. II D, we will show that Eq.~11! is
a convenient normalization for analyzing quasimodes.
course, Eq.~11! can not be used if the integral vanishes f
any eigenfunctionjk .

By using Eq.~11! for the normalization, we also estab
lish a direct proportionality between the eigenmode am
tudes and the frequency spectra of the perturbation’s m
pole moments. We define themth multipole moment of a
vorticity perturbation by

Q(m)~ t ![E
0

Rv
dr r m11dz (m)~r ,t !. ~12!

The amplitude and phase of themth multipole moment mea-
sure the strength and orientation of the wave-numberm
asymmetry. Each multipole moment can be written as a s
over eigenmode contributions; that is, Q(t)
5(k51

N qke
2 ivkt. Substituting Eq.~10! into Eq. ~12! gives

qk5bAk , provided that*0
Rv dr r m11jk(r )5b.

B. The eigenmodes of a general monotonic vortex

The experimental vortices are monotonic. That is, th
equilibrium vorticity profiles decrease monotonically wi
radiusr, until reaching zero at the vortex radiusRv :

z08~r !,0 for 0,r ,Rv ,
~13!

z0~r !50 for r>Rv .

In this section, we briefly state the general properties of
eigenmodes of a monotonic vortex.

All eigenfrequencies of a monotonic vortex are real,
all eigenmodes are neutrally stable.37 This is because the
integral operatorI, appearing in the eigenmode equation@Eq.
~8!#, is Hermitian with respect to the inner-product

^ f ,h&[E
0

Rv
dr

r 2

uz08~r !u
f * ~r !h~r !. ~14!

That is,

^ f ,I @h#&5^h,I @ f #&* . ~15!

The Hermiticity of I also guarantees that its eigenfunctio
form a complete orthogonal set.

Orthogonality can be used to derive the following e
pression for the coefficients$Ak% in the eigenmode expan
sion @Eq. ~10!#:
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Ak5
^jk ,dz~r ,0!&

^jk ,jk&
. ~16!

Here,dz(r ,0) is the Fourier coefficient of the vorticity per
turbation at timet50. To evaluate the inner-products in E
~16!, we use trapezoidal integration.35

We note that the inner-product in Eq.~14! is defined
only if z08Þ0 for all r ,Rv . Therefore, the results derive
here do not necessarily apply to nonmonotonic vortices.
example, a nonmonotonic vortex can have complex eigen
quencies, corresponding to unstable modes.

C. The eigenmodes of a top-hat vortex with a discrete
mode

The eigenmodes of a monotonic vortex are best
scribed through an example. Here, we consider a vo
wherez0(r ) slowly decreases fromr 50 to r 5r 0 , and then
rapidly drops to zero in a transition layer of widthdr . This
vortex is shown in Fig. 2~top!, and will be referred to as
Top-Hat 1. Although the exact functional form of Top-Hat
is not important, it is provided in the following:

z0~r !

5H 0.485F121.01 tanhS r 2r 0

dr D GF110.025S Rv2r

Rv
D G ,

r ,Rv

0, r>Rv ,

~17!

where dr[0.01, r 0[0.3, and the vortex radius isRv
50.327. Here,and throughout this paper, all lengths are
given in units of the wall radiusRw . In addition, all frequen-
cies are given in units ofz0(0). Thus,z0(0)51 in Eq.~17!.

The m52 eigenmodes of Top-Hat 1 typify the eige
modes for allm. As is generally the case, them52 numeri-
cal eigenspectrum has a set of eigenfrequencies that fa
the range

mV0~Rv!,vk,mV0~0!. ~18!

As the number of radial grid-pointsN increases, this subse
of (N21) eigenfrequencies becomes increasingly dense
tween the upper an lower limits; therefore, it represents
continuum.

Figure 2 ~bottom! shows the radial eigenfunction of
generic continuum mode. The radial eigenfunctionjk of each
continuum mode has a singular spike at its critical rad
r c,k , defined by

mV0~r c,k![vk . ~19!

Physically, the critical radius is where the unperturbed fl
corotates with the eigenmode. The critical radii of the co
tinuum modes span the interval fromr 50 to r 5Rv .

The m52 eigenspectrum of Top-Hat 1 also has a d
crete eigenfrequencyvd , which lies outside the continuum
@vd50.496,mV0(Rv) #. The critical radiusr c of this dis-
crete mode is defined by the resonance condition,mV0(r c)
[vd . It has the valuer c50.42.Rv . Becauser c is greater
or
e-

-
x

in

e-
e

s

d
-

-

than Rv , the eigenmode equation@Eq. ~8!# is not singular,
and the radial eigenfunctionjd(r ) of the discrete mode doe
not have a singular spike.

It is possible to derive an approximate analytic expr
sion for the the radial eigenfunction of the discrete mo
The result is

jd~r !.a
G~r ur 0!

mV0~r !2vd

1

r
z08~r !, ~20!

wherea is a constant that is determined by the normalizat
@e.g., Eq.~11!#. Equation~20! is obtained from the integra
eigenvalue equation@Eq. ~8!# under the assumption tha
z08(r ) is sharply peaked atr 0 . In Fig. 2, Eq.~20! is compared
to the m52 discrete eigenfunction of Top-Hat 1. The tw
are in excellent agreement.

Because Top-Hat 1 resembles a uniform circular vor
patch~of radiusr 05Rv), its discrete modes resemble tho
of a uniform circular vortex patch. A dispersion relation f
these modes was derived in 1880 by Kelvin.32 The frequency
of the discrete mode with azimuthal wave-numberm is given
by

vd5
1

2 Fm211S r 0

Rw
D 2mG , ~21!

and its critical radius is

r c5r 0F m

m211~r 0 /Rw!2mG 1/2

. ~22!

In Eq. ~21!, vd is in units ofz0 , the constant vorticity of the
patch. With m52 and r 050.3 ~in units of Rw), Eq. ~21!
givesvd50.504, and Eq.~22! givesr c50.42. These results
are in good agreement with the numerical values ofvd and
r c for Top-Hat 1 that were stated previously.

FIG. 2. Top-Hat 1. Equilibrium profile and two radial eigenfunctions fro
the m52 spectrum. The eigenfunctions are zero atr 50, but are offset for
clarity. Both are scaled arbitrarily. The markingsvd and r c denote the
frequency and critical radius~respectively! of the discrete mode.
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Although we have focused on a monotonic vortex with
single sharp edge atr 0 , it is important to note that discret
modes exist on monotonic vortices of many kinds. For
ample, discrete modes can exist even when the vorticity
dient z08 is roughly constant across the entire vortex. If the
are multiple peaks inz08 , then there can be multiple peaks
the radial eigenfunction of the discrete mode. In short, d
crete modes can be found in a wide variety of forms.

