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Abstract

Magnetically confined electron columns evolve as near-ideal 2D fluids, allowing
quantitative study of shear flow instabilities, vortex formation, turbulence, and self-
organization. We find that rapid global symmetrization of a distorted column can
occur by a decay instability due to nonlinear beat wave damping. When
instabilities lead to vortex turbulence which then freely relaxes, we find that the
relaxation rate is limited by vorticity holes which persist for hundreds of rotations
even in strong background shear. Long wavelength turbulence is observed to self-
organize to a meta-equilibrium state which is accurately predicted by minimization
of enstrophy, although relaxed states from shorter wavelength turbulence appear
substantially different. Surprisingly the relaxation can be halted by the formation of
‘‘vortex crystals,”” where 3 to 12 vortices form a geometric lattice which is stable
for up to 10* rotation times. After even longer times, a weak compressional
viscosity arising from ‘‘rotational pumping’’ may contribute to 3D relaxation.

1. Introduction

Magnetically confined pure electron columns are excellent systems for observing 2D
vortices, turbulence, and self-organization in the presence of background shear flow [1]. The
electron columns are confined radially by a uniform magnetic field, B,, and contained axially
by voltages applied to end sections of the cylindrical wall, as shown in Fig. 1. The confined
plasma is sensed and manipulated by antennas in the wall, and the z-averaged electron density
n(r,8,r) is accurately measured by dumping the column onto a phosphor screen imaged by a
512 X 512 x 16 bit CCD camera.

The axial bounce frequency of an electron is large compared to the ExB drift rotation
frequency (wp > @g), so the flow can be described by the 2D drift-Poisson equations, i.e.

M yVn=0, v=——"Véx2, Vo=4men . (1)
ot B,

These equations are isomorphic to the 2D Euler equations for an incompressible inviscid fluid,
and are close cousins to the Hasegawa-Mima equations for drift-wave turbulence [2]. The

measured electron density is proportional to the vorticity of the flow, i.e. n = (B,/4mec) V xv.

The plasma column has low internal viscosity and has no boundary layers at the
cylindrical walls or ends. For electrons the time for internal viscosity to act is typically
10 sec [3], compared to the 10 usec time scale for the fastest drift motions. Further, the
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FIG. 1. The cylindrical confinement geometry and phosphor/camera diagnostic.

E x B drift velocity vg may be large at the wall, but since there are typically no particles near
the walls, one has a free-slip boundary condition. The effects of compressional viscosity
acting on rotational pumping of the length of the plasma will be considered below.

2. Shear Flow Modes and Instabilities

If we start with a smooth, symmetric density profile n(r) and add a small perturbation in
0, we are able to study near-linear modes and instabilities. Our n(r,0,z) data allows us to
completely characterize the k, =0 flute modes, varying as exp(im@—-i®,t). When the
electron density profile n(r) is monotonically decreasing, an azimuthally symmetric column is
stable with respect to all ExB drift modes. When surface modes are excited, we observe
direct and beat-wave damping of the mode. For hollow profiles, we observe both the
expected Kelvin-Helmbholtz instabilities and other stable Ex B drift, or ‘‘diocotron’’ modes.

Similar flute modes have been extensively analyzed [4] and have recently been observed
in neutral plasmas with electric fields arising from regions of non-neutrality [5,6]. One
interesting question is the net charge of the plasma and the effects of image charges in the
walls. For cylindrical geometry, the image charges from a net plasma charge give rise to the
stable m =1 diocotron mode, wherein the entire displaced plasma column orbits around the
center of the confinement cylinders. For toroidal geometry, this image charge mode would be
more complicated.

These diocotron modes modes in electron plasmas are not well-predicted by the usual
step-profile analysis: distinct stable and unstable modes are observed experimentally, whereas
theory predicts complex conjugate pairs. However, both the frequencies and growth rates are
reasonably well characterized by computational solution of the eigenvalue equation using the
measured density profiles [7]. A further exception is m =1, where we observe a robust
exponential instability [8] where cold fluid theory predicts only algebraic growth; here, FLR
and finite length effects may cause the instability [9].

