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Two-dimensional bounce-averaged collisional particle transport
in a single species non-neutral plasma
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In this paper we describe a new theory of like particle collisional transport for a non-neutral plasma
confined in a Penning trap. The theory is valid in the regimevb.vE , vb.nc , andr c,lD where
vb is the axial bounce frequency,vE is theE3B rotation frequency,nc is the collision frequency,
r c is the cyclotron radius, andlD is the Debye length. In this regime each particle can be bounce
averaged into a long rod and the transport understood as arising from theE3B drift motion of the
rods due to long-range mutual interactions. This is a very different mechanism than is considered in
the classical theory of transport, where a particle guiding center undergoes a step of orderr c as a
result of a velocity scattering collision. For the parameter range considered, the new theory predicts
transport rates that are orders of magnitude larger than those predicted by classical theory and that
scale with magnetic field strength like 1/B rather than 1/B4. The new theory differs from a previous
analysis of transport due toE3B drift interactions of charged rods, in that the finite length of the
rods is taken into account. This enables transport to occur even for the case of anE3B drift rotation
frequency that is a monotonic decreasing function of radius~as was the case in recent experiments!.
© 1998 American Institute of Physics.@S1070-664X~98!00505-9#
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I. INTRODUCTION

Plasmas with a single sign of charge~e.g., pure ion plas-
mas and pure electron plasmas! are routinely confined for
long times in Penning traps.1,2 These simple traps are cylin
drically symmetrical configurations in which the charges
confined radially by an axial magnetic field~typically uni-
form! and confined axially by electrostatic fields.3 Over time,
collisional processes drive the plasma to a state of glo
thermal equilibrium,1,2,4which is characterized by a temper
ture T and rotation frequencyvR5vu /r that are uniform
over the whole plasma. Here,vuû is the local fluid velocity
and (r ,u,z) is a cylindrical coordinate system with its ax
centered on the axis of the trap. Rotation is necessary
radial force balance; the inward magnetic forceevuB/c bal-
ances the outward forces due to space charge and pres

When the characteristic cyclotron radius and Deb
length are both small compared to the radius of the plas
and the plasma length is on the order of or less than
collisional mean-free path, the evolution to thermal equil
rium takes place on two well-separated time scales.1 On the
collisional time scale, thermal equilibrium is establish
along each field line. In fact, because of the cylindrical sy
metry, the local thermal equilibria extend throughout th
cylindrical shells~say r to r 1Dr !. At this point in the evo-
lution, the temperature and rotation frequency are functi
of r . On a much longer time scale~the transport time scale!,
the different cylindrical shells come into thermal equilibriu
with each other. Viscous forces acting on the shear in
rotational flow drive the system to a state of uniformvR ,
and heat conduction drives the system to a state of unif

a!Electronic mail: dhdubin@ucsd.edu
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T. One can show that uniformvR andT plus axial and radial
force balance guarantee global thermal equilibrium.1

This paper contains a calculation of the coefficient
viscosity, which is the important coefficient in determinin
the particle transport. A recent paper5 provided a calculation
of the coefficient of heat conduction, and the predicted va
is in good agreement with experiment.6 The time scale for
heat conduction is much shorter than that for particle tra
port, so when evaluating the particle transport, we treat
temperature as uniform.

As a first step it is useful to formalize the above descr
tion in a fluid dynamic framework for the particle transpor1

For the frequency orderingvR!Vc , whereVc is the cyclo-
tron frequency, the centrifugal force term is negligible, a
radial force balance reduces to the form

05
nevuB

c
2ne

]f

]r
2

]

]r
nT, ~1!

which then determines the local rotation frequency,

vR5
vu

r
5

c

Br

]f

]r
1

c

Bner

]~nT!

]r
. ~2!

The fluid velocity is the sum of anE3B drift and a diamag-
netic drift. Here,n is the density andp5nT is the pressure.

A shear in the rotational flow gives rise to the stress,

pru52hr
]vR

]r
, ~3!

whereh is the coefficient of viscosity. Azimuthal force ba
ance,

052
nev rB

c
2

1

r 2

]

]r
r 2pru , ~4!
5 © 1998 American Institute of Physics
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then yields the particle flux

G r5nv r5
c

eB

1

r 2

]

]r
r 2hr

]vR

]r
. ~5!

One can see that the flux scales with magnetic field stren
like 1/B2 times the scaling ofh with B.

In the typical operating regime for trapped non-neut
plasmas (r c!lD), the classical theory of collisiona
transport7 is not relevant.8 The classical theory focuses o
small impact parameter collisions~i.e., r&r c!, which scatter
a particle velocity vector and produce a step in the part
guiding center position of aboutr c . The predicted coefficien
of viscosity7 is h.nmncr c

2, wherenc is the collision fre-
quency, which implies a particle flux that scales like 1/B4.
Experiments show that the predicted flux is orders of m
nitude too small and has the wrong scaling withB. The
problem is that classical theory effectively neglects the m
collisions characterized by impact parameter in the ra
r c,r,lD .8 These large impact parameter collisions do n
produce velocity scattering and, yet, dominate the transp

Since the large impact parameter collisions can
treated in the guiding center drift approximation, we refer
theories that focus on these collisions as guiding center
theories of transport. Different expressions for the viscos
are predicted, depending on the relative ordering of the
quenciesvb , vR , and nc , where vb is the characteristic
axial bounce frequency of the particles.