D. Discrete mode to quasimode

Top-Hat 2 in Fig. 3~a! is equivalent to Top-Hat 1, with
the addition of a low-vorticity skirt that extends radially
Rv50.8. This skirt broadens the continuous spectrum
eigenfrequencies@Eq. ~18!#, bringing its lower limit
mV0(Rv) below the eigenfrequencyvd of the original dis-
crete mode. Consequently, all eigenmodes of Top-Hat 2
continuum modes.

However, the discrete mode of Top-Hat 1 has not dis
peared entirely. The continuum modes of Top-Hat 2 that
shown in Fig. 3~a! closely resemble the original discre
mode. To begin with, they have eigenfrequencies nearvd .
Also, their radial eigenfunctions are approximatelyjd(r ),
except for minor spikes nearr c . We will refer to these and
other continuum modes with frequencies nearvd as ‘‘excep-

FIG. 3. Top-Hat 2.~a! Equilibrium profile and radial eigenfunctions of th
m52 ‘‘exceptional’’ continuum modes. The eigenfunctions are zero ar
50, but are offset for clarity. They are also shown on the same scale.
markingsvd and r c denote the frequency and critical radius~respectively!
of them52 discrete mode of Top-Hat 1.~b! Expansion coefficients$Ak% for
the discrete eigenfunctionjd(r ) of Top-Hat 1, expanded in the continuum
eigenfunctions of Top-Hat 2.
-
a-
e

-

f

re

-
re

tional,’’ because they have exceptionally large inne
products with the original discrete mode.

The exceptional continuum modes have an import
physical significance: they combine to form a quasimo
Consider the discrete mode of Top-Hat 1 as an initial con
tion on Top-Hat 2; that is,dz(r ,0)5jd(r ). This initial con-
dition will now evolve as a superposition of continuu
modes. Figure 3~b! shows the expansion coefficientsAk vs
vk . The distribution is sharply peaked near the eigenf
quencyvd . A Lorentzian distribution accurately describe
the peak,

Ak;
1

~vk2vq!21g2
, ~23!

with vq50.509 andg5531023. In Sec. III @Eq. ~31!#, we
will show that the value ofg is proportional to the vorticity
gradient at the critical radius; for Top-Hat 2,z08(r c)56.07
31022z0(0)/Rw .

As the continuum modes disperse, their superposit
behaves like an exponentially damped version of the orig
discrete mode. To see this, we first approximate the eig
mode expansion@Eq. ~10!# by

dz~r ,t !.jd~r !(
k

Ake
2 ivkt, ~24!

for r &r c50.42. This simplification is possible since~i! the
peak region ofAk dominates the expansion, and~ii ! the ex-
ceptional continuum modes have eigenfunctions$jk% that
roughly equal the eigenfunctionjd of the original discrete
mode, forr &r c . Substituting the Lorentzian form ofAk @Eq.
~23!# into Eq. ~24!, we obtain the desired result:dz
.jd(r )e2(g1 ivq)t for r &r c .

Note that our analysis of the quasimode was simplifi
by the way that we chose to normalize the eigenfunctio
@Eq. ~11!#. With this normalization, the eigenmodes in th
peak region ofAk have eigenfunctions@Fig. 3~a!# that are
approximately equivalent:jk(r ).jd(r ) for r &r c . With a
different normalization, these eigenfunctions would vary
size. As a result,Ak would not have a Lorentzian form, an
a Lorentzian fit would give inaccurate values for the fr
quencyvq and decay rateg of the quasimode.

As a final remark, quasimodes~like discrete modes! ex-
ist on vortices of many kinds. Here, we have focused o
top-hat vortex, in which case the radial ‘‘eigenfunction’’ o
the quasimode has a single sharp peak. However, on di
ent vortices, quasimodes can have broad ‘‘eigenfunction
with multiple peaks: the variety of quasimodes is infinit
just as the variety of discrete modes is infinite.

III. LINEAR RESPONSE OF A MONOTONIC VORTEX
TO AN EXTERNAL IMPULSE

A. Eigenmode excitability

In the experiments, an ‘‘external impulse’’ is applied
the vortex, creating an elliptical perturbation. In line
theory, this perturbation will evolve as a superposition
freely propagating eigenmodes@Eq. ~10!#. In the following,

he
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we derive an equation for the distribution of eigenmode a
plitudes in the impulse-generated perturbation.

The external impulse is a weak flow field that is brie
superimposed on the vortex. The stream function of this fl
field is given approximately by

cext~r ,u,t !5 f ~ t !S r

Rw
D m

eimu1c.c., ~25!

with m52. The time-dependent factorf (t) is assumed to be
nonzero for only a brief interval. The radial factor varies li
r m inside the vortex, because the source of the impulse
the wall ~external to the vortex!, i.e., ¹2cext50 for r ,Rw .
In Sec. IV, we will explain how the external impulse is a
plied in practice.

We treat the external impulse as a perturbation, and
sume that the Euler equation for the evolution of vortic
can be linearized during and after the impulse. Including
stream function of the external impulse, the linearized v
ticity equation is

]dz

]t
1 i I @dz#5

im

~Rw!m
f ~ t !r m21z08 . ~26!

Here, I is the linear integral operator that is defined by E
~9!. Equation~26! was obtained by making the substitutio
dc→dc1dcext in Eq. ~4a!.

The Fourier coefficient of the vorticity perturbation ca
be expanded in the~discretized! eigenfunctions ofI; that is,
dz(r ,t)5(k51

N ak(t)jk(r ). Furthermore, Eq.~26! can be re-
written as a set ofN independent equations, one for ea
ak(t). These first-order ordinary differential equations can
solved by standard methods.35 It is found that after the im-
pulse,ak(t)5Ake

2 ivkt, with

Ak52
im

~Rw!m
XkFk* . ~27!

Here,Fk* is the complex conjugate of the Fourier transfo
of f (t), evaluated atvk . The quantityXk is the ‘‘eigenmode
excitability,’’ defined by

Xk[2
^jk ,r m21z08&

^jk ,jk&
5

*0
Rvr m11jk~r !dr

^jk ,jk&
. ~28!

The first equality states thatXk is ~minus! the expansion
coefficient of the functionr m21z08 . The second equality
makes use of Eq.~14!, which defines the inner-product:
states that the excitabilityXk is the multipole moment of the
kth eigenmode, divided by the weight^jk ,jk& of that eigen-
mode.

In the experiments, the external impulse is typically a
plied over a time interval much less than the turnover time
the vortex (;2p/V0). It is therefore reasonable to approx
mate f (t) with a delta function of strengthe; that is, f (t)
5ed(t). Then,Fk* 5e for all vk , and Eq.~27! yields

Ak52
ime

~Rw!m
Xk . ~29!
-

w

at

s-

e
-

.

e

-
f

So, the amplitude of thekth eigenmode after ad(t) external
impulse is directly proportional toXk . The vorticity pertur-
bation immediately after the impulse is given by

dz~r ,0!5
ime

~Rw!m
r m21z08~r !. ~30!