The damping of these modes can not be obtained from step-profile analysis of n(r),
since this idealization precludes resonance between the wave and the fluid rotation at a radius
where the vorticity is not spatially constant [10]. This ‘‘direct’’ resonance is now understood
to give rise to inviscid spatial Landau damping of the wave [11], analogous to velocity space
Landau damping of electron plasma waves. The resonance is centered at r,, where
®,, =m Op(r;). For even moderate wave amplitudes, this observed damping is typically
nonlinear, and the damping may decrease [12] or cease when the resulting ‘‘cat’s-eye’’ flows
generate fine-scale filaments inside the vortex. For ‘‘sharp-edged’’ vorticity profiles, the
resonant radii r; can be completely outside the vortex, in which case no direct resonance
damping occurs.
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For general vorticity profiles, however, we find [13] that a single excited wave varying
as A,,sin(m0) will decay into a daughter wave varying as A, _;sin[(m —1)8], through
resonance damping of the nonlinear ‘‘beat wave’’ at frequency ®,, —®,, _;. Here, the
resonance is where ,, —®,_j=0g(r;). The daughter mode is oberved to grow
exponentially, at a rate varying roughly as A,2. These rates (normalized by Tg) are shown in
Fig. 2 for mode numbers 4 -3, 3—2 and 2— 1. Also shown is an initial large amplitude
m =3 state and the m =2 state which results 1015 later.

When the resonant coupling exists, a single surface wave is an unstable equilibrium, and
no equilibrium exists with two waves. One consequence of this beat-wave damping is that a
long-wavelength mode (such as an m =2 elliptical distortion) would appear to actively damp
or suppress shorter wavelength modes such as m =3. This decay process is seen to give
global symmetrization of an asymmetric vortex, while presumably also generating fine-scale
resonance filaments within the vortex. For many vortex profiles, this beat wave damping is
observed to be the fastest mechanism for symmetrization. Further, shape distortions are an
inherent result of vortex-vortex interactions [14], including those leading to merger [15] or
filamentation, so direct damping and beat-wave damping may affect these interaction
processes.

3. Relaxation of Fluctuations in Shear

We study instabilities and relaxation by creating well-controlled but unstable initial
conditions and then observing the free evolution. Shear-flow instabilities lead to the
formation of vortices, which result in rapid cross-field particle transport to a state which is no
longer globally unstable. The vortices then merge, shed filaments, and eventually relax to an
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FIG. 2. Measured decay instability growth rates ,_;Tz versus mode amplitude A,,, for
m =4, 3 and 2. Insert shows n (r,0) before and after the 3 — 2 instability.
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axisymmetric, sheared meta-equilibrium state. This state can be treated as a sheared ©-
averaged background profile, plus turbulent fluctuations on various spatial scales. An example
of such an evolution is shown in Fig. 3.

We find that measured fluctuations decay about 50 times slower than predicted by simple
‘‘passive tracer mixing’’ in the presence of shear, and that the measured ‘‘noise’’ is strongly
skewed from Gaussian [16]. These effects are due to the longevity of ‘‘holes,”” i.e. self-
trapped regions of negative relative electron density or vorticity. These holes are clearly
visible in the fourth and fifth frames of Fig. 3. Figure 4 shows the shot-to-shot density
fluctuations 7 measured at r =R/R, =0.33. The fluctuations are observed to decay in
hundreds of TR, whereas a passive tracer would be smeared out in a few 1. Here,
Tz =10ps. The probability distribution p for measuring density n is strongly skewed towards

low densities because the fluctuations are not random, but rather reflect the coherent holes.

A simple fluid model [17] shows that elliptical vortices can be in equilibrium with a
weak imposed shear, but are elongated and destroyed by strong shear. Specifically, if the
shear is prograde (i.e. in the vortex rotation direction), elliptical equilibria exist for all shear
strengths; however, strong shear gives unphysically large elongations. If the shear is
retrograde, equilibria exist only for weak shear.

Thus, in flows with strong negative shear (i.e. dwg/dr <0), such as Fig. 3 after =30 1,
density clumps and shallow holes are sheared apart by the background flow, while relatively
intense holes remain self-trapped. Measurements of the aspect ratios of these elliptical holes
agree with the equilibria predicted for the measured shear [16]. Similar results have been
seen for the stability of vortices in an applied shear field [18]. However, we also observe that
the holes slowly drift outward (due to unknown effects) and are eventually destroyed.

14.5714

FIG. 3. Contours of the density (vorticity) during instability, vortex-driven transport, and
relaxation to a meta-equilibrium state.
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FIG. 4. Measured decay of fluctuations compared to passive tracer prediction, and
measured non-Gaussian fluctuation distribution.

4. Minimum Enstrophy States States

Generally, the system relaxes to a low-noise meta-equilibrium state (MES). We generally
observe that the MES is axisymmetric with a monotonically decreasing density profile, and
lasts for about 10* 15 before non-ideal effects cause it to evolve further. The total number of
electrons, scaled angular momentum and scaled electrostatic energy, given by

N s_[dzrn ,
Py ER‘;Z'{dzr (A-r®Hn/ng,
Hy=-%R;2[d?r (ning) /) ,

are well conserved from the initial conditions to the MES [19]. Here, ny=N/R?, and
¢o=eN. However, less robust ‘‘ideal’’ invariants such as enstrophy and mean-field entropy,
given by

Z,=%R2[d’r (ning)?,
S = —R;zjdzr (n/ng) In(n/ng) ,

vary significantly, due to measurement coarse-graining or dissipation of small spatial scales.