An initial analysis8 assumed that each collision is unco
related with previous collisions, which makes sense wh
vb,max(vR,nc). Two charges undergoE3B drift steps as
they stream by one another, and the steps in different c
sions are uncorrelated. For a Debye shielded interaction
tential, collisions having an impact parameter in the ran
r;lD dominate, and the predicted viscosity is of orderh
.nmnclD

2 , which exceeds the classical prediction by t
large value (lD/r c)

2@1. Sinceh is independent ofB, the
predicted particle flux scales like 1/B2.

However, experimentally it has turned out to be easie
observe transport to thermal equilibrium in plasmas w
vb.max(vR,nc), so the above theory does not apply. In tw
sets of experiments with pure electron plasmas,1,9 the ob-
served flux was large, but scaled like 1/B rather than 1/B2.
For large axial bounce frequency, two particles collide ma
times producing a sequence of correlatedE3B drift steps.
This suggests a model in which each particle is bounce
eraged into a long rod, and the rods then undergo t
dimensional~2-D! E3B drift transport due to their mutua
interactions.

There has been much previous theoretical work on 2
E3B drift theories of collisional transport. For example,
has been shown that any such model automatically yie
transport rates that scale like 1/B, in agreement with
observations.10,11 However, the earliest theories consider
transport in a homogeneous~neutral! plasma for which the
E3B rotation frequencyvE(r ) was spatially uniform~zero!,
whereas in the experiments with non-neutral plasmasvE(r )
was large and nonuniform.
th
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The first analysis12 that explicitly took into account the
large and nonuniformvE(r ), concluded that significan
transport would occur only ifvE(r ) was not monotonic. The
reasoning starts from the observation that only resonant
teractions between the rods cause significant transport,
plying that they must have the same rotation frequen
vE(r 1)5vE(r 2) for rods at radiir 1 and r 2 . If vE(r ) is
monotonic inr , this impliesr 15r 2 . However, conservation
of angular momentum implies that the rods take equal
opposite radial steps when theyE3B drift in their mutual
Coulomb field; and if they start at the same radius these s
create no net particle flux.

For some years this analysis seemed to be consis
with experiment, since the first experiments1 that observed
1/B scaling of the flux were carried out on plasmas with
nonmonotonicvE(r ). However, a new set of experiments9

were carried out on a plasma with a monotonicvE(r ) and
also found 1/B scaling. These new experiments have mo
vated a reexamination of the 2-DE3B drift theory, which is
the subject of the present work.

In the previous theory,12 the plasma was assumed fo
simplicity to have a length that was independent of radi
We now believe that for the new experiments this appro
mation is an oversimplification. If we allow the plasma
have finite lengthL(r ) that varies with radius, a new effec
emerges: particle rotation frequencies now become a fu
tion of their axial speedv.13 Consider the situation depicte
in Fig. 1. A particle moves in a plasma that is equilibrat
along the magnetic field and has a Debye lengthlD small
compared toL, so thatvE(r ) is a function only of radius
well within the plasma~i.e., more than a few Debye length
from the plasma ends!. However, as the particle approach
the end of the plasma, it feels a confining end potential tha
a function ofz and reverses itsz velocity. Unless the plasma
end is flat, this end potential depends onr as well asz, and
the radial electric-field component of the end potent
causes the particle toE3B drift in the u direction, affecting
the rotation frequency.

The larger the axial particle velocity, the larger the ax
~and hence radial! impulse imparted by the end potential
the particle, and the larger the change in the rotation
quency. Thus, a particle’s bounce-averaged rotation
quency can be written asv(r ,v)5vE(r )1Dv(r ,v) where
Dv(r ,v) is the rotation frequency shift caused by bounci
off of the plasma end potentials.

In this more realistic picture of the particle motion, it
now possible for particles at different radii to have the sa
bounce-averaged rotation frequency, even whenvE(r ) is

FIG. 1. Schematic view of particle dynamics in finite length plasma.
guiding center~dot! with speedv bounces off the end of a plasma of leng
L(r ).
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monotonic, provided that the particles have different ax
speeds:

vE~r 1!1Dv~r 1 ,v1!5vE~r 2!1Dv~r 2 ,v2!. ~6!

Since v1 and v2 differ, r 1 and r 2 can also differ, and the
resonant interaction of the particles now causes transpo
thermal equilibrium.

An order-of-magnitude estimate for the transport r
can be obtained from a straightforward argument. First,
can obtainDv(r ,v) from the fact that the axial impulse im
parted by thez component of the end electric field,Ez , must
equal 2mv. We picture the plasma as in Fig. 1; the Deb
lengthlD is here assumed small compared toL(r ) so we can
treat the particles as specularly reflecting off of the plas
ends. The geometry of the end potential implies that the
dial component of the end electric field,Er , is Ez](L/2)/]r ,
so the radial impulse to the particle ismv]L/]r , causing the
particle to E3B drift through an angle Du
52(v/rVc)]L/]r . The frequency of collisions with eac
end isv/L, so averaged over many collisions with the end
frequency shift to the rotation frequency develops, given
Dv5Duv/L, or

Dv~r ,v !52
v2

rVcL

]L

]r
. ~7!