This result is obtained from the expansiondz(r ,0)
5(k51

N Akjk(r ), using Eq.~29! for Ak , and then Eq.~28! for
Xk .

Finally, Eq. ~29! implies that the eigenmodes satisfy
reciprocity principle. Substituting Eq.~28! for Xk into Eq.
~29!, one finds that eigenmodes of the same weight^jk ,jk&
are excited in proportion to their multipole moments. In th
sense, the eigenmodes with the strongest influence on
external flow are also the most sensitive to a brief dist
bance that is created by an external source.

B. The excitation of a quasimode on a top-hat vortex

We now show that an external impulse excites a qua
mode on a top-hat vortex, and that this quasimode decay
a rate given by a Landau pole.

Suppose that Top-Hat 2~Fig. 3! is perturbed by anm
52, d(t) external impulse. This impulse creates a vortic
perturbation of the formdz(r ,t)ei2u1c.c. In Sec. III A, we
showed thatdz}(k51

N Xkjk(r )e2 ivkt, for t.0. Here,Xk is
the eigenmode excitability that is defined by Eq.~28!. Figure
4~a! showsXk as a function ofvk , for eigenmodes normal
ized by Eq.~11!. This excitability spectrum is sharply peake
near the exceptional continuum modes of the vortex@e.g., the
modes in Fig. 3~a!#. Moreover, the peak inXk has the same
Lorentzian structure~solid line! as the quasimode expansio
that was described in Sec. II@Eq. ~23!#; therefore, the im-
pulse excites a quasimode.

Figures 4~b! and 5 illustrate that this quasimode behav
early on like a single exponentially damped wave. Figu
4~b! shows the vorticity perturbation atT50 and atT530
central rotation periods. During this time interval, the vort
ity perturbation~for r &0.33) decays an order of magnitud
and rotates with a phase velocity that is independent of b
time and radius; that is, the vorticity perturbation behav
like a single damped wave. Figure 5 verifies that the am
tude uQ(2)(t)u of the quadrupole moment@Eq. ~12!# decays
exponentiallyafter the impulse. As expected, the exponen
decay rate isg5531023 in units of z0(0); previously, we
obtained this value ofg by fitting the expansion coefficient
of the quasimode to a Lorentzian function ofvk @Eq. ~23!#.

The exponential decay rate can also be obtained fro
Landau pole of the equilibrium profile.14–16 A ‘‘Landau
pole’’ is a complex frequency,vq2 ig, at which the Laplace
transform ofQ(m)(t) is singular: it depends only on the equ
librium profile, and not the specific perturbation~see Appen-
dix B!. A Landau pole contributes a term toQ(m)(t) of the
form e2gte2 ivqt; however, this term cannot represent a co
plete solution to the initial value problem~unlessg50).

The Landau pole for a top-hat vortex was calculated a
lytically by Briggs, Daugherty, and Levy.14 This Landau
pole gives the following decay rate:
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FIG. 4. The excitation and decay of anm52 quasimode on Top-Hat 2.~a! The sharply peaked excitability spectrum indicates the excitation of a quasim
~b! The vorticity perturbation,Dz(r ,u,t)52udz(r ,t)ucos@mu1w(r,t)#. The left graph in~b! shows the half-amplitudeudzu and phasew of the perturbation as
functions of radius, atT50 and atT530 central rotation periods@T[tV0(0)/2p#. The right figures in~b! are contour plots ofDz.
q
l
im

o

tia
tu

in
n

ha
ion
f t
e

e

a

m
a

een
of

p

is
cay
cy
e
the

ess

nal
rate
gBDL.
2p

4m
r 0z08~r c!S r 0

r c
D 2m23F12S r c

Rw
D 2mG2

. ~31!

Here,r 0 is the radius whereuz08(r )u is maximal, andr c is the
critical radius of the quasimode, given approximately by E
~22!. Figure 5 shows thatgBDL gives the correct exponentia
decay rate of the quadrupole moment after an external
pulse disturbs Top-Hat 2.

In Appendix A, we present an alternative derivation
the exponential decay rate that is given by Eq.~31!. This
derivation shows explicitly how the observed exponen
damping occurs through an exchange of angular momen
between the quasimode and corotating fluid elements atr c .

It is worth emphasizing that quasimodes are not genu
exponentially damped eigenmodes: such eigenmodes do
exist on a monotonic vortex. There are two features t
distinguish the evolution of a quasimode from the evolut
of a damped eigenmode. First, the quadrupole moment o
quasimode makes a transition toward algebraic decay; h
at approximately 100 rotation periods~see Fig. 5!. Second,
as the original vorticity perturbation decays, a smaller p
turbation grows in a thin layer about the critical radius,r c

50.42. Eventually, the amplitude of this smaller perturb
tion saturates, but its phase continues to evolve.

The structure of the ‘‘bump’’ atr c can be calculated
analytically. During the growth of the bump, the strea
function perturbation is dominated by the vorticity perturb
tion in the vortex core (r &r c). In the core, dz
.br m21z08(r )e2(gBDL1 ivd)t, wherevd is given by Eq.~21!,
andgBDL is defined by Eq.~31!. The coefficientb is deter-
mined by the initial condition@Eq. ~30!# that is created by the
impulse; accordingly, b5 ime/(Rw)m. Taking z08
.2z0(0)d(r 2r 0), and using Eq.~5! for the stream func-
tion perturbation, we obtain

dc.2 imeS r 0

Rw
D m

z0~0!G~r ur 0!e2(gBDL1 ivd)t. ~32!

Here,G is the Green’s function that is given by Eq.~6!.
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The evolution ofdz in the region of the bump~nearr c)
is obtained by integrating Eq.~4a!, with dc given by Eq.
~32!. In this region, one finds that

lim
t→`

udzu

.2
1

2

ueuz08~r c!~r 0 /Rw!m~r 0 /r c!
m22@12~r c /Rw!2m#

A~gBDLr c
3/mz0~0!r 0

2!21~r 2r c!
2

.

~33!

In deriving Eq.~33!, we used Eq.~6! for the Green’s func-
tion, and we assumed thatV0(r ). @z0(0)/2# (r 0 /r )2 for r
.r 0 . Figure 6 shows that there is good agreement betw
Eq. ~33! and the vorticity bump that develops in the skirt
Top-Hat 2.

Equation~33! indicates that the radial width of the bum
is proportional to the decay rateg.gBDL of the quasimode.
This relationship is simple to understand if the quasimode
viewed as a wave packet of continuum modes. The de
rate g is the peak width of the wave packet’s frequen
spectrum,Xk . The peak width defines a critical layer in th
vortex, where the continuum modes are resonant with
fluid rotation and have singular spikes: The radial thickn

FIG. 5. Evolution of the quadrupole moment of Top-Hat 2 after an exter
impulse. The dashed line indicates exponential damping, with decay
given by Eq.~31!. uQ(2)(t)u is in units of uQ(2)(0)u; T[tV0(0)/2p.
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of this critical layer is approximatelyg/mV08(r c). As the
continuum modes disperse, the singular spikes unra
forming a bump across the critical layer.

