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In this paper we describe a new theory of like particle collisional transport for a non-neutral plasma
confined in a Penning trap. The theory is valid in the regime wg, wp,> v, andr.<Ap where

wy, is the axial bounce frequencyg is the EXxB rotation frequencyy, is the collision frequency,

r. is the cyclotron radius, andy is the Debye length. In this regime each particle can be bounce
averaged into a long rod and the transport understood as arising frofwtBedrift motion of the

rods due to long-range mutual interactions. This is a very different mechanism than is considered in
the classical theory of transport, where a particle guiding center undergoes a step of. aser

result of a velocity scattering collision. For the parameter range considered, the new theory predicts
transport rates that are orders of magnitude larger than those predicted by classical theory and that
scale with magnetic field strength likeBLfather than B*. The new theory differs from a previous
analysis of transport due X B drift interactions of charged rods, in that the finite length of the
rods is taken into account. This enables transport to occur even for the case wBadrift rotation
frequency that is a monotonic decreasing function of ragissvas the case in recent experimgnts
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I. INTRODUCTION T. One can show that uniformag andT plus axial and radial
force balance guarantee global thermal equilibrfum.
Plasmas with a single sign of char@®g., pure ion plas- This paper contains a calculation of the coefficient of

mas and pure electron plasmase routinely confined for viscosity, which is the important coefficient in determining
long times in Penning traps’ These simple traps are cylin- the particle transport. A recent pap@rovided a calculation
drically symmetrical configurations in which the charges areof the coefficient of heat conduction, and the predicted value
confined radially by an axial magnetic fieltypically uni- is in good agreement with experiménThe time scale for
form) and confined axially by electrostatic fieli@ver time,  heat conduction is much shorter than that for particle trans-
collisional processes drive the plasma to a state of globgbort, so when evaluating the particle transport, we treat the
thermal equilibriumt;>*which is characterized by a tempera- temperature as uniform.
ture T and rotation frequencyog=uv,/r that are uniform As a first step it is useful to formalize the above descrip-
over the whole plasma. Here(,@ is the local fluid velocity ~tion in a fluid dynamic framework for the particle transpbrt.
and (,6,z) is a cylindrical coordinate system with its axis For the frequency orderingr<(l., where(). is the cyclo-
centered on the axis of the trap. Rotation is necessary fdfon frequency, the centrifugal force term is negligible, and
radial force balance; the inward magnetic fome,B/c bal-  radial force balance reduces to the form
ances the outward forces due to space charge and pressure. nev,B Py

When the characteristic cyclotron radius and Debye 0= —-ne———nT, (D)
length are both small compared to the radius of the plasma, ¢ ar o
and the plasma length is on the order of or less than thevhich then determines the local rotation frequency,
collisional mean-free path, the evolution to thermal equilib-
rium takes place on two well-separated time scalés the » _Ye_ c % . o(nT)
collisional time scale, thermal equilibrium is established R°r Bror Bner odr

along each field line. In fact, because of the cylindrical sym-rpe fuid velocity is the sum of aExB drift and a diamag-
metry, the local thermal equilibria extend throughout thinatic grift. Heren is the density ang=nT is the pressure.

2

cylindrical shells(sayr to r+Ar). At this point in the evo- A shear in the rotational flow gives rise to the stress,

lution, the temperature and rotation frequency are functions

of r. On a much longer time scalthe transport time scale p— Jog 3)
re— o 0

the different cylindrical shells come into thermal equilibrium

with each other. Viscous forces acting on the shear in the . - . : .
rotational flow drive the system to a state of uniforq where 5 is the coefficient of viscosity. Azimuthal force bal-

and heat conduction drives the system to a state of uniforrfi"¢€:

or

nev,B 1 9

0=— ———12%p,,, 4
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then yields the particle flux