We have compared the measured MES density profiles to various theories based on
maximization of entropy or minimization of enstrophy [20]. We find that minimization of
enstrophy accurately predicts the meta-equilibrium profiles for hollow initial conditions of
moderate energy [19] such as shown in Fig. 3. These profiles are significantly different from
the predictions of maximum entropy. The minimization is subject to constant N, Py, and H o
and to the physical constraint that n 20. The explicit Py dependence of the solution is
removed by rescaling the enstrophy as Z 2=41(1-Pg)Z,, and considering the excess energy

H® =sHy-H™ .

Here, H q’,“m =1/4-"21n(2-2pg) is the minimum energy possible for given N and Py, i.e. the
energy of a uniform density column.
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FIG. 5. Predicted (curve) and measured (points) enstrophy Z, vs excess energy H o -

Figure 5 shows the measured MES Z, (circles) and the predicted minimum Z, (curve)
for a range of excess energies. Also shown is the value of 22 which would be obtained from
a maximum entropy MES for one evolution. Here, the experimental measurements are
typically 2-3 times closer to the minimum enstrophy predictions than to the maximum entropy
predictions, both in the measured Z, and in the measured profiles n(r). For higher excess
energies, this class of symmetric, monotonic solutions no longer exist, and several off-axis
and non-monotonic profiles are possible [21].

5. Vortex Crystal States

We have also studied highly filamented, high excess energy initial conditions, which
form 50-100 vortices, and then freely relax toward a 2D meta-equilibrium. Here, chaotic
mutual advection and vortex merger are clearly important dynamical processes, and the final
meta-equilibrium is typically strongly peaked on center. Surprisingly, this relaxation is
sometimes halted when individual vortices settle into a stable, rotating crystalline pattern
which lasts for thousands of rotation times.

Figure 6 shows the measured z-averaged electron density n(r,0,t) at five times for two
slightly different initial conditions: the upper sequence forms vortex crystals, whereas the
lower sequence relaxes rapidly to a monotonically-decreasing profile [22]. The vortex crystal
state consists of 5-11 individual vortices each 4—6 times the background vorticity, arranged in
a lattice pattern which rotates with the background. That is, rods of enhanced electron density
(n ~7x10%cm™) are maintaining self-coherence and positions relative to each other for
several seconds, while ExB drifting with a diffuse background (ng ~2x10%cm™). Vortex
crystal states are repeatably observed over a range of filament bias voltages, but the
characteristics of n(r,0) required for these states are not yet understood. The lowest row in
Fig. 6 shows selected patterns which have been observed.

Figure 7 shows the number of distinct vortices N,,, and the enstrophy Z, for the two
sequences. In both sequences, the unstable filamentary initial condition forms N,=50-100
vortices of roughly equal circulation, after which N, initially decreases as N, ~5, with E=1.
This relaxation is generally consistent with a dynamical scaling based on conserved quantities



FIG. 6. Measured n(r,0) at 5 times for two slightly different initial conditions, one of
which forms vortex crystals; and 5 selected patterns which were observed.

in repeated vortex mergér [23]. The observed & range from 0.4 to 1.1 as the initial conditions
are varied, with 0.8 being commonly observed.

In the evolution of the top sequence in Fig. 6, the relaxation is arrested by the ‘‘cooling’’
of the chaotic vortex motions, with formation of vortex crystals by 101;. (Here, T =170ps.)
The diamonds in Fig. 7 show that 8 to 10 distinct vortices survive for about 10*t;,. When
the vortices all have about the same circulation, the patterns are quite regular, as seen at
6007, in Fig. 6. After 10%t;, N, decreases to 1 as the individual vortices decay away in
place. Other experimental images show that as N, decreases, the remaining vortices re-adjust
to a new rigidly rotating, symmetrically spaced pattern.

The measured integral quantities for both sequences are consistent with 2D inviscid
motion on large scales and dissipation on fine scales. Experimentally, the circulation, angular
momentum, and energy are robust invariants. In contrast, the enstrophy Z, is a ‘‘fragile’
invariant, and initially decays a factor of 2 in both sequences. For the crystals sequence, Z,
is constant from 10t until 10*t,, at which time the individual vortices decay in place.

Reduction of the chaotic advective motions of the individual vortices is required to form
the vortex crystal states. The average magnitude of the random velocities of the individual
vortices, |8V |, decreases a factor of 6 between 2 Tg and 100 T for the crystals sequence,
whereas only slight cooling is seen before N,=1 (and 18V I=0 by definition) for the
monotonic sequence [22].
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FIG. 7. Number of discrete vortices N, and total enstrophy Z, versus time for two
evolutions, one of which forms vortex crystals.

