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Theory of asymmetry-induced transport in a non-neutral plasma
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Radial transport produced by static nonaxisymmetric fields is thought to limit the confinement of
non-neutral plasmas and experiments with applied asymmetries have verified that such fields do
produce transport. A theoretical model of such transport is presented which is appropriate for long,
thin plasmas. The theory allows for asymmetries with nonzero frequency and includes the linear
collective response to applied wall voltages. For the regime where the effective collision frequency
is large, the asymmetry-induced radial particle flux is derived from the drift kinetic/Poisson
equations including collisions. For low collision frequencies a heuristic derivation is given. In both
regimes the resulting transport is dominated by particles that move in resonance with the
asymmetry. Possible applications of the theory to several experiments are discussed. ©1999
American Institute of Physics.@S1070-664X~99!01707-3#
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I. INTRODUCTION

It has long been suspected that the ultimate confinem
of long, thin non-neutral plasmas is limited by the presen
of electric and magnetic fields that break the cylindrical sy
metry of the trap. While experiments1 at high neutral pres-
sures agree very well with a transport theory2 based on col-
lisions with neutrals, at the lowest neutral pressures
confinement time is much lower than expected.3 The anoma-
lous transport increases with machine length4 and decrease
when experiments are performed in a device designed
minimize the field asymmetries.5 While experiments with
appliedfield asymmetries have verified that such fields p
duce radial transport, no connection to a transport theory
been made. A typical technique in these experiments i
apply asymmetric wall voltages to the various sectors of
confinement region and measure the resulting change in
transport.6–8

This paper presents a theory of the radial transport p
duced in a cylindrical non-neutral plasma by such appl
asymmetric wall voltages. The wall voltages are allowed
have non-zero frequency so that the theory can apply to
periments with either static or nonstatic asymmetries. In c
trast to the earlier phenomenological fluid theory of Fi
patrick and Yu,9 we allow the asymmetric potential to var
axially ~as it does in most experiments! and base our theory
on the drift kinetic equation with a collision operator. W
have also included the plasma’s collective response to
wall voltages and show that this can produce large chan
in the transport flux.

Many of the basic notions involved in our theory we
developed in early studies of radial transport in tand
mirrors,10–14 where static asymmetric end cells produced
dial grad-B drifts that largely determined the radial partic
flux. A key prediction of both theories is that the resultin
transport will be dominated by particles whose axial boun
motion and azimuthal drift motion causes them to move
2691070-664X/99/6(7)/2699/6/$15.00
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resonance with the asymmetry. As these particles repeat
encounter the asymmetry they take radial steps in the s
direction, thus allowing them to diffuse more quickly tha
nonresonant particles. The form of the resulting radial p
ticle flux depends on the relative size of an effective collisi
frequencyneff and the oscillation frequencyvT of particles
trapped in the asymmetry. Whenneff@vT , frequent colli-
sions interrupt the trapped particle orbits and the basic ra
step is the radial drift velocity times the time between co
sions. Deviations from unperturbed orbits are small an
perturbation approach is appropriate. This is called the re
nant plateau regime. Whenneff,vT , a trapped particle can
complete at least one oscillation before a collision knock
out of resonance. Now the basic radial step is the ra
extent of the drift during a trapping oscillation and the orb
are fully nonlinear. A heuristic derivation of the resultin
radial flux is often employed for this so-called banana
gime.

The geometry of the non-neutral experiments is cylind
cal with an axial magnetic field. The magnetic field is typ
cally strong enough that the larmor radius is much sma
than any other scale length in the plasma and all relev
frequencies are small compared to the cyclotron frequen
Under these conditions the basic equations for an elec
plasma (q52e) are Poisson’s equation,

¹2f54peE f dv, ~1!

the drift kinetic equation with a collision operator,

] f

]t
1v

] f

]z
1

e

m

]f

]z

] f

]v
1

c

B
ẑ3¹f•¹ f 5C~ f !, ~2!

and the boundary conditions on the conducting walls. Herv
is the axial velocity,C( ) is the approximate Fokker–Planc
collision operator15
9 © 1999 American Institute of Physics
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C~ f !5nee

]

]v F v̄2
] f

]v
1v f G , ~3!

nee is the 90° collision frequency, andv̄ is the axial electron
thermal velocityAT(r )/m. Expanding the gradients in Eq
~2! gives
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]f

]r

] f

]u
2

c

B

1

r

]f

]u

] f

]r
5C~ f !.