L(r)
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One can see that the flux scales with magnetic field strengtRiG. 1. Schematic view of particle dynamics in finite length plasma. A
like 1/B2 times the scaling of; with B. guiding centedot) with speedv bounces off the end of a plasma of length
In the typical operating regime for trapped non—neutraIL(r)'
plasmas K.<\p), the classical theory of collisional
transport is not relevant The classical theory focuses on
small impact parameter collisiorise., p=<r ), which scatter The first analysi¥ that explicitly took into account the
a particle velocity vector and produce a step in the particldarge and nonuniformwg(r), concluded that significant
guiding center position of about . The predicted coefficient transport would occur only ifog(r) was not monotonic. The
of viscosity is »=nmuvr2, whereuv, is the collision fre- reasoning starts from the observation that only resonant in-
quency, which implies a particle flux that scales lik8%/ teractions between the rods cause significant transport, im-
Experiments show that the predicted flux is orders of magplying that they must have the same rotation frequency:
nitude too small and has the wrong scaling wigh The  wg(r;)=wg(r,) for rods at radiir, andr,. If wg(r) is
problem is that classical theory effectively neglects the manynonotonic inr, this impliesr,=r,. However, conservation
collisions characterized by impact parameter in the rangef angular momentum implies that the rods take equal and
re<p<\p.2 These large impact parameter collisions do notopposite radial steps when th&xB drift in their mutual
produce velocity scattering and, yet, dominate the transporCoulomb field; and if they start at the same radius these steps
Since the large impact parameter collisions can bereate no net particle flux.
treated in the guiding center drift approximation, we referto  For some years this analysis seemed to be consistent
theories that focus on these collisions as guiding center drifivith experiment, since the first experimehthat observed
theories of transport. Different expressions for the viscosityl/B scaling of the flux were carried out on plasmas with a
are predicted, depending on the relative ordering of the frenonmonotonicwg(r). However, a new set of experimehts
guencieswy,, wr, and v, where wy is the characteristic were carried out on a plasma with a monotownig(r) and
axial bounce frequency of the particles. also found 1B scaling. These new experiments have moti-
An initial analysi§ assumed that each collision is uncor- vated a reexamination of the 2#x B drift theory, which is
related with previous collisions, which makes sense wherthe subject of the present work.
wp<max(wg,v,). Two charges undergBxB drift steps as In the previous theory? the plasma was assumed for
they stream by one another, and the steps in different collisimplicity to have a length that was independent of radius.
sions are uncorrelated. For a Debye shielded interaction pdAe now believe that for the new experiments this approxi-
tential, collisions having an impact parameter in the rangemation is an oversimplification. If we allow the plasma to
p~\p dominate, and the predicted viscosity is of ordgr have finite length_(r) that varies with radius, a new effect
:nmvc)\%, which exceeds the classical prediction by theemerges: particle rotation frequencies now become a func-
large value Kp/r.)?>>1. Sincey is independent oB, the  tion of their axial speed.'® Consider the situation depicted
predicted particle flux scales likeR7. in Fig. 1. A particle moves in a plasma that is equilibrated
However, experimentally it has turned out to be easier tamlong the magnetic field and has a Debye lengthsmall
observe transport to thermal equilibrium in plasmas withcompared ta_, so thatwg(r) is a function only of radius
wp>Mmax(wg,v.), SO the above theory does not apply. In two well within the plasmdi.e., more than a few Debye lengths
sets of experiments with pure electron plashashe ob-  from the plasma endsHowever, as the particle approaches
served flux was large, but scaled likeBlvather than B?2. the end of the plasma, it feels a confining end potential that is
For large axial bounce frequency, two particles collide manya function ofz and reverses it velocity. Unless the plasma
times producing a sequence of correlate®B drift steps.  end is flat, this end potential dependsroas well asz, and
This suggests a model in which each particle is bounce awhe radial electric-field component of the end potential
eraged into a long rod, and the rods then undergo twoeauses the particle BxB drift in the 6 direction, affecting
dimensional(2-D) ExB drift transport due to their mutual the rotation frequency.
interactions. The larger the axial particle velocity, the larger the axial
There has been much previous theoretical work on 2-0@and hence radiglimpulse imparted by the end potential to
ExB drift theories of collisional transport. For example, it the particle, and the larger the change in the rotation fre-
has been shown that any such model automatically yieldguency. Thus, a particle’s bounce-averaged rotation fre-
transport rates that scale like Bl/ in agreement with quency can be written as(r,v) = wg(r) +Aw(r,v) where
observationd®!! However, the earliest theories consideredAw(r,v) is the rotation frequency shift caused by bouncing
transport in a homogeneouseutra) plasma for which the off of the plasma end potentials.
E x B rotation frequencyvg(r) was spatially uniforni{zero, In this more realistic picture of the particle motion, it is
whereas in the experiments with non-neutral plasmag) now possible for particles at different radii to have the same
was large and nonuniform. bounce-averaged rotation frequency, even whgifr) is
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monotonic, provided that the particles have different axiall. KLIMONTOVITCH APPROACH TO 2-D E xB
speeds: TRANSPORT

we(r) +Aw(r1,0))=we(r) +Ao(ry,v,). (6) We now turn to a rigorous evaluation of the particle flux
caused by bounce-averagec B drift collisions. This deri-

Sincev, anduv, differ, r; andr, can also differ, and the vation is similar to that appearing in Ref. 12 for infinite
resonant interaction of the particles now causes transport tength rods, but now we allow the plasma to be finite length.
thermal equilibrium. Before we begin, we remind the reader that there are