Let us now estimate the average radial distance betw
resonantly interacting particles. Takingv1

22v2
2' v̄2, wherev̄

is the thermal speedAT/m, and takingr 25r 11D in Eq. ~6!,
we find that a Taylor expansion ofvE(r 2) yields

D5
v̄2

rVc
U] ln L/]r

]vE /]r U. ~8!

We can employ this estimate to determine the coeffici
of viscosityh in the plasma, which in turn yields the tran
port rate. General considerations imply that the viscos
scales as

h5mnnD2, ~9!

wheren is the density~in cm23!, D is the average distanc
between interacting particles, which in this instance is giv
by Eq. ~8!, and v is a collision rate~the rate of transfer of
momentum!. The collision rate can be estimated as the us
classical collision frequency for two particle collisions,nc

5nv̄b2, multiplied by the average number of collisions e
perienced by particles as they bounce between the e
which is of orderv̄/uLr ]vE /]r u. This enhancement arise
because particles take on the order of this number ofE3B
steps in the same direction before they become decorrela
Thus, we obtain the following estimate for the viscosity d
to collisions between interacting rods:

h5mnnc

vb

ur ]vE /]r u
D2. ~10!

Sinceh scales likeB, the flux predicted by Eq.~10! scales
like 1/B.
l

to

e
e

a
a-

a
y

en

t

y

n

al

ds,

ed.

II. KLIMONTOVITCH APPROACH TO 2-D E 3B
TRANSPORT

We now turn to a rigorous evaluation of the particle flu
caused by bounce-averagedE3B drift collisions. This deri-
vation is similar to that appearing in Ref. 12 for infinit
length rods, but now we allow the plasma to be finite leng

Before we begin, we remind the reader that there
several rotation frequencies that appear in the analysis,
since it is easy to confuse them it may be useful to list th
here. First, there is theE3B rotation frequencyvE(r ,z) ex-
perienced by particles.~In this section we make no assum
tions concerning the size of the Debye length compared
the plasma lengthL, so vE is a function of bothr and z.!
Second, there is the total bounce-averaged rotation freque
v(r ,I )5vE(r ,z) ~the overbar denotes a bounce averag!.
Here we introduce the bounce actionI , which is a constant
of the motion along a collisionless particle trajectory to
defined presently. Third, there is the rotation frequency o
fluid element, vR(r ,z)5vE(r ,z)1(nmVcr )21](nT)/]r ;
the second term is the plasma diamagnetic drift. It is t
third frequency that we expect to be uniform in thermal eq
librium.

We first define the Klimontovitch density for a system
M guiding centers,

N~r ,p,t !5(
j 51

M

d@r2r j~ t !#d@p2p~ t !#, ~11!

wherer is the particle position andp is the axial momentum.
This density satisfies the guiding-center Klimontovitch equ
tion,

]N

]t
~r ,p,t !1S p

m
ẑ2

c

B
“F3ẑD –“N~r ,p,t !

2e
]F

]z

]N

]p
~r ,p,t !50, ~12!

whereF(r ,t) is the electrostatic potential determined se
consistently via Poisson’s equation,

¹2F524peE dpN~r ,p,t !. ~13!

Following the standard procedure, we define an average oN
over an ensemble of initial conditions,f (r ,z,p,t)
5^N(r ,p,t)&, and a fluctuation dN(r ,p,t)5N(r ,p,t)
2 f (r ,z,p,t).

An equation for the average distributionf can be ob-
tained by averaging Eq.~12!:

] f

]t
1S p

m
ẑ1

c

B

]f

]r
û D –“ f 2e

]f

]z

] f

]p

5“–S K c

B
¹df3 ẑdNL D1

]

]p K e
]df

]z
dNL , ~14!

wheref(r ,z,t) is the self-consistent mean field plasma p
tential, given by

¹2f524peE dp f, ~15!
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and wheredf is the fluctuation in the potential, given b
df5F2f, and determined bydN via the linearized Pois-
son equation,

¹2df524peE dpdN. ~16!

The first term on the right-hand side of Eq.~14! is the
divergence of the dissipative particle flux and the seco
term the dissipative axial momentum flux. In this paper
focus on the radial particle flux,

G r~r ,z,p,t !52
c

Br K ]df

]u
~r ,u,z,t !dN~r ,u,z,p,t !L .

~17!

Note that we expect the azimuthal component of the diss
tive particle flux to vanish, and the radial component to
independent ofu due to symmetry of the equilibrium inu.

An equation for the evolution of the fluctuations is o
tained by subtracting Eq.~14! from Eq. ~12! and dropping
quadratic terms in the fluctuations:

]dN

]t
1S p

m
ẑ1

c

B

]f

]r
û D •“dN2e

]f

]z

]dN

]p

5
c

Br

]df

]u

] f

]r
1e

]df

]z

] f

]p
. ~18!