~4!

To solve these equations we will linearize the guidi
center distribution functionf and the electrostatic potentialf
and find the radial fluxG in second order. Section II give
this derivation, and Sec. III discusses numerical methods
finding the potential produced by the wall voltages. Sect
IV discusses possible connections between the theory
various experiments.

II. DERIVATION OF THE TRANSPORT EQUATIONS

We take as our model a cylindrical plasma of lengthL
with flat ends~see Fig. 1!. The model thus ignores end e
fects and is most suitable for long, thin plasmas. This mo
allows us to replace the actual plasma by an infinitely lo
plasma with periodicity 2L. It also allows us to linearizef
andf as follows:

f~r ,u,z,t !5f0~r !1f1~r ,u,z,t ! ~5!

and

f ~r ,u,z,t !5 f 0~r !1 f 1~r ,u,z,t !. ~6!

Returning these to Eq.~4! and keeping only zeroth orde
terms gives

] f 0

]t
1v

] f 0

]z
5C~ f 0!, ~7!

which has the well known solution

f 0~r !5
n0~r !

A2p v̄2
expS 2

v2

2v̄2D . ~8!

Here v̄ may also be a function of radius.

A. First order

Keeping terms of first order in Eq.~4! gives

] f 1

]t
1v

] f 1

]z
1

e

m

]f1

]z

] f 0

]v
1

c

B

1

r

]f0

]r

] f 1

]u
2

c

B

1

r

]f1

]u

] f 0

]r

5C~ f 1!. ~9!

We now take advantage of the various periodicities in
model to write

FIG. 1. Schematic of the plasma model used for this theory. The plasm
assumed to have flat ends and be of lengthL.
or
n
nd

el
g

e

f1~r ,u,z,t !5 (
n,l ,v

fn,l ,v~r !• expH i S np

L
z1 lu2vt D J

~10!

and

f 1~r ,u,z,t !5 (
n,l ,v

f n,l ,v~r !• expH i S np

L
z1 lu2vt D J ,

~11!

where the sums are over both negative and positive val
Note especially thatv can be positive or negative. A positiv
v corresponds to an asymmetry that rotates in the same
rection as the plasma column; a negativev asymmetry ro-
tates against the column. The Fourier mode amplitudes
given by

fn,l ,v~r !5E
2L

L dz

2L E
0

2p du

2p E
0

t dt

t

3expH i S np

L
z1 lu2vt D J f1~r ,u,z,t ! ~12!

and similarly forf n,l ,v . Heret is the duration of the experi
ment. Substituting in Eq.~9! and solving forf n,l ,v we obtain

f n,l ,v~r !5

cl

rB

] f 0

]r
2

np

L

e

m

] f 0

]v
np

L
v1 lvR2v2 ineff

fn,l ,v~r !. ~13!

Here we have noted that (c/B)(1/r )(]f0 /]r ) is the azi-
muthal E3B rotation frequencyvR and have defined an
effective collision frequencyneff ,

C~ f n,l ,v![2neff• f n,l ,v . ~14!

B. Second order

Since our interest is in radial transport we integrate E
~4! over z, u, andv. Defining

N~r ,t !5E
2L

L dz

2 E
0

2p

duE
2`

`

dv• f ~r ,u,z,t ! ~15!

and notingf (z5L)5 f (z52L) and f (v56`)50 we ob-
tain

]N

]t
1

c

rB E
2L

L dz

2 E
0

2p

duE
2`

`

dvF]f

]r

] f

]u
2

]f

]u

] f

]r G50.

~16!

We note that the second term can be written
(]/]r )@ f (]f/]u)#2 f (]/]r )(]f/]u) and after integrating
by parts obtain

]N

]t
2

c

B

1

r

]

]r E2L

L dz

2 E
0

2p

duE
2`

`

dv f
]f

]u
50. ~17!