We now briefly discuss the response of Top-Hat 1~Fig.
2! to a d(t) external impulse. Top-Hat 1 supports an u
damped discrete mode, since it has zero vorticity gradien
r c . Figure 7 shows them52 excitability spectrum$Xk% of
Top-Hat 1. It is apparent that the discrete mode domina
the impulse generated perturbation. This is because
eigenfunctionjd of the discrete mode, given by Eq.~20!,
roughly equals the initial perturbation@Eq. ~30!#; that is,
jd(r ).dz(r ,0)}r m21z08(r ). Since the continuum eigen
functions are orthogonal tojd , they must have negligible
overlaps with the initial perturbation.

We have found thatjd(r ).r m21z08(r ) for most vortices
that have discrete modes. It follows that discrete mo
~when they exist! generally dominate the excitation that
created by ad(t) external impulse. Of course, ifz08(r c) is
slightly negative, the impulse excites a weakly damp
quasimode instead.

C. The response of a Gaussian vortex

In this section we examine the response of a Gaus
vortex to ad(t) external impulse. As for top-hat vortices, th
quadrupole moment of the perturbed Gaussian decays e

FIG. 6. Growth ofudzu in the critical layer. The dashed line is Eq.~33!. The
vorticity units are the same as in Fig. 4~b!. T[tV0(0)/2p.

FIG. 7. Them52 excitability spectrum for Top-Hat 1.
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nentially, and the decay rate is given by a Landau pole. Ho
ever, the vorticity perturbation does not resemble a qu
mode; rather, it becomes dominated by spiral filaments i
few vortex rotation periods.

The specific Gaussian vortex that we will study is giv
by

z0~r !5exp2[ ~5r /Rw)2#, ~34!

for r<Rv50.975Rw . For r>Rv , z0 is constant. This con-
stant value ofz0 can be made zero by working in a rotatin
frame; in this sense,z0(r ) still fits our definition of a mono-
tonic profile @Eq. ~13!#. The Gaussian vortex that is define
by Eq. ~34! does not have a discrete mode. Instead, all of
eigenmodes are continuum modes.

Figure 8 shows how the quadrupole momentQ(2)

evolves after anm52, d(t) external impulse is applied to th
Gaussian vortex. Before ten rotation periods, the phase o
quadrupole moment changes at a constant rate, and the
plitude uQ(2)u decays exponentially; that is,Q(2)

.e2gte2 ivqt. At ten rotation periods, the decay slows dow
Figure 8 also shows thatvq andg are accurately given

by a Landau pole of the Gaussian vortex. For a Gauss
vortex, Eqs.~21! and ~31! are poor approximations of th
real part (vq) and imaginary part (g) of the Landau pole. A
more precise value for the Landau pole was calculated
merically ~see Appendix B!, using the method of Spence
and Rasband.16 This numerical calculation gavevq50.226
andg50.079.

Although ‘‘Landau damping’’ seems to dominate th
initial decay, the excitation does not fit our definition of
quasimode. Thevorticity perturbation is poorly described a

FIG. 8. Evolution of the quadrupole moment,Q(2)(t)[uQ(2)(t)ueiw(t), of a
Gaussian vortex@Eq. ~34!# after an external impulse. The solid lines give th
complete linear evolution. The dashed lines give pure ‘‘Landau dampin
that isQ(2)5e2gte2 ivqt, wherevq andg are the real and imaginary parts o
a Landau pole.uQ(2)(t)u is in units of uQ(2)(0)u; T[tV0(0)/2p.
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FIG. 9. Response of the Gaussian vortex@Eq. ~34!# to an external impulse.~a! The excitability spectrum has a broad peak, in contrast to the sharply pe
frequency spectrum of a quasimode@e.g., Fig. 4~a!#. ~b! The vorticity perturbation,Dz(r ,u,t)52udz(r ,t)ucos@mu1w(r,t)#. The left graph in~b! shows the
half-amplitudeudzu and phasew of the perturbation as functions of the radius, atT50 and atT55 central rotation periods (T[tV0(0)/2p). The right figures
in ~b! are contour plots ofDz.
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a single damped wave, which has the for
j(r )e2gtei (mu2vqt)1c.c. Rather, as shown in Fig. 9~b!, the
vorticity perturbation is rapidly dominated by spiral fila
ments. This behavior is characteristic of a vortex that ha
broad excitability spectrum@Fig. 9~a!#, i.e., a vortex that has
a Landau pole with a large imaginary part,g/vq;1.

The mechanism for exponential damping can be
moved on any vortex, including a Gaussian, by settingz08
equal to zero near the critical radiusr c of the Landau pole
@mV0(r c)[vq#. Figure 10~a! shows the Gaussian vortex o
Eq. ~34!, with a plateau atr c . The quadrupole moment o
this modified Gaussian vortex does not decay exponent
after a brief external impulse. This is because the vor
supports an undamped discrete mode.

The discrete mode is shown directly below the equil
rium profile in Fig. 10~a!. This mode has an eigenfrequen
vd that is between the upper and lower limits of the co
tinuum @Eq. ~18!#; however, it is easily distinguished from
continuum mode. To begin with, the discrete mode does
have a singular spike at its critical radius. Furthermore,
external impulse will excite the discrete mode, but not
continuum modes with eigenfrequencies nearvd @see Fig.
10~b!#. These continuum modes are not excited, because
would create a vorticity perturbation in the plateau region
z0 , and an external impulse leaves this region unperturb

The discrete mode in Fig. 10 was created byartificially
flattening the vorticity distribution at the critical radiusr c of
the Landau pole; however, this process can also occur n
rally during the nonlinear evolution of a vortex. For examp
in the electron plasma experiments, vorticity filaments
wrapped into ‘‘cat’s eyes’’ in the vicinity ofr c @Fig. 1~a!, far
right#. If the vorticity distribution isu averaged, these cat’
eyes correspond to an annulus of uniform vorticity. Sin
damping requires a finite vorticity gradient atr c , the forma-
tion of cat’s eyes prevents further decay. The elliptical p
turbation that remains in the vortex core after the initial d
a
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cay is approximately the undamped discrete mode o
vortex similar to the original, but flattened atr c . It has been
proposed that asymmetries in hurricanes may also dev
into discrete modes during their nonlinear evolution, throu
a similar flattening of mean-flow vorticity.23,24

As a final note, the excitabilityXk in Fig. 10~b! was not
obtained from Eq.~28!. The inner-product in Eq.~28! is not
defined whenz08 vanishes anywhere inside the vortex. I
stead, we used the formulaXk52^jk

† ,r m21z08&s /^jk
† ,jk&s ,

FIG. 10. Gaussian vortex with a flat interval.~a! Equilibrium profile and the
m52 discrete mode.r c andvd denote the critical radius and the eigenfr
quency of the discrete mode.~b! Excitability of them52 eigenmodes with
frequencies nearvd .
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and changed the normalization from Eq.~11! to ^jk
† ,jk&s

5b. Here,jk
† is the standard adjoint of the eigenfunctionjk ,

and ^ f ,h&s[*0
Rvdr f * (r )h(r ). A derivation of this more

general expression for excitability is straightforward, and
given in Ref. 35: it uses a ‘‘dual-space’’ formalism anal
gous to that found in Ref. 31.