An order-of-magnitude estimate for the transport rateseveral rotation frequencies that appear in the analysis, and
can be obtained from a straightforward argument. First, onéince it is easy to confuse them it may be useful to list them
can obtainA w(r,v) from the fact that the axial impulse im- here. First, there is thEXB rotation frequencyvg(r,z) ex-
parted by the component of the end electric fielHl,, must  perienced by particlegin this section we make no assump-
equal 2Znv. We picture the plasma as in Fig. 1; the Debyetions concerning the size of the Debye length compared to
length) is here assumed small compared.{@) so we can the plasma length., so wg is a function of bothr andz.)
treat the particles as specularly reflecting off of the plasmaecond, there is the total bounce-averaged rotation frequency
ends. The geometry of the end potential implies that the rae(r,l)=wg(r,z) (the overbar denotes a bounce avejage
dial component of the end electric field, , is E,d(L/2)/dr, Here we introduce the bounce actibnwhich is a constant
so the radial impulse to the particlenw JL/dr, causing the of the motion along a collisionless particle trajectory to be
particle to EXB drift through an angle A6  defined presently. Third, there is the rotation frequency of a
=—(v/rQ.)dL/ar. The frequency of collisions with each fluid element, wg(r,z)=wg(r,z)+(NMQr) " 1a(nT)/or;
end isv/L, so averaged over many collisions with the ends @he second term is the plasma diamagnetic drift. It is this
frequency shift to the rotation frequency develops, given bythird frequency that we expect to be uniform in thermal equi-

Aw=A60v/L, or librium.
We first define the Klimontovitch density for a system of
Aw(ro)= v? aL @ M guiding centers,
VT QL ar M
Let us now estimate the average radial distance between N(r’p,t):jgl or=rivlelp=pl, (3

resonantly interacting particles. Takioé—v%~z7, wherev
is the thermal speeqT/m, and taking ,=r,+D in Eq. (6),
we find that a Taylor expansion @fg(r,) yields

wherer is the particle position ang is the axial momentum.
This density satisfies the guiding-center Klimontovitch equa-

tion,
—
D=0, | Gwelar (8) E(r,p,t)+(ﬁ 72 VOX2|-VN(1,p.0)
We can employ this estimate to determine the coefficient P N
of viscosity % in the plasma, which in turn yields the trans- ¢ %z op (r,p,t)=0, (12
port rate. General considerations imply that the viscosity _ ) _ _
scales as where ®(r,t) is the electrostatic potential determined self-
consistently via Poisson’s equation,
n=mnvD?, C)

V2d>=—4wef dpN(r,p,t). (13
wheren is the densityin cm™3), D is the average distance

between interacting partiCleS, which in this instance is giverFouowing the standard procedure, we define an a_veragb of
by Eq. (8), and v is a collision ratéthe rate of transfer of over an ensemble of initial conditionsf(r,z,p,t)
momentun). The collision rate can be estimated as the usuak(N(r,p,t)), and a fluctuation SN(r,p,t)=N(r,p,t)
classical collision frequency for two particle collisions, —f(r,z,p,t).

=nvb?, multiplied by the average number of collisions ex-  An equation for the average distributidncan be ob-
perienced by particles as they bounce between the endgined by averaging Eq12):

which is of orderv/|Lrdwg/dr|. This enhancement arises

because particles take on the order of this numbeE »B ﬁ+< P 5 I¢ ‘). d¢ If
steps in the same direction before they become decorrelatedt |\ m B ar

Thus, we obtain the following estimate for the viscosity due

to collisions between interacting rods: zv.( <% VépX 25N> + % <e (i;izﬁb 5N> , (14
@b 2 (10) where ¢(r,z,t) is the self-consistent mean field plasma po-

n=mny, ——— D . .
Clrowglor| tential, given by

ﬁllr;cig.scales likeB, the flux predicted by Eq.10) scales V24— —47T6f dpf, 15



1308 Phys. Plasmas, Vol. 5, No. 5, May 1998 D. H. E. Dubin and T. M. O’Neil

and whereéd¢ is the fluctuation in the potential, given by the equilibrium Vlasov equation obtained by neglecting the
5¢p=®— ¢, and determined byN via the linearized Pois- dissipative fluxedi.e., the rhgin Eq. (14). In particular, we

son equation, neglect any time dependencefoh Eq.(21). This is because
Eq. (14) implies thatf evolves in time on a slow transport
V26p= —4Wef dpéN. (16) time scale, and this slow time dependence can be neglected
when evaluating the rapid time evolution of the fluctuations.
The first term on the right-hand side of Ed.4) is the We are interested in 2-D transport in the limit whesg

divergence of the dissipative particle flux and the seconds large compared t@, so it is useful to define a bounce-
term the dissipative axial momentum flux. In this paper weaveraged density fluctuation and potential,
focus on the radial particle flux,

c [dbp
' (r,z,p,t)=-— Br <(9—0 (r,e,z,t)éN(r,a,z,p,t)>.