Substituting in from Eqs.~5! and ~6! gives

]N

]t
5

c

B

1

r

]

]r E2L

L dz

2 E
0

2p

duE
2`

`

dv f 1

]f1

]u
. ~18!

From Eqs.~10! and ~11!,

is
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f 1

]f1

]u
5S (

n,l ,v
f n,l ,v~r !• expH i S np

L
z1 lu2vt D J D

•S (
n8,l 8,v8

i l 8fn8,l 8,v8~r !

• expH i S n8p

L
z1 l 8u2v8t D J D . ~19!

Eliminating f n,l ,v using Eq.~13!, the right-hand side of~19!
becomes

(
n,l ,v

(
n8,l 8,v8

i l 8fn,l ,vfn8,l 8,v8

cl

rB

] f 0

]r
2

np

L

e

m

] f 0

]v
np

L
v1 lvR2v2 ineff

3expS i H ~n1n8!
pz

L
1~ l 1 l 8!u2~v1v8!tJ D . ~20!

Returning this expression to Eq.~18!, we perform thez- and
u-integrals and also integrate over the duration of the exp
ment to obtain

K ]N

]t L 52
c

B

1

r

]

]r
2pLE

2`

`

dv

3 (
n,l ,v

ufn,l ,vu2i l

cl

rB

] f 0

]r
2

np

L

e

m

] f 0

]v
np

L
v1 lvR2v2 ineff

, ~21!

where ^]N/]t&5(1/t)*0
tdt(]N/]t) and we have used th

fact thatf2n,2 l ,2v5fn,l ,v* . Multiplying top and bottom by
the complex conjugate of the denominator and keeping
real part of the result~since the physical result must be rea!
gives

K ]N

]t L 52pL
1

r

]

]r
r (

n,l ,v
Uclfn,l ,v

rB U2

3E
2`

`

dv
neff

S np

L
v1 lvR2v D 2

1neff
2

3F] f 0

]r
2

np

L

e

m

rB

cl

] f 0

]v G . ~22!

Noting thatN is 2pL times the plasma density and recallin
the particle continuity equation, we can identify the avera
radial particle flux as

G52 (
n,l ,v

Uclfn,l ,v

rB U2E
2`

`

dv
neff

S np

L
v1 lvR2v D 2

1neff
2

3F] f 0

]r
2

np

L

e

m

rB

cl

] f 0

]v G . ~23!
ri-

e

e

Note that although the flux involves an integral over all v
locities this is strongly conditioned by the resonance funct
neff•@((np/L)v1lvR2v)21neff

2 #21. This function, which
peaks at the velocity

v res5
L

np
~v2 lvR! ~24!

and has full-width at half-maximumDv52Lneff /np, shows
that the flux tends to be dominated by particles that mo
resonantly with the asymmetry mode specified byn, l , and
v. If Dv! v̄ ~i.e., if the width of the resonance is sma
compared to variations inf 0!, then

neff

S np

L
v1 lvR2v D 2

1neff
2

→
L

unu
d~v2v res!. ~25!

The velocity integral in Eq.~23! is now easily done. We
obtain

G52 (
n,l ,v

L

unu Uclfn,l ,v

rB U2F] f 0

]r
2

np

L

e

m

rB

cl

] f 0

]v G
vres

.

~26!

If we plug in f 0 of the form of Eq.~8! this becomes

G52 (
n,l ,v

n0

A2p v̄2

L

unu Uclfn,l ,v

rB U2H 1

n0

dn0

dr
1

1

T

dT

dr

3S x22
1

2D1&
np

L

rvc

l v̄
xJ e2x2

, ~27!

where x5v res/& v̄ and vc is the cyclotron frequency
eB/mc.

It is worth noting several features of this solution. As
typical of plateau regime transport, the flux is independen
collision frequency and proportional to the square of t
asymmetry amplitude. The plasma lengthL appears explic-
itly, but is also part of the variablex. Also hidden in this
variable is the asymmetry frequencyv, and we note thatx
can be positive or negative asv is greater than or less tha
vR . Thus, while static field asymmetries (v50, x,0! move
electrons radially outward, an appropriately chosen asym
try (v.vR , x.0! can move particles radially inward.