IV. EXPERIMENTAL RESPONSE OF A MONOTONIC
VORTEX TO AN EXTERNAL IMPULSE

We now directly compare linear response theory to
evolution of elliptical perturbations on two experimental vo
tices @Fig. 12#. We find that the initial exponential deca
predicted by linear response theory is in good agreem
with the experiments. Over longer times, the ellipticity e
hibits nonlinear ‘‘trapping’’ oscillations, and then equil
brates at a finite amplitude.

A. Apparatus

Figure 11 is a schematic diagram of the experimen
setup.6,7,38 A long column of electrons is confined in a ho
low cylindrical conductor. Large dc voltages are applied
rings at both ends of the cylinder to keep the electrons fr
escaping in the axial (ẑ) direction. In addition, a uniform~1
T! magnetic fieldB is applied parallel to the trap axis. Th
magnetic field counters the outward radial force of the el
tric field (E) that is produced by the electron column, a
thereby prevents the electrons from escaping to the wall

The time period over which the electrons bounce fro
one end of the trap to the other~along thez axis! is much less
than the characteristic time scale for the flow of electrons
the r–u plane~i.e., a vortex rotation period!. As a result, the

FIG. 11. Side view of a ‘‘Penning–Malmberg’’ apparatus that is used
studying 2-D Euler dynamics with a magnetized electron plasma.
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‘‘instantaneous’’r–u velocity of an electron can be approx
mated by its average over a bounce period. The 2-D fl
equations obtained from this bounce-averaging scheme
known as the 2-D drift-Poisson equations:14

]n

]t
1v"¹n50, v5 ẑ3c¹f/B, ¹2f54pen. ~35!

Above, v(r ,u,t) is theE3B drift velocity field, n(r ,u,t) is
the z-averaged electron density, andf(r ,u,t) is the electro-
static potential. The boundary condition isf50 atRw , since
the wall of the trap is grounded.

The equations for the vorticity of ther–u flow can be
obtained directly from Eq.~35!. They are the 2-D Euler
equations@Eq. ~1!#. The stream function relates to the ele
trostatic potential by the equationc[cf/B, and the vortic-
ity relates to the electron density by the equationz
54pecn/B. The vacuum between the electron column a
the conducting wall corresponds to a region of zero vortic
The boundary conditionf50 at the conducting wall corre
sponds to free slip at the wall of a circular container.

Becausez is proportional ton, vorticity measurements
are equivalent to density measurements. Thus, vorticity
measured by dumping the electrons onto a phosphor scr
and recording the density~vorticity! image with a charge-
coupled device camera. Although this imaging is destruct
the initial conditions are reproducible, so that the time ev
lution of flows ~e.g., Fig. 1! can be studied.

B. Evolution of elliptical perturbations

We now consider the evolution of elliptical perturbatio
on the two experimental vortices that are shown in Fig.
At t50, these vortices are perturbed by an external impu
The impulse is created by briefly applying voltages to is
lated 60° sections of the conducting wall.6,7 The voltages are
phased spatially so as to mainly produce anm52 electro-
static potential~stream function!. This potential deforms the
initially circular vortex into an ellipse.

Figure 13 shows how the quadrupole moments of
two experimental vortices evolve after the impulse. In bo
experiments, the quadrupole momentQ(2)(t) exhibits an
early stage of decay that is approximately exponen
(e2gt). Furthermore, in both cases, the phasew of the quad-

r

FIG. 12. Equilibrium vorticity profiles for two experimental vortices. The profile in~b! corresponds to the vortex in Fig. 1.
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FIG. 13. Evolution of the quadrupole moment,Q(2)(t)[uQ(2)(t)ueiw(t), in two typical experiments. TheX’s are experimental data, whereas the diamonds
dashed lines are theoretical predictions. The diamonds give the complete linear response of the vortex to an external impulse. The dashed linehe
contributions toQ(2) from the Landau poles, which dominate the early response in both cases. The equilibrium profiles for experiments~a! and~b! are shown
in Figs. 12~a! and 12~b!, respectively.uQ(2)(t)u is in units of uQ(2)(0)u; T[tV0(0)/2p.
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rupole moment changes at a constant ratevq , i.e., the ellip-
tical perturbation rotates with a constant angular velocity

Figure 13 also compares the experimental data to lin
response theory. Here, linear response theory assumes
the elliptical perturbation is created by ad(t) impulse, and
therefore that the initial vorticity perturbation is given by E
~30!. In experiment~a! @Fig. 13~a!#, there is good agreemen
between the early evolution ofQ(2) and linear response
theory. In experiment~b! @Fig. 13~b!#, there is a noticeable
(;20%) discrepancy between the experimental value ofvq

and linear theory. This frequency difference probably in
cates that the initial experimental excitation is slightly no
linear.

In Sec. III, we showed that the initial linear evolution
the quadrupole moment is generally dominated by a Lan
pole contribution. This contribution varies with time exact
like e2gte2 ivqt, wherevq andg are the real and imaginar
parts of the Landau pole. To calculate a Landau pole requ
analytic continuations of bothz0(r ) andV0(r ) in the com-
plex r plane~see Appendix B, and Refs. 14–16!. To obtain
these continuations for an experimental vortex, we appro
mate the measured vorticity profilez0(r ) with a combination
of analytic functions, such as Gaussians, hyperbolic tange
and polynomials. The analytic continuation ofV0(r ) is then
obtained from its integral solution, V0(r )
5r 22*0

r dr8 r 8z0(r 8), wherer is complex. The solid lines in
Fig. 12 show our analytic approximations ofz0(r ) @evalu-
ated along the realr axis# for both experiments. Using thes
approximations, we calculated the Landau poles numerica
as described in Appendix B. For experiment~a!, we obtained
a Landau pole withvq50.36 andg50.018 in units of
z0(0). For experiment~b!, we obtained a Landau pole wit
vq50.077 andg50.030.
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The dashed lines in Fig. 13 are the Landau pole con
butions toQ(2)(t). It is evident from Fig. 13 that the Landa
pole contribution accurately describes the initial evolution
Q(2) for experiment~a!. For experiment~b!, the Landau pole
contribution gives an accurate value forg, but gives a value
for vq that is less than the experimental value, as did
complete linear response.