17) Note that SN is defined without the factor of 22 so that
Note that we expect the azimuthal component of the dissipaf SNdI is the fluctuation in the number of rods per unit area:
tive particle flux to vanish, and the radial component to bef sNdI= [ SNdpdz
independent ob due to symmetry of the equilibrium if. In order to obtain self-consistent equations for the
An equation for the evolution of the fluctuations is ob- hounce-averaged fluctuations, it is necessary to solve Eq.
tained by subtracting Eq14) from Eq. (12) and dropping  (21) exactly before any bounce averaging is performed and

_ 27 _ 27 dlﬂ
oN=| ~duoN, 5¢=J0 5 0. (23

quadratic terms in the fluctuations: then make an expansion of the exact solutiomitw, . The
9N [ p C g dp 96N solution to Eq(21) for N can be obtained by Laplace trans-
—+|=Zz+=— 0| VON-e — — formation in time and Fourier transformation éhand .
ot m B or dz dp
ilo+iny ds
c d6¢ of  9d¢ of SN(r.p.t)= e st
e e ,p,t)—E = ON(r,1,l,n,s)€e®,
Br a0 ar ' © oz ap’ (18) n 2w 2

(249

In order to solve Eq(18) it is useful to switch to action-

angle variables4,p)—(¢,1), wherel is the bounce action, i 6+ing ds ot
running from 0=, and ¢ is the canonically conjugate angle 5¢(f:t)=% e f o 9¢(rLlnser  (24b
variable, running from 6-27. These coordinates are defined ’

in terms of the mean-field potentigi(r,z): When Egs.(24) are compared to Eq23), we see that the
Fourier—Laplace transform of the bounce-averaged fluctua-
= j; pdz2, (190 tions are related to the=0 coefficients of Eqs(24):
where the momenturp varies inz along the particle’s tra- 5ﬁ(r,| 1,8)=6N(r,1,1,n=0y5) (259
jectory according to
and
p=\2m[H-es(r,2)], (20) _
and whereH is a constant of integration equal to the single-  0¢(r.1.1,5)=48¢(r,1,1,n=0.). (25b

particle energy¥mean-field Hamiltonian The angle variable

y then follows from Eq.(19) and the fact that the transfor- In terms of these Fourier—Laplace components, the solution

mation is canonical? In terms of the new coordinates, Eq. of Eq.(2)) is
(18) becomes ilc of . pra
7 s ( |)05N+ ( I)aaN Brgr Fine—r
—= wp(r,l) —+o(r,l) — —
ot > Iy d0 ON(r,11ns) s+ilw(r,l)+inwy(r,l) o¢(r11n,s)
:£&5¢ &f(r,|)+e&5¢ af(r,l) (21) . M 6(r_rj)5(|_Ij)e—ilﬁj—inzﬂj
Br a0 ar ap  dl = 27 [stilo(r,)+inwy(r,)]’
where wy, is the bounce frequency, and is the particle (26)
rotation frequency, defined by
JH(r 1) ¢ H(r) where the sum ovejr is an explicit expression for the initial
wp= &I’ T M’ , (22)  fluctuation and wheref=2=f is defined so thatffdI

=[fdzdp the mean number of rods per unit area.
andH(r,l), the single-particle Hamiltonian in action-angle Up to now we have not made any approximations in-
coordinates, is found by inverting E¢L9) and solving for  volving bounce averaging. We now introduce the bounce-
H. averaging approximation to E¢R6). Sincew<w,,, and the

In Eg. (21) we have assumed thétis a function only of  time scale of the bounce-averaged fluctuations is of order
the constants of the motion,andl, so thatf is a solution of ™!, we can approximate the+0 terms inéN as
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SN B aflo
(r1 ’ ,n,S)_e(x)b(r,l)

| where the bounce average pfs carried out over botk and

o¢(r,l,l,n,s), n#0. z:

(279 B dydy,

r,l,r',l',I,S: T N2 r,Z,r',Z',I,S, 29b
We make no other approximations, and, in particular,rthe X( L ) (2m)° X( 1 ) (299

=0 term in Eq.(26) is treated exactly: and wherez=z(l,4,r) and z;=z(l;,#;,r;). The bounce-

averaged density fluctuatiafN then follows from Eq(27b)

(ilc/Br)af/ar and Eqs(25).
ON(r,1,I,n=0,8)= sttty o¢(r,1,1,n=0s) We now employ these expressions for the fluctuations in
’ order to determine the cross-field particle flux. In particular,
M S(r—ry sl —|j)e*“”j we will consider the bounce average of the particle flux for
0 2ar[stile(r)] particles with a particular value of the actibn
(27b

Crn = [ dur 20,0090

In Eq. (279 we have neglecteth#0 terms in the initial

conditions, since they are @(w/wp); we have neglected c dsdeestst

[ilc/Br]of/ar in favor of inedf/dl for the same reason; and ~Br % f (2mi)? (oN(r.1.1,n,s)

we have also dropped thse-il w term from the denominator. _

Equation(273 is a linearized Boltzmann response of the X(il)ée(r,1,—1,—n,s)), (30)

#0 density fluctuations to the potential fluctuations. This

can_be seen by noting that E@2) implies (9t/d1)/wy where we have used Egd7) and(24) and have taken into