In order to solve Eq.~18! it is useful to switch to action-
angle variables (z,p)→(c,I ), whereI is the bounce action
running from 0–̀ , andc is the canonically conjugate ang
variable, running from 022p. These coordinates are define
in terms of the mean-field potentialf(r ,z):

I 5 R pdz/2p, ~19!

where the momentump varies inz along the particle’s tra-
jectory according to

p5A2m@H2ef~r ,z!#, ~20!

and whereH is a constant of integration equal to the sing
particle energy~mean-field Hamiltonian!. The angle variable
c then follows from Eq.~19! and the fact that the transfor
mation is canonical.14 In terms of the new coordinates, E
~18! becomes

]

]t
dN1vb~r ,I !

]dN

]c
1v~r ,I !

]dN

]u

5
c

Br

]df

]u

] f ~r ,I !

]r
1e

]df

]c

] f ~r ,I !

]I
, ~21!

where vb is the bounce frequency, andv is the particle
rotation frequency, defined by

vb5
]H~r ,I !

]I
, v5

c

eBr

]H~r ,I !

]r
, ~22!

and H(r ,I ), the single-particle Hamiltonian in action-ang
coordinates, is found by inverting Eq.~19! and solving for
H.

In Eq. ~21! we have assumed thatf is a function only of
the constants of the motion,r andI , so thatf is a solution of
d
e

a-
e

-

the equilibrium Vlasov equation obtained by neglecting t
dissipative fluxes~i.e., the rhs! in Eq. ~14!. In particular, we
neglect any time dependence off in Eq. ~21!. This is because
Eq. ~14! implies that f evolves in time on a slow transpo
time scale, and this slow time dependence can be negle
when evaluating the rapid time evolution of the fluctuation

We are interested in 2-D transport in the limit wherevb

is large compared tov, so it is useful to define a bounce
averaged density fluctuation and potential,

dN̄5E
0

2p

dcdN, df̄5E
0

2p dc

2p
df. ~23!

Note thatdN̄ is defined without the factor of 2p so that
*dN̄dI is the fluctuation in the number of rods per unit are
*dN̄dI5*dNdpdz.

In order to obtain self-consistent equations for t
bounce-averaged fluctuations, it is necessary to solve
~21! exactly before any bounce averaging is performed a
then make an expansion of the exact solution inv/vb . The
solution to Eq.~21! for dN can be obtained by Laplace tran
formation in time and Fourier transformation inu andc:

dN~r ,p,t !5(
l ,n

eil u1 inc

2p E ds

2p i
dN~r ,I ,l ,n,s!est,

~24a!

df~r ,t !5(
l ,n

eil u1 incE ds

2p i
df~r ,I ,l ,n,s!est. ~24b!

When Eqs.~24! are compared to Eq.~23!, we see that the
Fourier–Laplace transform of the bounce-averaged fluc
tions are related to then50 coefficients of Eqs.~24!:

dN̄~r ,I ,l ,s!5dN~r ,I ,l ,n50,s! ~25a!

and

df̄~r ,I ,l ,s!5df~r ,I ,l ,n50,s!. ~25b!

In terms of these Fourier–Laplace components, the solu
of Eq. ~21! is

dN~r ,I ,l ,n,s!5

i lc

Br

] f̄

]r
1 ine

] f̄

]I

s1 i l v~r ,I !1 invb~r ,I !
df~r ,I ,l ,n,s!

1(
j 51

M
d~r 2r j !d~ I 2I j !e

2 i l u j 2 inc j

2pr j@s1 i l v~r ,I !1 invb~r ,I !#
,

~26!

where the sum overj is an explicit expression for the initia
fluctuation and wheref̄ 52p f is defined so that* f̄ dI
5* f dzdp, the mean number of rods per unit area.

Up to now we have not made any approximations
volving bounce averaging. We now introduce the boun
averaging approximation to Eq.~26!. Sincev!vb , and the
time scale of the bounce-averaged fluctuations is of or
v21, we can approximate thenÞ0 terms indN as
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dN~r ,I ,l ,n,s!5e
] f̄ /]I

vb~r ,I !
df~r ,I ,l ,n,s!, nÞ0.

~27a!

We make no other approximations, and, in particular, thn
50 term in Eq.~26! is treated exactly:

dN~r ,I ,l ,n50,s!5
~ i lc /Br !] f̄ /]r

s1 i l v~r ,I !
df~r ,I ,l ,n50,s!

1(
j 51

M
d~r 2r j !d~ I 2I j !e

2 i l u j

2pr j@s1 i l v~r ,I !#
.

~27b!

In Eq. ~27a! we have neglectednÞ0 terms in the initial
conditions, since they are ofO(v/vb); we have neglected
@ i lc /Br#] f̄ /]r in favor of in e] f̄ /]I for the same reason; an
we have also dropped thes1 i l v term from the denominator
Equation~27a! is a linearized Boltzmann response of then
Þ0 density fluctuations to the potential fluctuations. Th
can be seen by noting that Eq.~22! implies (] f̄ /]I )/vb

5] f̄ /]H, and for a Boltzmann distribution] f̄ /]H52 f̄ /T.
Thus, for a Boltzmann distribution Eq.~27a! becomesdN
52edf f̄ /T. The Boltzmann form applies tonÞ0 compo-
nents ofdN because the bounce-averaged fluctuations ev
sufficiently slowly so that charges have time to equilibra
along the magnetic field lines.