We now discuss the behavior of thevorticity perturba-
tion. The vorticity perturbation in experiment~b! is heavily
damped in the core, and is rapidly dominated by filamen
On the other hand, the vorticity perturbation in experime
~a! behaves like a single damped wave~quasimode! for sev-
eral cycles. Specifically, them52 component of vorticity is
well described by a fit7,38 of the form, dz(r ,t)

. ĵ(r )e2ĝte2 iv q̂t, for T&5. From the fit, we obtainv q̂

50.3760.01 andĝ50.01360.003. Figure 14~a! shows the

radial partĵ(r ) of the quasimode that was obtained from t
fit: it is roughly proportional tor m21z08(r ), like the quasi-
mode of a top-hat vortex.

Of course,v̂q and ĝ are consistent with the observe
frequency and decay rate of the quadrupole momentQ(2).
Accordingly, they are in reasonable agreement with the c
culated Landau pole, which hasvq50.36 andg50.018. We
now show that the radial partĵ(r ) of the measured quasi
mode is also in good agreement with linear theory.

Figure 14~b! shows them52 excitability spectrum of
the vortex in experiment~a!. The excitabilityXk @Eq. ~28!# is
shown as a function of the critical radiusr c,k @Eq. ~19!# of
each continuum mode. The excitability has a moderat
sharp peak, indicating that a brief external impulse excite
quasimode.

The radial part of the theoretical quasimode is appro
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mately proportional to the radial eigenfunction of an ‘‘exce
tional’’ continuum mode~for r &r c,k), which has its critical
radius in the peak region of excitability. In Fig. 14~a!, the
eigenfunction of an exceptional continuum mode is sup
posed~after being rescaled! on the radial part of the experi
mental quasimode. The two are in excellent agreement,
r &r c,k .

After about five rotation periods, both experiments
verge from linear theory, and theamplitudeof Q(2) slowly
oscillates~Fig. 13!. A critical eye will notice secondary os
cillations, with frequencyvq, in the experimental data
These small rapid oscillations should be ignored, since t
are artifacts of inhomogeneities in the phosphor. We n
compare the observed slow oscillation frequency ofuQ(2)u to
a theoretical estimate,14 which assumes that the perturbatio
is dominated by a single wave, i.e., a quasimode.

The amplitude of the quasimode changes with time
conserve the flow’s energy and angular momentum, as
ticity is phase mixed in the critical layer atr c ~see Appendix
A!. Early on, this phase-mixing causes the amplitude to
cay at the exponential rateg, given by linear theory. Ove
longer times, the vorticity perturbation becomes nonlinea
the critical layer, and the amplitude of the quasimode os
lates~‘‘bounces’’!. As t→`, the phase-mixing in the critica
layer completes, and the amplitude of the quasimode eq
brates at a finite level.

The bounce frequencyvb of the quasimode amplitude i
estimated by considering the flow in the critical layer. In
frame that corotates with the quasimode, the streamline
the critical layer are closed, forming ‘‘cat’s eyes’’~Fig. 16,

FIG. 14. Them52 quasimode of an experimental vortex@Fig. 12~a!#. ~a!
The radial partj(r ) of the observed quasimode compared to theory.~b!
Eigenmode excitability vs the critical radiusr c,k of the eigenmode. The
moderately sharp peak indicates that a brief external impulse excites a q
mode.
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Appendix A!. One expects thatvb is approximately the or-
bital frequency of a fluid particle that is ‘‘trapped’’ on
closed streamline. This frequency was estimated in Ref.

vb
25

m2

r c
u2dc~r c!V08~r c!u. ~36!

Here, udc(r c)u is the amplitude of themth Fourier coeffi-
cient of the stream function perturbation evaluated at
critical radiusr c , and averaged over a bounce period.

For experiment~a!, Eq.~36! yieldsvb50.056 in units of
z0(0). For experiment~b!, Eq. ~36! yields vb50.016. The
bounce periods (2p/vb) corresponding to these estimat
are marked in Fig. 13. It is evident that the estimated bou
periods accurately give the oscillation periods ofuQ(2)u in
both experiments.

Further details of the nonlinear stages of the vortex e
lution are beyond the scope of this paper, but are quan
tively addressed elsewhere.7,8,11,25Here, we note that in prin-
ciple the linear stage can be made arbitrarily long
decreasing the amplitude of the initial perturbation.

V. SUMMARY

In this paper we examined the inviscid damping
asymmetries on a 2-D circular vortex. We focused on
damping of elliptical perturbations that are created by anm
52 d(t) external impulse. In linear theory, after the impuls
the phase of the quadrupole moment of the perturbed vo
changes at a constant ratevq , and the amplitudeuQ(2)u of
the quadrupole moment decays at an exponential rateg. We
showed that bothvq andg are given by a Landau pole of th
equilibrium profile. After this initial period of exponentia
decay, linear theory predicts that there is a transition tow
algebraic (t2a) decay.

We also showed that during the exponential decay
uQ(2)u, the linearvorticity perturbation behaves in two dis
tinct ways, depending on the order of magnitude ofg. For
g/vq!1, the vorticity perturbation is a quasimode, i.e.,
behaves like a single exponentially damped wave in the v
tex core (r &r c). For g/vq;1, the vorticity perturbation
does not resemble a damped wave; rather, it becomes d
nated by spiral filaments in a few vortex rotation periods

The linear quasimode was analyzed as a packet of n
trally stable continuum modes. From this perspective,
quasimode decays through destructive interference as
continuum modes disperse. The exponential decay rateg is
proportional toz08(r c), the vorticity gradient at the critica
radius. Physically, the quasimode is damped by a reso
interaction with corotating fluid~see Appendix A!. This reso-
nant wave–fluid interaction is analogous to the well-kno
resonant wave–particle interaction in plasma physics,14,30,39

which can cause the exponential damping of Langmuir
cillations ~for example!.

The initial exponential decay predicted by linear theo
was shown to agree with electron plasma experiments. H
ever, the algebraic (t2a) decay predicted for late times17,28,29

was not observed experimentally. Instead, the amplitude
the quadrupole moment was found to equilibrate at a fin
fraction of its initial value~Figs. 1 and 13!. As discussed at

si-
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the ends of Secs. III and IV, this equilibration is due to t
wrapping of vorticity filaments at the critical radiusr c . Such
wrapping causes theu-averaged radial vorticity gradient t
vanish atr c , and thereby removes the mechanism for re
nant damping~see Appendix A!.

Under the right conditions, algebraic decay might occ
in the experiments with magnetized electron plasmas.
example, we expect to observe algebraic decay at late ti
if the initial perturbation is sufficiently weak. Then, linea
theory would apply for longer times, allowing a transition
algebraic decay, as in Fig. 5. Another possibility is to cre
an asymmetry by means other than an external impulse.
example, one could add onto the vortex a low-amplitu
cloud of vorticity ~electron cloud!. If this cloud does not
overlap strongly with a quasimode, the multipole momen~s!
of the vortex can relax to time-asymptotic algebraic decay
less than one rotation period.
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APPENDIX A: DAMPING OF A QUASIMODE BY A
RESONANT WAVE–FLUID INTERACTION

In this appendix, we explain how exponential dampi
results from a resonant wave–fluid interaction.14,30We make
explicit use of conservation of canonical angular momentu
Pu[*d2r r 2z. Note thatPu is a convenient simplification o
the actual angular momentum per unit lengthL, which is
given by the equationL[ ẑ•* d2r rÃrv5 1

2r(GRw
2 2Pu).