= df/9H, and for a Boltzmann distributionf/dH=—1/T.  4ccount the symmetry it of the flux. However, thew/wy,
Thus, for a Boltzmann distribution Ecﬁ??a) becomessN <1 approximations that led to Eq278 also imply thatn
=—ed¢t/T. The Boltzmann form applies #0 compo- 0 terms in Eq.(30) do not contribute to the flux. This is
nents oféN because the bounce-averaged fluctuations evolvgecause Eq27a implies that then# 0 terms in Eq(30) are
sufficiently slowly so that charges have time to equilibratepropomona| t03) nneol (8p(r,1,1,n,t)8(r,1,—n,—1,t)).
along the magnetic field lines. This sum is antisymmetric undes> —1, n— —n, and there-

In order to obtain an equation for the potential fluctua-fore vanishes. Thus, only the=0 (bounce-averagediuc-
tions, we substitute Eq(27) into the linearized Poisson’s ,ations contribute thr_
equation, Eq(16). The solution ford$ can then be written in Substituting for these bounce-averaged fluctuations us-

terms of a Green’s functiory(r,z,r;,z,l1,s), that satisfies ing Egs.(27b) and (293, and averaging over the uncorre-
lated initial conditions yields
(1 g a9 17 9

S
ror oar 12 922

2| X(1,2.1},7,1,9) _ ¢ [ame\2 _
_ T(rh=-g: 5~ 2 fzwrjdr,-dljf(rj,lj)

47e? af( |
+4e 57 1 x(r,z,rj,zj,l,s) dsds .
i xf (2mi)2 ©
_J %X(r,z,rj,zj,l,s)) (il)f(r,l,rj,lj,—l,g)
Amecil dp é’f_(r,l)/(?r [S+I|w(rj,Ij)][s—llw(rj,lj)]
Br fﬂs+i|w(r,|) X(a(r—rj)au—lj)
4mer;

dy _d(r—r)d(z—7z) _
XJ or X021zl )= ——————, (28 ~cil af(r,D) x(rLri )
Br or s+ilw(r,l)

(31)

where her&=z(1,y,r) andl=1(z,p,r).
We will presently observe that we have need only of theWe now make the Bogoliubov ansatz, assuming that fluctua-
bounce-averaged part 6%, which involves only the bounce tions decay to their asymptotic form on a time scale fast

average of the Green'’s function: compared to the collision rate. This involves an evaluation of
4 ile. thes ands integrals using the Cauchy residue method retain-

_ e e il - . . ) L
SH(r,1,1,)= _2 (r, 0 05.0,9), ing only the poles along the imaginary axis, since any poles

in the Green'’s functions are assumed to be heavily damped.
(29a The result is

27 stila(r;,1) X
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— C [4me [8(r—r)o(l—1; _
I'=- Br( . ) Z f2wr drdlf risIp| — ( 47JT)er(j 2 Im x* [r,Lr 05,1 —ilo(ry,1j)]
cl? af(r,l) _ _ ,
= Br  or IxCr bty L=ilo(r 1 )]2aé{i [e(r,) = o(rj, 1)1} (32)

In order to obtain a symmetric form for the flux, we rewrite the first term in the large brackets with the aid (@BEdf we
sets=—ilw(rj,l;)+& in Eq.(28) and multiply both sides by Im x*[r,zr;,zl,—ilw(r},I;)], the result after integrating over
r andz, integrating by parts, applying the Plemelj formula to the resonant denominator, and bounce averagemugiz

is

Im x*[ry 0.0 —ile(r;,1))]
dydi . , 19 a 12 R .
:J 27 Ierdrdz Xnzryzol =ilo(r ]| =201 o=+ = X2,z —ilo(rg,1)]
2 dp af M
+amet | S x*rzrz0l —ite(r, )] oo | Xz .zl —ile(r),1)]- fz x[r.zr.z L, =ilo(r;,1)]
4mecl [ dp f [ dy
Br J o X Inzrzol —ilo(r I-)] e x[r.zr,z L =ilo(r;,z)limd([o(r;,I)—-o(r,DD],
(33
|
wherezj=z(l;,¢;,1)), 2=2(1}, ¢.1 ), 2=2(1,4hr). fact that the integrallrdrdIrI,(r,1) vanishes due to the

The imaginary part of the first term in the braces is zeroantisymmetry of the integrand under interchangerof)and

because the integrals over and ¢y bounce average the (r;,1;). The flux also conserves the total electrostatic and
Green'’s functions in their secorzdargument. Integrations by k|net|c energy of the plasma,

parts inr andz then prove that the product of the Green’s
functions is real. Similarly, the imaginary part of the second
term is also zero. For the third term we note tlistdp
=dldy, and they integration bounce averaggd overz,