In order to obtain an equation for the potential fluctu
tions, we substitute Eq.~27! into the linearized Poisson’
equation, Eq.~16!. The solution fordf can then be written in
terms of a Green’s function,x(r ,z,r j ,zj ,l ,s), that satisfies

S 1

r

]

]r
r

]

]r
2

l 2

r 2 1
]2

]z2Dx~r ,z,r j ,zj ,l ,s!

14pe2E dp

2p

] f̄

]H S x~r ,z,r j ,zj ,l ,s!

2E dc̄

2p
x~r ,z̄,r j ,zj ,l ,s! D

1
4pecil

Br E dp

2p

] f̄ ~r ,I !/]r

s1 i l v~r ,I !

3E dc̄

2p
x~r ,z̄,r j ,zj ,l ,s!5

d~r 2r j !d~z2zj !

r
, ~28!

where herez̄5 z̄(I ,c̄,r ) and I 5I (z,p,r ).
We will presently observe that we have need only of

bounce-averaged part ofdf, which involves only the bounce
average of the Green’s function:

df̄~r ,I ,l ,s!52(
j

4pe

2p

e2 i l u j

s1 i l v~r j ,I j !
x̄~r ,I ,r j ,I j ,l ,s!,

~29a!
e

-

e

where the bounce average ofx is carried out over bothz and
zj :

x̄~r ,I ,r j ,I j ,l ,s!5E dcdc j

~2p!2 x~r ,z,r j ,zj ,l ,s!, ~29b!

and wherez5z(I ,c,r ) and zj5zj (I j ,c j ,r j ). The bounce-

averaged density fluctuationdN̄ then follows from Eq.~27b!
and Eqs.~25!.

We now employ these expressions for the fluctuations
order to determine the cross-field particle flux. In particul
we will consider the bounce average of the particle flux
particles with a particular value of the actionI :

Ḡr~r ,I ![E dcG r@r ,z~ I ,c,r !,p~ I ,c,r !#

5
c

Br (
l ,n

E dsds̄e~s1 s̄!t

~2p i !2 ^dN~r ,I ,l ,n,s!

3~ i l !df~r ,I ,2 l ,2n,s̄!&, ~30!

where we have used Eqs.~17! and ~24! and have taken into
account the symmetry inu of the flux. However, thev/vb

!1 approximations that led to Eq.~27a! also imply thatn
Þ0 terms in Eq.~30! do not contribute to the flux. This is
because Eq.~27a! implies that thenÞ0 terms in Eq.~30! are
proportional to( l ,n,nÞ0l ^df(r ,I ,l ,n,t)df(r ,I ,2n,2 l ,t)&.
This sum is antisymmetric underl→2 l , n→2n, and there-
fore vanishes. Thus, only then50 ~bounce-averaged! fluc-
tuations contribute toḠr .

Substituting for these bounce-averaged fluctuations
ing Eqs. ~27b! and ~29a!, and averaging over the uncorre
lated initial conditions yields

Ḡr~r ,l !52
c

Br S 4pe

2p D 2

(
l
E 2pr jdr jdI j f̄ ~r j ,I j !

3E dsds̄

~2p i !2 e~s1 s̄!t

3
~ i l !x̄~r ,I ,r j ,I j ,2 l ,s̄!

@s1 i l v~r j ,I j !#@ s̄2 i l v~r j ,I j !#

3S d~r 2r j !d~ I 2I j !

4perj

2
cil

Br

] f̄ ~r ,I !

]r

x̄~r ,I ,r j ,I j ,l ,s!

s1 i l v~r ,I !
D . ~31!

We now make the Bogoliubov ansatz, assuming that fluct
tions decay to their asymptotic form on a time scale f
compared to the collision rate. This involves an evaluation
thes ands̄ integrals using the Cauchy residue method reta
ing only the poles along the imaginary axis, since any po
in the Green’s functions are assumed to be heavily damp
The result is



r
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Ḡr52
c

Br S 4pe

2p D 2

(
l
E 2pr jdr jdI j f̄ ~r j ,I j !S 2

ld~r 2r j !d~ I 2I j !

4perj
Im x̄* @r ,I ,r j ,I j ,l ,2 i l v~r j ,I j !#

1
cl2

Br

] f̄ ~r ,I !

]r
ux̄@r ,I ,r j ,I j ,l ,2 i l v~r j ,I j !#u2pd$ l @v~r ,I !2v~r j ,I j !#% D . ~32!