Here,r is the uniform mass density of the fluid, andG is the
total circulation of the flow.

1. Angular momentum of the mode

For simplicity, we consider a uniform circular vorte
patch of radiusr 0 and vorticitys.0. Suppose that a ripple
of azimuthal wave numberm is created on the edge of th
vortex patch, in such a way that the area of the~incompress-
ible! vortex patch is conserved. Figure 15 illustrates this p
turbation for the case ofm52. Here, the ripple correspond
to an elliptical deformation.

Let r p(u,t) describe the radius of the perturbed vort
patch. With the ripple,

r p~u,t !5r 01dr 0~ t !1a~ t !cos@mu1w~ t !#. ~A1!

FIG. 15. Elliptical deformation of a uniform circular vortex patch.
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Herea(t) andw(t) are the amplitude and phase of the asy
metric part of the ripple. The symmetric partdr 0(t) is re-
quired to conserve the area of the vortex patch. To low
order,dr 0 is related toa by

dr 052
a2

4r 0
. ~A2!

Note that Eq.~A1! neglects the growth of other asymmetri
with wave numbersm8Þm. This ‘‘single-wave model’’ is
good, provided thata is small.

When the vortex patch is isolated, the ripple behaves
an undamped mode.32 Specifically, a(t) is constant and
w(t)52vt. Here,v is approximately (s times! the Kelvin
frequency that is defined in Eq.~21!.

The angular momentumPu,M of the mode is defined a
the difference inPu between the vortex patch with and with
out the mode; that is,

Pu,M[E
0

2p

duE
0

r p
dr r 3s2E

0

2p

duE
0

r 0
dr r 3s. ~A3!

Using Eq.~A1! for r p , Eq. ~A2! for dr 0 , and carrying out
the integrals in Eq.~A3!, we obtain the following expression
~to lowest order ina! for the angular momentum of th
mode:

Pu,M5psr 0
2a2. ~A4!

2. Exponential damping of the mode

Now suppose that there is a low level (!s) of vorticity
outside the vortex patch, extending to the wall radiusRw . If
this low level of vorticity decreases monotonically withr, it
will cause the mode to decay.

To see this, we examine the flow at the critical radiusr c

(.r 0), where the fluid rotation is resonant with the mo
@mV0(r c)[v#. In a frame that rotates with the mode, th
streamlines nearr c form cat’s eyes.40 These cat’s eyes~gray!
are illustrated in Fig. 16, for the case ofm52.

In time, the vorticity in the cat’s eyes is mixed~phase
mixed!. Since z08(r c),0, this mixing increases the mean
square-radius of the flow~i.e., Pu). The only way for the
system to conserve totalPu is for the mode amplitudea to
decay.

The rate of change of the mode angular momentum
equal and opposite to the rate of change ofPu in the skirt of
low-level vorticity that is outside the vortex patch. LetPu,s

denote the angular momentum in the skirt. The time deri
tive of Pu,s can be expressed as the following integral:

FIG. 16. Kelvin’s cat’s eyes at the critical radiusr c .
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d

dt
Pu,s52pE

0

Rw
dr r 3

]

]t
dzs

(0) . ~A5!

Here,dzs
(0)(r ,t) is the axisymmetric (m50) component of

the vorticity perturbation in the skirt. From the Euler equ
tion for the evolution of vorticity, we obtain~to lowest order!

]

]t
dzs

(0)52
2

r
ImFm

]

]r
~dc (m)dzs

(m)* !G , ~A6!

wherem is the azimuthal wave number of the mode, and
denotes the imaginary part of the function in square brack
As in the main text,dc (m)(r ,t) is themth Fourier coefficient
of the stream function perturbation; similarly,dzs

(m)(r ,t) is
themth Fourier coefficient of the vorticity perturbation in th
skirt. Substituting Eq.~A6! into Eq.~A5!, and integrating by
parts, we obtain

d

dt
Pu,s58pmE

0

Rw
dr r Im@dc (m)dzs

(m)* #. ~A7!

We will assume that the stream function perturbation
dominated by the mode; that is,32

dc (m)~r ,t !.
a~ t !

2
sr 0G~r ur 0!e2 ivt. ~A8!

Here,G is the Green’s function that is defined by Eq.~6!. In
Eq. ~A8!, the phasew(t) of the mode is simply2vt. This
neglects any phase perturbation due to the low-vorticity sk

To sufficient accuracy, the evolution ofdzs
(m) is obtained

from the linearized Euler equation,

]

]t
dzs

(m)1 imV0~r !dzs
(m)2 i

m

r
z08~r !dc (m)50. ~A9!

Here,dc (m) is given by Eq.~A8!, and is proportional to the
mode amplitudea. The solution to Eq.~A9! is given by

dzs
(m)~r ,t !5a

msr 0

2r

z08~r !G~r ur 0!

mV0~r !2v
@e2 ivt2e2 imV0(r )t#,

~A10!

provided thatdzs
(m) is initially zero, and thata is approxi-

mately constant over the integration periodt.
Substituting Eqs.~A8! and~A10! into Eq.~A7! gives the

following expression for the time derivative of the angu
momentum in the skirt:

d

dt
Pu,s522pa2m2s2r 0

2E
0

Rw
dr G2~r ur 0!z08~r !

3
sin@~mV0~r !2v!t#

mV0~r !2v
. ~A11!

After a few cycles~i.e.,mV0t.vt@1), the integrand in Eq
~A11! becomes sharply peaked at the critical radiusr c , de-
fined bymV0(r c)[v, and the integral asymptotes to a co
stant value. This time-asymptotic value is given in the f
lowing:

d

dt
Pu,s522p2a2ms2r 0

2G2~r cur 0!
z08~r c!

uV08~r c!u
. ~A12!
-

ts.

s

t.

-

By conservation of angular momentum, the time deriv
tive of the mode angular momentum must balance the t
derivative of the angular momentum in the skirt; that is,

d

dt
Pu,M52

d

dt
Pu,s . ~A13!

We will use Eq.~A12! for the time derivative ofPu,s , with
a now a function of time. This approximation is good, pr
vided that the mode amplitudea varies slowly compared to
the rate at whichdPu,s /dt equilibrates, under the conditio
of fixed a. That is, the decay rateg of the mode must satisfy
g/v!1.

Substituting Eqs.~A4! and ~A12! into Eq. ~A13!, we
obtain

d

dt
a25

p

2m
r 0z08~r c!S r 0

r c
D 2m23F12S r c

Rw
D 2mG2

a2. ~A14!