Equation ~27! can be heuristically derived to within
numerical factor. Start from the relation16

G52DS ] f 0

]r D
H

Dv, ~28!

where, for the case of a static asymmetry (v50), the de-
rivative is taken at constantH since the Hamiltonian is con
stant for a particle moving in a static field, the distributio
function and diffusion coefficient are evaluated at the re
nant velocity, andDv is the width of the velocity resonance
Since the Hamiltonian for this plasma isH5(pz

2/2m)2ef0

1mB, the Maxwellian distribution function can be written

f 05
n0

A2pT/m
expS 2

H1ef02mB

T D .
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Noting thatn0 , T, andf0 are functions ofr , it is straight-
forward to show that (1/f 0)(] f 0 /]r )H reproduces the curly
bracket of Eq.~27! for the casev50. In order to include the
vÞ0 case, (] f 0 /]r )H must be generalized to (] f 0 /]r ) H̄ ,

whereH̄5H2(v/ l )Pu is the Hamiltonian in a frame rotat
ing at frequencyv and Pu is the single particle canonica
angular momentum which in the guiding center approxim
tion is equal to2 1

2mvcr
2.17 The diffusion coefficient D is

estimated as the average step size squared divided by
time between collisions:D5(Dr )2/t. The average step siz
Dr is the radialE3B drift velocity v r5(cEu /B) times the
time between collisions. Since the relevant collisions oc
at the enhanced rateneff we obtainD5(1/neff)(clfnlv /rB)2.
Finally the width of the velocity resonanceDv in the plateau
regime can be obtained by taking the half-width of the v
locity resonance function appearing in Eq.~23!, Dv
5neffL/np. Plugging these estimates into Eq.~28!, the factor
of neff cancels and the resulting flux is equal to the left-ha
side of Eq.~27! divided byp.

As stated in the Introduction, the plateau regime cor
sponds to a collisionality regime whereneff@vT . For our
case where the asymmetry varies in bothz and u, the trap-
ping frequency is given by

vT
25H e

m S np

L D 2

2
cl2

rB

dvR

dr J fn,l ,v . ~29!

An estimate forneff can be obtained by examining the for
of Eqs. ~3!, ~13!, and ~14!. Because of the presence of
velocity resonance, the first term in Eq.~3! will dominate
and we can estimateneff'nee(v̄/Dv)2. But the velocity reso-
nance has half-widthDv5neffL/np. Combining these we ob
tain

neff
3 'neeS np v̄

L D 2

5neen
2vb

2, ~30!

wherevb is the axial bounce frequencyp v̄/L. Sincevb is
large compared tonee, neff will be larger thannee. This is a
reflection of the fact that only a small change in the veloc
is necessary to knock a particle out of resonance. The c
sion time for this type of event is much less than for a nin
degree collision.

Similar heuristic arguments can be employed to obt
an approximate expression forG in the banana regime wher
vT>neff . The basic radial step is now the width of the res
nance island which may be estimated asDr'(v r /vT)
5(clfn,l ,v /rBvT) and thus D5neff(clfn,l,v /rBvT)

2. The
width of the velocity resonance, which is broadened in
banana regime, is given byDv'(L/np)vT . In this case the
collision frequency does not cancel out and we obtain
-

the

r

-

d

-

y
li-
y

n

-

e

G52 (
n,l ,v

neeS L

np D 2S l v̄
rvc

D 2S efn,l ,v

T D 1/2

H 12S lL

np D 2 1

rvc

dvR

dr J 3/2

3
n0

A2p
H 1

n0

dn0

dr
1

1

T

dT

dr S x22
1

2D
1&

np

L

rvc

l v̄
xJ e2x2

. ~31!

III. DETERMINATION OF THE ASYMMETRIC
POTENTIAL IN THE PLASMA

In order to evaluate the flux we must determine the co
plex Fourier mode amplitudesfn,l ,v(r ) produced in the
plasma by the applied wall potentials. For perturbed pot
tials of the form of Eq.~10!, Poisson’s Eq.~1! becomes
@using Eq.~13! to eliminatef n,l ,v#

F1

r

d

dr
r

d

dr
2

l 2

r 2 2S np

L D 2Gfn,l ,v~r !