In order to obtain a symmetric form for the flux, we rewrite the first term in the large brackets with the aid of Eq.~28!. If we
sets52 i l v(r j ,I j )1« in Eq. ~28! and multiply both sides byr Im x* @r,z,r j ,zk ,l,2ilv(r j ,I j)#, the result after integrating ove
r andz, integrating by parts, applying the Plemelj formula to the resonant denominator, and bounce averaging inzj andzk ,
is

Im x̄* @r j ,I j ,r j ,I j2 i l v~r j ,I j !#

5E dc jdck

~2p!2 Im E rdrdzH x* @r ,z,r j ,zk ,l ,2 i l v~r j ,I j !#S 1

r

]

]r
r

]

]r
2

l 2

r 2 1
]2

]z2Dx@r ,z,r j ,zj ,l ,2 i l v~r j ,I j !#

14pe2E dp

2p
x* @r ,z,r j ,zk ,l ,2 i l v~r j ,I j !#

] f̄

]H S x@r ,z,r j ,zj ,l ,2 i l v~r j ,I j !#2E dc̄

2p
x@r ,z̄,r j ,zj ,l ,2 i l v~r j ,I j !# D

1
4pecl

Br E dp

2p
x* @r ,z,r j ,zk ,l 2 i l v~r j ,I j !#

] f̄

]r E dc̄

2p
x@r ,z̄,r j ,zj ,l ,2 i l v~r j ,zj !# ipd~ l @v~r j ,I j !2v~r ,I !# !J ,

~33!
r
e

’s
nd

s

um

nd

he
cy-
n-

den-

ime

ct
ar-
ds

ee-
s

wherezj5z(I j ,c j ,r j ), zk5z(I j ,ck ,r j ), z̄5z(I ,c̄,r ).
The imaginary part of the first term in the braces is ze

because the integrals overc j and ck bounce average th
Green’s functions in their secondz argument. Integrations by
parts inr and z then prove that the product of the Green
functions is real. Similarly, the imaginary part of the seco
term is also zero. For the third term we note thatdzdp
5dIdc, and thec integration bounce averagesx* over z,
so we arrive at

Im x̄* @r j ,I j ,r j I j ,2 i l v~r j ,I j !#

5
4pecl

B E drdI
] f̄ ~r ,I !

]r
ux̄@r ,I ,r j ,I j ,l ,

2 i l v~r j ,I !#u2pd$ l @v~r ,I !2v~r j ,I j !#%, ~34!

which can then be substituted into Eq.~32! to yield

Ḡr~r ,I !5
1

2r S 4pec

B D 2

(
l

u l u E
0

`

dI j

3E
0

`

r jdr j ux̄@r ,I ,r j ,I j ,l ,2 i l v~r j ,I j !#u2

3d@v~r j ,I j !2v~r ,I !#

3S f̄ ~r ,I !

r j

] f̄ ~r j ,I j !

]r j
2

f̄ ~r j ,I j !

r

] f̄ ~r ,I !

]r D .

~35!

Equation ~35!, the bounce-averaged radial flux of rod
caused by bounce-averaged 2DE3B collisions in a finite
length plasma, is the main result of the paper.

The flux conserves total canonical angular moment
Pu5*2prdrdI f̄ (r ,I ,t)mVcr

2/2, which follows from the
o
fact that the integral*rdrdIr Ḡr(r ,I ) vanishes due to the
antisymmetry of the integrand under interchange of (r ,I ) and
(r j ,I j ). The flux also conserves the total electrostatic a
kinetic energy of the plasma,

E5E 2prdrdpdz f~r ,z,p,t !S p2

2m
1

1

2
efp~r ,z,t !

1efe~r ,z! D , ~36!

where we have brokenf(r ,z,t) into an intrinsic plasma po-
tential fp and an external potentialfe: f5fp1fe. The
external potential is responsible for the finite length of t
plasma and arises from voltages applied to surrounding
lindrically symmetric electrodes. The intrinsic plasma pote
tial is the solution of Eq.~15! for given f assuming that the
surrounding electrodes are all grounded. The time depen
cies arise from the slow evolution off on a transport time
scale. Energy conservation can be derived by taking the t
derivative of Eq.~36!, using Eqs.~14!, ~15!, and ~22! and
neglecting the axial momentum flux^e(]df/]z)dN& in Eq.
~14!. Then using the relationdpdz5dIdc we obtain, after
integrating by parts,

dE

dt
52mVcE 2prdrdIr Ḡr~r ,I !v~r ,I !. ~37!

This integral vanishes because Eq.~35! implies that it is
antisymmetric under interchange of (r ,I ) and (r j ,I j ). Evi-
dently neglect of the axial momentum flux does not affe
energy conservation, implying that this flux produces a re
rangement of the parallel action among the collection of ro
without exchange of energy with the other degrees of fr
dom. Finally, it is not difficult to show that the flux increase
an entropy functionS,
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S52E 2prdrdI f̄ ~r ,I ,t !ln f̄ ~r ,I ,t !. ~38!

One can also see that the flux vanishes when the pla
is in a state of global thermal equilibrium. This state is ch
acterized by uniform temperatureT and fluid rotation fre-
quencyvR . To show this, assume thatf̄ (r ,I ) is Maxwellian,
but with arbitrary radial dependence given by

f̄ ~r ,I !5Ce2@H~r ,I !2mVc* r rvR~r !dr#/T, ~39!

whereC is a constant. This form for the distribution is ch
sen because it is Maxwellian in velocity, but has a flu
rotationvR(r ) with arbitrary radial dependence. This can
seen by transforming from the variables (c,I ) back to vari-
ables (z,p) using Eq.~20!:

f ~r ,z,p!5
f̄ ~r ,I !

2p

5
C

2p
e2@p2/2m1ef~r ,z!2mVc*0

r rvR~r !dr#/T. ~40!