Here, we have usedV0852sr 0
2/r 3 (r .r 0), and Eq.~6! for

the Green’s functionG. The solution to Eq.~A14! is a(t)
5a(0)e2gt, where the decay rateg is given as follows:

g5
2p

4m
r 0z08~r c!S r 0

r c
D 2m23F12S r c

Rw
D 2mG2

. ~A15!

This decay rate is the imaginary part of the Landau pole@Eq.
~31!# that was calculated by Briggs, Daugherty and Levy14

Note that whenz08(r c).0, mixing atr c decreasesPu in
the skirt. In this case, the amplitudea of the mode must
increase to conserve angular momentum. In other wo
positive vorticity gradient atr c leads to an instability. This
instability is evident in Eq.~A15!, which gives a positive
growth rate~negativeg) whenz08(r c).0.

APPENDIX B: LANDAU POLES

In this appendix, we review how to calculate nume
cally the Landau poles of a monotonic vortex. We presen
brief summary~without derivations! of the main points in
Refs. 14–16, and refer the reader to these articles for gre
detail, and a more precise treatment.

Note that Refs. 14–16 discuss the evolution of t
stream function perturbation and its derivatives. In this p
per, we examine the evolution of the multipole mome
Q(t), which is defined by Eq.~12!. The multipole moment is
related to the stream function perturbation by the followin

Q~ t !5~Rw!m11
]dc

]r
~Rw ,t !.

1. The Laplace transform of the multipole moment

The multipole momentQ(t), of a perturbation that var-
ies like eimu can be written formally as a contour integral
the complexv plane:

Q~ t !52
1

2pE1`1 ia

2`1 ia

dvQ̃~v!e2 ivt, ~B1!

wherea is a positive real number. We will refer to the con
tour of integration in Eq.~B1! as the ‘‘inversion contour.’’
The functionQ̃(v) is the usual Laplace transform, define
by Q̃(v)5*0

`dt Q(t)eivt.



f

2411Phys. Fluids, Vol. 12, No. 10, October 2000 Inviscid damping of asymmetries on a 2-D vortex
FIG. 17. When~a! the radial integra-
tion contour is along the realr axis,

~b! there are no poles inQ̃(v) that
correspond to discrete zeros o
C1(Rw ,v).
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A solution for Q̃(v), in terms of the initial vorticity
perturbation dz(r ,0), can be extracted from th
literature:14–16

Q̃~v!5
i ~Rw!m11

C1~Rw ,v!
E

0

Rw
dr

r

Rw

C1~r ,v!dz~r ,0!

v2mV0~r !

[
N~v!

C1~Rw ,v!
. ~B2!

Here, the functionC1(r ,v) is a solution to

F1

r

]

]r
r

]

]r
2

m2

r 2
1

m

r

z08~r !

v2mV0~r !GC1~r ,v!50, ~B3!

which also satisfiesC1(0,v)50. Equation~B3! is the same
ordinary differential equation that must be satisfied by
stream function,C(r ,v)ei (mu2vt), of an eigenmode of the
vortex. However,C1 need not vanish atr 5Rw , as does the
stream function of an eigenmode.

Suppose that the vortex extends to the wall~i.e., Rv
5Rw!, so that there are no discrete eigenmodes of
vortex.14 Then, there are no discrete values ofv, for which
C1(Rw ,v)50. The analytic properties ofQ̃(v) for this case
are shown schematically in Fig. 17. There are no poles
Q̃(v) that correspond to discrete zeros ofC1(Rw ,v), but
there is a branch cut along the realv axis, in the interval
mV0(Rw),v,mV0(0). 14–16

It is possible to deform the branch cut below the realv
axis by deforming the radial contour of integration in E
~B2! above the realr axis.14–16 The new branch cut, define
by mV0(Re@r #1 i Im@r #)5v, is sketched in Fig. 18. If the
branch cut in the complexv plane bends sufficiently fa
below the real axis, a Landau pole (v5vq2 ig) will appear
in the analytic continuation ofQ̃(v), between the branch cu
and the realv axis.

The Landau pole corresponds to a discrete zero
C1(Rw ,v). This discrete zero is now possible, sin
C1(r ,v) is defined along the deformed radial contour@Fig.
e

e

in

.

f

18~a!#, and not the realr axis. So, the Landau pole can b
calculated by finding a discrete mode of Eq.~B3!, along the
deformed radial contour. The boundary conditions on t
unphysical discrete mode areC1(0,v)5C1(Rw ,v)50.

The inversion integral@Eq. ~B1!# can be deformed
around the Landau pole and the branch cut, as illustrate
Fig. 19. The contribution from the Landau pole gives a te
in Q(t) that is proportional toe2gte2 ivqt. As we have seen
this term dominates the early evolution ofQ(t), when the
initial perturbation is caused by an external impulse.

Note that the locations of Landau poles in the comp
v plane are determined solely by the equilibrium profi
z0(r ), and have no relation to the initial perturbation.

2. Numerical computation of a Landau pole

In Sec. III, we examined the response of a Gauss
vortex to an externalm52 impulse. We showed that th
initial evolution of the quadrupole moment was dominat
by the Landau pole. In this section, we discuss specific
how this pole was computed. A similar procedure was u
to calculate the Landau poles of the experimental profiles
Sec. IV.

As mentioned previously, a Landau pole is a solution
the mode equation@Eq. ~B3!# along a deformed contour in
the complexr plane. The specific contour that we used
calculate the Landau pole of the Gaussian vortex@Eq. ~34!#
is the following parabola:

r ~s!5Rw@s1 i ~s2s2!#, ~B4!

wheres is a real parameter, which satisfies 0<s<1.
The mode equation@Eq. ~B3!# can be rewritten as a dif

ferential equation ins,

F ]

]s

r ~s!

r 8~s!

]

]s
2

r 8~s!m2

r ~s!
1

mr8~s!z08@r ~s!#

v2mV0@r ~s!# GĈ1~s,v!50,

~B5!
-

FIG. 18. When~a! the radial integra-
tion contour is deformed into the up
per half-plane,~b! a Landau pole ap-

pears inQ̃(v).
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where Ĉ1(s,v)[C1(r (s),v), and r 8(s)5Rw@11 i (1
22s)#. The asymptotic form ofC1(r ,v) is r m, as r→0.
This implies thatĈ1(s,v) must satisfy the following initial
conditions ats[e!1:

~i! Ĉ1~e,v!5r m~e!,
~B6!

~ii !
]Ĉ1

]s
~e,v!5mr8~e!r m21~e!.

The value ofe is typically ;1023, and the accuracy of the
solution improves ase→0.

The Landau pole is the complex value ofv that yields
Ĉ1(1,v)50. This value ofv is found using a standar
shooting technique. For the Gaussian vortex in Eq.~34!, we
obtained the following value for the Landau pole:v
50.22620.079i .
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