2

1
E= jZWrdrdpdzf(r z,p,t) p—+ e¢>p(r z,t)

so we arrive at +e¢e(r,z)), (36)
Im X Lrp gty —itelr, 1)) where we have broket(r,z,t) into an intrinsic plasma po-
dmrecl of (r tential ¢, and an external potentiabe: ¢=p,+ . The
) J r |X[f, SSHINE external potential is responsible for the finite length of the
plasma and arises from voltages applied to surrounding cy-
—ilo(r; ,I)]|2w5{l[w(r,l)— o(rj, )1}, (34 lindrically symmetric electrodes. The intrinsic plasma poten-

tial is the solution of Eq(15) for given f assuming that the

surrounding electrodes are all grounded. The time dependen-

1 (4wec)2 " cies arise from the slow evolution dfon a transport time
> J dl

which can then be substituted into E§2) to yield

E(m): — scale. Energy conservation can be derived by taking the time

2r\ B derivative of Eq.(36), using Egs.(14), (15), and (22) and
neglecting the axial momentum fle(dd¢/dz) SN) in Eq.
xf ridr; |X[r, Tyl —ila(rg J)]|2 (14). Then using the relatiodpdz=dldy we obtain, after
integrating by parts,
— — — — —mQ fZWrdrdlrF r.Do(r,l 3
X(f(r,l)ﬁf(r]—,lj) f(rj,lj)af(r,l)> dt (Do), 37
r ar r ar ) This integral vanishes because H§5) implies that it is

(35) antisymmetric under interchange af,() and (;,l;). Evi-
dently neglect of the axial momentum flux does not affect
Equation (35), the bounce-averaged radial flux of rods energy conservation, implying that this flux produces a rear-
caused by bounce-averaged HXB collisions in a finite  rangement of the parallel action among the collection of rods
length plasma, is the main result of the paper. without exchange of energy with the other degrees of free-
The flux conserves total canonical angular momentundom. Finally, it is not difficult to show that the flux increases
P,=/2ardrdlf(r,I,t)mQ.?/2, which follows from the an entropy functiors,
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— — conditionw(r,l)= w(r;,l;) implies that the last two terms in
S= —f 2qrdrdIf(r,1,t)In f(r,1,t). (38)  the square brackets cancel, so E3p) becomes

2 ©
El |||J'0 dllr]dr]|)([r,|,rj ’|J A,

T(r,1)=

One can also see that the flux vanishes when the plasma 2r B

is in a state of global thermal equilibrium. This state is char-
acterized by uniform temperatufe and fluid rotation fre-
guencywg. To show this, assume thégr,l) is Maxwellian,
but with arbitrary radial dependence given by

1 (41-rec

—ilw(r]- ,IJ)]|25[w(rJ ,Ij)—w(r,l)]

mQ
T

X—= [wr(rj) = wr(D]F(r,D(r;1)). (43
f_(r,l):Ce—[H(r,I)—mQCf’rwR(r)dr]/T’ (39)
Thus, the flux vanishes when the fluid rotation frequency

) . S wg(r) is uniform, that is, when the system is in a state of
whereC is a constant. This form for the distribution is cho- thermal equilibrium.

sen because it is Maxwellian in velocity, but has a fluid
rotation wg(r) with arbitrary radial dependence. This can be
seen by transforming from the variableg,() back to vari-

ables ¢,p) using Eq.(20): Ill. LOCAL COEFFICIENT OF VISCOSITY
. It is useful to employ the following simple model when
f(r,1) evaluating Eq(43). Assuming that the Debye length is small
f(r.z,p)=—— compared to the plasma length{r), ¢(r,z)=¢(r) within

the plasma and the axial motion consists of particles under-
going specular reflection off the plasma ends. This model
was discussed in the Introduction in relation to Fig. 1. In this
case the bounce action Is=|p|L(r)/s, the single-particle
mean-field energy is

_ 3 e,[p2/2m+e¢(r,z)mechrwR(r)dr]/T' (40)

21

Equation(40) displays the Maxwellian form of the distribu-

tion. The Maxwellian form is required because small-impact 22

parameter velocity-scattering collisions, not explicitly ac- 1D = 2mLAT) +ed(r), (44)
counted for in the theory, drive the distribution toward this o _
form. and the bounce-averaged distribution of rods is

The connection between the fluid velocity and the func-
tion wg(r) that appears in Eq40) can be obtained by dif- 5
ferentiating Eq.(40) with respect tar after integrating over f(r1)= 2m0(1) 2z

_ (r,1) e : (45
momentum. One finds that V2mmT
€ T dinn wheren(r) is the particle density, and the factor of 2 in the
wg(r)= Br EJF mQ. o (42) numerator arises becaude is non-negative. Note that

[ofdl=n(r)L(r) is the number of rods per unit area, as

wheren(r,z) = fdpf(r,z,p) is the particle density. Equation expected. The particle rotation frequency,=c/eBr