Equation~40! displays the Maxwellian form of the distribu
tion. The Maxwellian form is required because small-imp
parameter velocity-scattering collisions, not explicitly a
counted for in the theory, drive the distribution toward th
form.

The connection between the fluid velocity and the fun
tion vR(r ) that appears in Eq.~40! can be obtained by dif-
ferentiating Eq.~40! with respect tor after integrating over
momentum. One finds that

vR~r !5
c

Br

]f

]r
1

T

mVcr

] ln n

]r
, ~41!

wheren(r ,z)5*dp f(r ,z,p) is the particle density. Equatio
~41! agrees with Eq.~2! when T is constant. Note that the
rotation frequency is a function only ofr , although both the
E3B and diamagnetic drifts separately depend on bothr and
z. This is a consequence of the Boltzmann equilibrium alo
the field lines assumed in Eq.~40!.

Substituting Eq.~39! in Eq. ~35!, the expression in the
square brackets becomes

f̄ ~r ,I !

r j

]

]r j
f̄ ~r j ,I j !2

f̄ ~r j ,I j !

r

]

]r
f̄ ~r ,I !

5
mVc

T
@vR~r j !2vR~r !2v~r j ,I j !

1v~r ,I !# f̄ ~r ,I ! f̄ ~r j ,I j !, ~42!

where we have employed Eq.~22!. However, the resonanc
a
-

t
-

-

g

conditionv(r ,I )5v(r j ,I j ) implies that the last two terms in
the square brackets cancel, so Eq.~35! becomes

Ḡr~r ,I !5
1

2r S 4pec

B D 2

(
l

u l u E
0

`

dI j r jdr j ux̄@r ,I ,r j ,I j ,l ,

2 i l v~r j ,I j !#u2d@v~r j ,I j !2v~r ,I !#

3
mVc

T
@vR~r j !2vR~r !# f̄ ~r ,I ! f̄ ~r j ,I j !. ~43!

Thus, the flux vanishes when the fluid rotation frequen
vR(r ) is uniform, that is, when the system is in a state
thermal equilibrium.

III. LOCAL COEFFICIENT OF VISCOSITY

It is useful to employ the following simple model whe
evaluating Eq.~43!. Assuming that the Debye length is sma
compared to the plasma lengthL(r ), f(r ,z)5f(r ) within
the plasma and the axial motion consists of particles und
going specular reflection off the plasma ends. This mo
was discussed in the Introduction in relation to Fig. 1. In t
case the bounce action isI 5upuL(r )/p, the single-particle
mean-field energy is

H~r ,I !5
p2I 2

2mL2~r !
1ef~r !, ~44!

and the bounce-averaged distribution of rods is

f̄ ~r ,I !5
2pn~r !

A2pmT
e2p2I 2/2mTL2~r !, ~45!

wheren(r ) is the particle density, and the factor of 2 in th
numerator arises becauseI is non-negative. Note tha
*0

` f̄ dI5n(r )L(r ) is the number of rods per unit area, a
expected. The particle rotation frequency,v5c/eBr
3]H/]r , is

v~r ,I !5vE~r !2
p2I 2

m2VcrL
3~r !

]L

]r
, ~46!

wherevE(r )5(c/Br)]f/]r is theE3B rotation frequency,
in agreement with the heuristic result derived in the Int
duction, Eq.~7!.

Also, note that the bounce-averaged Green’s functionx̄,
is independent ofI andI j in this model. The bounce averag
over an orbit now merely involves an integral overz between
the plasma’s ends and is independent of the value of a
ticle’s action.

Applying Eqs. ~45! and ~46! to the expression for the
flux, Eq. ~43!, we find that it reduces to the expression d
rived in Ref. 12 for the case where the plasma has flat e
]L/]r 50. In this case the flux vanishes whenvE(r ) is
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monotonic in r because the resonance condition impliesr
5r j . However, when]L/]rÞ0 the flux is nonzero becaus
particles with rÞr j can satisfy the resonance conditio
v(r ,I )5v(r j ,I j ). As discussed in the Introduction, the typ
cal radial distanceD between such particles is given by E
~8!.

Note that whenvE(r ) andL(r ) vary on a scale of orde
the plasma radiusR, Eq. ~8! implies that the interaction dis
tanceD is small, of orderlD

2 /R, so interacting particles ar
closely spaced in radius. This allows us to make a lo
approximation for the flux and obtain a local coefficient
viscosity, using the following math identity: consider the r
dial integral of the antisymmetric functionvR(r j )2vR(r )
multiplied by a symmetric functionS@(r 1r j )/2,ur 2r j u# that
is sharply peaked in the second argument:

J5E dr jSS r 1r j

2
,ur 2r j u D @vR~r j !2vR~r !#. ~47!

Taylor expansion with respect to slowly varying argume
then implies that to lowest order

J5
]

]r S E
2`

`

dDrS~r ,uDr u!
Dr 2

2

]vR

]r D . ~48!