54peE dv

cl

rB

] f 0

]r
2

np

L

e

m

] f 0

]v
np

L
v1 lvR2v1 ineff

fn,l ,v~r !. ~32!

This equation must be solved subject to the conditions
fn,l ,v is finite at r 50 and equal to the wall potential atr
5R. Although analytical solutions exist18 for special cases
~e.g., constant density and temperature!, a numerical solution
is required for experimental density and temperature profi
Fortunately, this is quickly and easily done using a mod
cation of the ‘‘shooting’’ technique.

For Maxwellian f 0 , the right hand side of Eq.~32! can
be cast in terms of the plasma dispersion function19 Z(x) and
its derivativeZ8(x) for which numerical codes exist. Thi
relieves us of the task of numerically evaluating the integ
The result is18

F d2

dr2 1
1

r

d

dr
2

l 2

r 2 2S np

L D 2Gfn,l ,v

5H lL

nprvc
Z~x!

d

dr S vp
2

a D 2S vp

a D 2

3Z8~x!F11
lLx

nprvc

da

dr G J fn,l ,v. ~33!

Here vp is the plasma frequency anda5& v̄. The radial
derivatives on the left hand side are now written as sec
order central finite difference expressions.20 Equation ~33!
then becomes

f j 1122f j1f j 21

~Dr !2 1
1

r j

f j 112f j 21

2Dr
2h jf j50. ~34!

Here we have suppressed then, l , v indices and have di-
vided the space betweenr 50 andR into intervals of length
Dr specified by the indexj . The quantityh j is defined as
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h j5
l 2

r j
2 1S np

L D 2

1
lL

npr jvc
Z~xj !

d

dr S vp
2

a D
j

2S vp

a D
j

2

Z8~xj !F11
lLx

npr jvc

daj

dr G . ~35!

Solving Eq.~34! for f j 11 we obtain

f j 115
21~Dr !2h j

11
Dr

2r j

f j2
2r j2Dr

2r j1Dr
f j 21 . ~36!

To use this generating equation we need the first two va
of f j . We first note that solutions of the formfn,l ,v5Arl

satisfy Eq.~33! for small r . Since radial transport is pro
duced only for cases wherelÞ0 ~see the equations forG! we
may takef(r 50)50. For the second value, take any no
zero value. Sincer j andh j are known for allj , we may now
iterate ~36! until we reach the wall radius and obtainfM

where M is the index at the wall. However,fn,l ,v(R) is
known from Fourier analysis of the applied wall potentia
Thus if we multiply all thef j by fn,l ,v(R)/fM we have our
solution.

The resulting solutions vary strongly with radius a
asymmetry frequencyv, as well as several experimental p
rameters. Some indication of this is given in Figs. 2 and
Noting that Eq.~27! depends onEu5 lfn,l ,v /r , we plot in
Fig. 2 the normalized magnitude ofEu(r 50) vs v for typi-
cal experimental parameters. Note thatEu can vary by many
orders of magnitude. This variation reflects typical plas
behaviors; the peaks occur at the frequencies of var

FIG. 2. Eu(r 50) normalized toE05Eu(r 5R) vs asymmetry frequency for
typical experimental parameters (B5300 G). ~a! Peak density n0

5107 cm23 with temperature shown as a parameter. For comparis
vR(r 50)53 MHz. Inset shows the normalized radial density profile us
for computation.~b! Temperature51 eV with peak density~times 107 cm23!
shown as a parameter.
es

.

.

a
s

standing waves and the strong dip nearvR corresponds to
Debye shielding. We emphasize, however, that there is c
tinuous variation between these extreme cases and tha
accurate determination of the transport flux depends se
tively on this calculation. Note also that, for a given asy
metry frequency, the field might be enhanced or diminish
by these collective effects, depending on the details of
plasma parameters.

This variation in the amplitude ofEu is accompanied by
strong variations in the radial dependence offn,l ,v . A sam-
pling of this variation is shown in Fig. 3, where we plot th
normalized magnitude offn,l ,v vs r for the four frequencies
indicated in Fig. 2~a! on theT51 eV curve. Again the ex-
treme cases of standing waves~3A! and shielding~3C! are
shown along with two intermediate cases~3B, 3D!.