We believe this cooling and cessation of relaxation through mergers is a near-inviscid 2D
fluid effect, i.e. independent of the details of the fine-scale dissipation [22]. It appears that the
vortex cooling occurs due to an interaction between the individual vortices and the boundary
of the background vorticity. A weak interaction would be described as the excitation of
surface waves on the background, and these waves could be damped by direct or beat-wave
spatial Landau damping as described above. For strong interactions and short wavelengths,
this would correspond to entrainment and mixing of low vorticity regions from the edge of the
column. A similar process may cause the negative vorticity ‘‘holes’” to become
symmetrically situated, as discussed above.

Many different symmetric crystal patterns have been observed, with 3—10 vortices.
Apparently, there are many different ‘‘meta-equilibria’’ to which the system can evolve under
near-inviscid 2D dynamics. Because of these attractors, the system does not evolve
ergodically, and the final state cannot be predicted from statistics alone. Nor can this system
be adequately approximated as point vortices punctuated by occasional merger events: the
discrete vortex motion is non-Hamiltonian due to interaction with the background vorticity.
In contrast, experiments on vortex dynamics without a background have shown frequencxes
and instability rates closely corresponding with point vortex theory [14].

6. Viscosity from Rotational Pumping

Eventually, diffusive or viscous effects cause the 2D meta-equilibrium to evolve further;
this is seen in Fig. 7 as N, and Z, decreasing after 10%t;, which is 1.7 seconds. The
physical process causing this slow evolution is not presently known, but a number of
possibilities exist. Early electron plasma experiments established that the shear viscosity is
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much greater than expected from local velocity scattering collisions [2]. Other experiments
established that non-fluid diffusive effects arise from the end confinement potentials for high
temperature plasmas [24]. Most recently, ‘‘rotational pumping’’ experiments have accurately
characterized the viscosity which arises due to the end confinement potentials [25].

Rotational pumping is the process by which bulk transport arises from compressional (or
‘‘second’’) viscosity acting on length changes in the plasma column. The length changes are
driven by EXB drift rotation in the presence of asymmetric end potentials. Consider a long
plasma column that is contained axially with end potentials that vary azimuthally. As a flux
tube of plasma undergoes ExB drift rotation about the center of the column, the length of the
tube oscillates about some mean value, and the pdV work produces a corresponding
oscillation in T} In turn, the collisional relaxation of T, toward 7, produces a slow
dissipation of electrostatic energy into heat and a consequent radial expansion (cross field
transport) of the plasma. We call the mechanism rotational pumping, by analogy with
magnetic pumping in tokamaks.

We have made detailed comparisons between theory and experiment for the case where
the end asymmetries are produced by displacing an electron column a distance D off axis,
that is, by exciting an m =1 diocotron mode. In this case, the cross field transport implies a
damping of the mode. Because the trap itself is cylindrically symmetric, the canonical
angular momentum of the plasma is conserved. Thus, the displacement of the column off-axis
must decrease as the plasma expands. As derived by Crooks and O’Neil [26], the damping
rate for a column with radius R, and length L, in a cylinder of radius R,, is given by

5 R}
Yest = 462 V) FE’? (1-2RZRH™.
p w

Here, the length change of a flux tube is estimated by 8L =xDr/R,,, with x=2. The
damping rate is proportional to (6L /L, )%, and to the collisional equipartition rate v .

Interestingly, the magnetic field strength enters the damping rate only through the
dependence of v, on r./b where r, =V/Q and b =e¥T is the distance of closest approach.
Thus, as the field strength is increased (and r./b decreased), the damping rate is nearly
independent of field strength until the regime of strong magnetization is reached (ie.,
r./b <1) and then drops off dramatically.

Figure 8 shows the measured (points) and predicted (curves) rates as a function of
temperature; the rates drop dramatically in accord with theory as T becomes small. To obtain
quantitative agreement, the exact plasma end shapes from the 3D Poisson solutions must be
used to obtain 8L (solid curve); approximating the end shapes as above gives less accurate
predictions (dotted curve).

Rotational pumping is the best-understood example of asymmetry-induced transport in
these plasmas, and it dominates at high magnetic fields because it does not decrease with B.
At lower fields, other viscous or diffusive processes may also be important. Fortunately, the
wide separation of time scales between the 2D fluid motions and the 3D viscous effects
allows the processes to be to be studied independently.

This work was supported by NSF Grant PHY94-21318, ONR Grant N00014-89-J-1714,
and DOE Grant DE-FG03-85ER53199.
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