(41) agrees with Eq(2) whenT is constant. Note that the X aHlor, is

rotation frequency is a function only of although both the

E xB and diamagnetic drifts separately depend on baihd i

z. This is a consequence of the Boltzmann equilibrium along ~ @(T:1) = we(r)— m2QrL3(r) ar (46)

the field lines assumed in E¢R0).
Substituting Eq.(39) in Eq. (35), the expression in the
square brackets becomes wherewg(r)=(c/Br)d¢/dr is theEXB rotation frequency,
in agreement with the heuristic result derived in the Intro-
— — duction, Eq.(7).
f(r,1) ¢ — fril) 0 — Also, note that the bounce-averaged Green’s funciion,

oo )= —— 3 T is independent of andl; in this model. The bounce average
mo over an orbit now merely involves an integral ovdretween
= c [wr(r)—wr(H)—o(r; 1)) the Plasm_as ends and is independent of the value of a par-
ticle’s action.
+w(r,l)]f_(r,l)f_(rj 1), 42) Applying Egs. (45) and (46) to the expression for the

flux, Eg. (43), we find that it reduces to the expression de-
rived in Ref. 12 for the case where the plasma has flat ends,
where we have employed E2). However, the resonance JL/dr=0. In this case the flux vanishes whew:(r) is
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monotonic inr because the resonance condition implies
=r;. However, wheriL/dr #0 the flux is nonzero because
particles withr#r; can satisfy the resonance condition
o(r,1)=w(r;,1;). As discussed in the Introduction, the typi-
cal radial distanc® between such particles is given by Eq.
(8).

Note that wherwg(r) andL(r) vary on a scale of order
the plasma radiuR, Eq.(8) implies that the interaction dis-
tanceD is small, of order)\é/R, SO0 interacting particles are

closely spaced in radius. This allows us to make a local

approximation for the flux and obtain a local coefficient of
viscosity, using the following math identity: consider the ra-
dial integral of the antisymmetric functiowg(r;)— wg(r)
multiplied by a symmetric functio{ (r +r;)/2,|r —r;|] that

is sharply peaked in the second argument:

+ .
JZJder(%,“_rj|)[wR(rj)_wR(r)]- (47)

Taylor expansion with respect to slowly varying arguments

then implies that to lowest order
AI’Z 8wR

2 48

|

Note that our expression for the flux, Eg4.3), has this form
when integrated ovelr:

(9 ©
I=- ( fﬁdirS(r,|Ar|)

D. H. E. Dubin and T. M. O’Neil

where

S(R,|Ar|)=2I |||f0 didijrr|xir,r 1,
x ot 1) —w(r,)IFrDEr 1),

r=R—Ar/2, ri=R+Ar/2. (50

When Eq.(48) is applied to Eqs(49)—(50) we find that the
flux of rods is given by the local expression

fmonr_ =+ IfmdAArz
. (1, )_? I _ dar—-

xf didijror_[x[r_,ry.l,
0

2mQ, 9

>

T or 9

4mec
B

—ilo(ro,1)]?8lw(ry 1))

—_ — &wR
—o(r DIFr- Dire 1) —=, (5

e 1 (4 2 mQ +r
f diT,(r,1)=z= (w_ec) mie f dr;S Q, wherer , =r+Ar/2 andr _=r—Ar/2. We now perform the
0 2r B T 2 integral over the action;, substituting for the distribution
functions using Eq(45) and the particle rotation frequency
|r—rj|)[wR(rj)—wR(r)], (49)  using Eq.(46) to obtain
|
foc _ 1 [4mec\’>mQ, s oo Ar?
dir(r,1)=— — If dAr—r,r_
e Tar|||7w 2 7
xf dl 2mnn- e(—w2/2m13[(|2/L2,)(1+r+|_+LL/r,L,L;)—(mzs)c/wz)(r+L+/L;>AwE]
mT
— 1 r?wR
X[x[r—.rol,—ilo(r— D12 - (52
272L ‘ roL,L” 12 m?Q.r,L, ar
—— Aw
mQur L2 Vr_L L, L2 o2 L, °©
|
where Awg=wg(ry)—owg(r-), nly=n(r"), LT g
iy : ) L ) dIT,(r,1)
=L(rZ)), primes denote differentiation with respecttp 0 it
and the integral ovel runs only over fche re_g_lon of>0 1 [4mec)?2 mZQ§ J r3n2(r)L3(r)
where the argument of the square root is positive. The square — — o — 2 N ——
root is an explicit expression ¢f/L , , obtained by solving 2r B T or 7 7|l (r)]
o(ry,l))=o(r_,1) using Eq.(46). " 2 (o2 Ar2 @Ar/2D
SinceAr is assumed throughout to be small, ar(), X fo dve v J dAr Ty \/?
o(r), andL(r) are slowing varying on the scale afr, we o ve—vAr/D
keep only the lowest-order terms iAr to obtain Awg — ) zawR
=Ardwgldr, r.=r_=r. Thus, Eq.(52) becomes XIxr=Ar/zr+Ar/2) =ilo(r.D]| o (53