IV. DISCUSSION

It is interesting to compare these results with previo
and ongoing experimental work. The presence
asymmetry-induced transport in non-neutral plasmas
first suggested by the discovery4 of confinement time scaling
with (L/B)22. Comparing with our results, it is tempting t
seize upon the (L/vce)

2;L2/B2 in the leading factor of the
banana regime flux given in Eq.~31! and contrast this with
the L/B2 for the plateau regime@Eq. ~27!#. However,L is
also hidden in the variablex, and the third term in bracket
also containsvce . Thus, without a knowledge of the spe
trum of background asymmetries it is impossible to draw
firm conclusion.

Consistent with this theory, early experiments6,21 found
that standing waves could produce enhanced transport. T
experiments also reported that modes rotating in the s
direction as the plasma column but at a faster rate~i.e., v
.vR! produced inward transport. More recently, Huang a
co-workers8 and Anderegg and co-workers22 have used an
asymmetry withv.vR to balance the normal backgroun
transport and produce a steady-state plasma. The import
of standing waves in enhancing transport is also clear in
latter paper.

,

FIG. 3. Fourier mode amplitudef(5fn,l ,v) normalized to its value at the
wall f0 vs radius. The labels A–D correspond to points indicated in F
2~a!. Graph A corresponds to a normal mode solution while C shows shi
ing behavior. Graphs B and D are intermediate cases. Note the differen
vertical scale for graph A.
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In order to study asymmetry-induced transport ap
from such collective enhancements, Eggleston23 has mea-
sured the confinement of low density (,105 cm23) electrons
in a trap where a biased wire running along the axis of
trap replaces the plasma column. Under these conditions
variations inEu shown in Fig. 2 are essentially eliminate
The confinement time in this trap was found to have
same magnitude and (L/B)22 scaling as observed in th
higher density experiments. Since the low density and hig
temperature of this experiment give an electron–electron
lision frequencynee that is much lower than in the plasm
experiments, it was argued that the transport~being the same
in both! could not depend on collision frequency. While th
plateau regime flux is independent ofnee it seemed unlikely
that the transport could be in this regime due to the sm
value of nee. However, this conundrum is somewhat so
ened by the fact that the transport regime depends onneff

rather thannee, and the former has a much weaker depe
dence on density and temperature. Referring to Eq.~30!, we
see that althoughnee goes like n0 /T3/2, neff goes like
n0

1/3/T1/6. @Note that, in Eq.~30!, n is the axial mode number
not the densityn0 .# Thus the factor of 103 difference innee

becomes a factor of 6 inneff .
Several experiments have measured the amplitu

scaling of asymmetry-induced transport. In experiments w
static~i.e.,v50! asymmetries, Notte and Fajans7 observed a
confinement time scalingt}fs, with s51.72– 2.14, i.e., an
amplitude scaling similar to thef2 dependence of Eq.~27!.
Interestingly, this experimental scaling was found to hold
wall voltages up to 40 V, well past the point where the p
teau regime theory should apply. In contrast, more rec
work with static asymmetries has found a robust line
scaling24 while rotating-wall experiments22 have givens
50.7– 1.1. In low density experiments with time-varyin
asymmetries,25 f2 scaling was observed for small amplitud
asymmetries but at higher amplitudes the scaling wasf4/3.
To our knowledge, no one has observed the banana-reg
scaling off1/2.

Finally, Eggleston26 has measured the flux produced by
single asymmetry mode~i.e., a single value ofn and l ! as a
function of asymmetry frequencyv. The experiments show
resonance similar to that predicted by our theory and t
seem to confirm that the transport is dominated by reson
particles, but there are also important differences betw
the experiment and this theory. These results, along wi
rt
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numerical comparison of the experimental and theoret
flux, will be presented in a subsequent paper.

From this discussion it should be clear that asymme
induced transport is far from understood. Several exp
menters are currently studying this transport, but the res
are not yet in agreement with each other or with any theo
While the theory presented in this paper can certainly st
further refinement~e.g., a more realistic treatment of partic
motion at the ends of the plasma!, we hope it will contribute
to discussions of this phenomena.
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