Phys. Plasmas, Vol. 5, No. 5, May 1998 D. H. E. Dubin and T. M. O'Neil 1313

6 . : T TABLE |. Table of values ofg(x).
X g
0.001 5.48
0.002 4.80
0.005 3.89
0.01 3.21
) 0.02 2.54
= 0.05 1.70
0.1 1.12
0.2 0.638
0.3 0.418
0.4 0.295
0.5 0.218
0 L 1 ! N
0.001 oor 0.1 where the functiorh is defined as
FIG. 2. The functiong(x). The solid line is a numerical evaluation of Eq. 1 fwd _Uzjw q s2e~s2=xsl
: I . . )= —
(58); the dashed line is the smallasymptotic form given by Eq60). (x) a7 Jo ve 2 S 21 s
whereD is the interaction distance defined in &), and (1+8x2) In Vaxt 1+ 2x—1) —BXVax2—1
where we have changed integration variables filoto ve- B V2x+1—+2x—-1
locity v=rI/mL and have interchanged tie andv inte- T (4x2—1)572 ’
grals. Note that the substitution =r _=r is not made iny 59
since, for large|l|, x(r—Ar/2xr+Ar/2],—ilw) is not (59
slowly varying inAr. An asymptotic analysis in the limit of sméll/r yields
In order to make further progress we need an explicit 2D r
form for the bounce-averaged Green’s functipnin gen- lim g(_ =In(— —2+7, (60)
eral, this requires a numerical solution to E28). However, D/r—0 2D

for a long thin plasma column, for whidd<R<L we will \\here ,=0.577... is Euler's constant. A numerical evalua-
see that the sum ovéris dominated by largé values, for  ion of g(x) is shown in Fig. 2 and values are tabulated in

which the interaction is short range and almost unshieldedTame I. The origin of the logarithmic divergence DVr is

The Fourier transformed Green’s function between “n'easy to understand. Whé@vr is small, we can approximate

1
X(r7r’|)~X(r1r7|):_m1 (61)

shielded rods separated by a small distance is
1 (r< !

x(r,r ’l):_2|I|—L> . (54

o ) ) where the last step follows from E¢p4).
wherer ) is the Iarg’er(lesse.} of r andr’ andL. is the Substituting for|x|? into Eq. (53 then yields the log
larger ofL(r) andL(r"). Provided that the distanckr be- divergence in the sum ovér cut off atl,,=r/D, beyond

tween the rods is small compared to their average radial pQyhich the approximation in Eq61) breaks down. As we

sition, the Green’s function simplifies to stated previously, the sum is dominated by largelues to
e lArl/r logarithmic accuracy, consistent with the approximation of
X(r=Ar/2yr+Ar/2])=— IRGE (55 an unshielded Green’s function in EG4).

_ _ . . Comparing the flux of rods, Eq56) [in units of 1/
When this form fory is used in Eq(53), the integrals over (m g)], to the particle flux, Eq(5) [in units of 1/(n?—s)], we

Ar andv can be performed analytically, yielding an equationsee that the bounce-averaged viscosjthas different units
for the flux of rods involving the local coefficient of viscos- than the usual fluid viscosity. If L were constant as a

ity #: function of radius so that it could be moved through the
® — ¢ d . _dwg derivatives in Eq(56), we would find thaty= 7/L. SinceL
J dil',=—— — r¥p—, (56) is not constant, Eq(56) is the proper form for the flux of
eBre or or . . . .
rods, in that this form satisfies the conservation of momen-
where tum, particle number, and energy.

However, in order to connect E¢57) to our previous
(57)  estimate, Eq(10), it is useful for scaling purposes to take

_ 8m%e* D?n?(r) (2D)
g |

T [rog r 7= 7IL. In this case Eq(57) implies
and where the functiog(2D/r) is Wy,
. 7=8m’mn —- v.D?g(2D/r), (62)
(2D>_2 h(2D1/r) - ol
97 = | ’ in agreement with the scaling estimate, Etp).
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IV. DISCUSSION much larger than th&€xB drift rotation frequency. How-

Equations(56) and(57) determine the radial flux of rods €Ver, the second inequality in E(3) can be relaxed if we
(bounce-averaged electrordue to long-range guiding cen- are willing to e_mploy the full nonlocal kinetic equation, Eq.
ter collisions in a non-neutral plasma whose length varie$43), because in Eq43) D need not be small compared to
with radius. This local form of the viscous particle transportMp- Of course, solving for the flux in this case becomes
rests on the assumption that the interaction distddcele- considerably more difficult as a practical matter, since the
fined in Eq.(8), is small compared to the scale length of thefully shielded bounce-averaged Green’s_ function that appears
density and rotation frequency gradients. When these gradi? Ed. (43) must be evaluated numerically. Nevertheless,
ents are on the scale of the plasma radRyshis assumption such caIcuIapong are within the .realm of possmmty an'd may
is equivalent to the assumption that the Debye length iwell be required in orde_r to provide a_detalled compaglson of
small: Eq.(8) implies D/R~(\p/R)?, S0 we require\p/R theory to present experiments for whickilvg / wg=20.
<1.
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