Note that our expression for the flux, Eq.~43!, has this form
when integrated overI :

E
0

`

dIḠr~r ,I !5
1

2r 2 S 4pec

B D 2 mVc

T E dr jSS r 1r j

2
,

ur 2r j u D @vR~r j !2vR~r !#, ~49!
ua
l

-

s

where

S~R,uDr u!5(
l

u l u E
0

`

dIdI j rr j ux̄@r ,r j ,l ,

2 i l v~r j ,I j !#u2

3d@v~r j ,I j !2v~r ,I !# f̄ ~r ,I ! f̄ ~r j ,I j !,

r 5R2Dr /2, r j5R1Dr /2. ~50!

When Eq.~48! is applied to Eqs.~49!–~50! we find that the
flux of rods is given by the local expression

E
0

`

dIḠr~r ,I !5
1

2r 2 S 4pec

B D 2 mVc

T

]

]r (
l

u l u E
2`

`

dDr
Dr 2

2

3E
0

`

dIdI j r 1r 2ux̄[ r 2 ,r 1 ,l ,

2 i l v~r 1 ,I j !] u2d@v~r 1 ,I j !

2v~r 2 ,I !# f̄ ~r 2 ,I ! f̄ ~r 1 ,I j !
]vR

]r
, ~51!

wherer 15r 1Dr /2 andr 25r 2Dr /2. We now perform the
integral over the actionI j , substituting for the distribution
functions using Eq.~45! and the particle rotation frequenc
using Eq.~46! to obtain
E
0

`

dIḠr~r ,I !5
1

2r 2 S 4pec

B
D 2 mVc

T

]

]r
(

l
u l u E

2`

`

dDr
Dr 2

2
r 1r 2

3E dI
2pn1n2

mT
e~2p2/2mT!@~ I 2/L2

2
!~11r 1L1L28 /r 2L2L18 !2~m2Vc /p2!~r 1L1/L18 !DvE#

3ux̄[ r 2 ,r 1 ,l ,2 i l v~r 2 ,I !] u2
1

U 2p2L18

m2Vcr 1L1
2 UAr 1L1L28

r 2L2L18

I 2

L2
2 2

m2Vc

p2

r 1L1

L18
DvE

]vR

]r
, ~52!
where DvE5vE(r 1)2vE(r 2), n(2)
1 5n(r (2)

1 ), L (2)
1

5L(r (2)
1 ), primes denote differentiation with respect tor ,

and the integral overI runs only over the region ofI .0
where the argument of the square root is positive. The sq
root is an explicit expression ofI j /L1 , obtained by solving
v(r 1 ,I j )5v(r 2 ,I ) using Eq.~46!.

SinceDr is assumed throughout to be small, andn(r ),
v(r ), andL(r ) are slowing varying on the scale ofDr , we
keep only the lowest-order terms inDr to obtain DvE

5Dr ]vE /]r , r 1.r 2.r . Thus, Eq.~52! becomes
re

E
0

`

dIḠr~r ,I !

5
1

2r 2 S 4pec

B
D 2 m2Vc

2

T2

]

]r
(

l
u l u

r 3n2~r !L3~r !

puL8~r !u

3E
0

`

dve2v2/ v̄2E
2`

Dv2/ v̄2

dDr
Dr 2

2

eDr /2D

Av22 v̄2Dr /D

3ux̄@r 2Dr /2,r 1Dr /2,l ,2 i l v~r ,I !#u2
]vR

]r
, ~53!
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whereD is the interaction distance defined in Eq.~8!, and
where we have changed integration variables fromI to ve-
locity v5pI /mL and have interchanged theDr andv inte-
grals. Note that the substitutionr 15r 25r is not made inx̄
since, for large u l u, x̄(r 2Dr /2,r 1Dr /2,l ,2 i l v) is not
slowly varying inDr .

In order to make further progress we need an expl
form for the bounce-averaged Green’s functionx̄. In gen-
eral, this requires a numerical solution to Eq.~28!. However,
for a long thin plasma column, for whichD!R!L we will
see that the sum overl is dominated by largel values, for
which the interaction is short range and almost unshield
The Fourier transformed Green’s function between
shielded rods separated by a small distance is

x̄~r ,r 8,l !52
1

2u l uL.
S r ,

r .
D l

, ~54!

where r (,)
. is the larger~lesser! of r and r 8 and L. is the

larger ofL(r ) andL(r 8). Provided that the distanceDr be-
tween the rods is small compared to their average radial
sition, the Green’s function simplifies to

x~r 2Dr /2,r 1Dr /2,l !52
e2 l uDr u/r

2u l uL~r !
. ~55!

When this form forx̄ is used in Eq.~53!, the integrals over
Dr andv can be performed analytically, yielding an equati
for the flux of rods involving the local coefficient of viscos
ity h̄:

E
0

`

dIḠr5
c

eBr2
]

]r
r 3h̄

]vR

]r
, ~56!

where

h̄5
8p2e4

T

D2n2~r !

urvE8 u
gS 2D

r D , ~57!

and where the functiong(2D/r ) is

gS 2D

r D5(
l 51

`
h~2Dl /r !

l
, ~58!

FIG. 2. The functiong(x). The solid line is a numerical evaluation of Eq
~58!; the dashed line is the smallx asymptotic form given by Eq.~60!.
it

d.
-

o-

where the functionh is defined as

h~x!5
1

4p E
0

`

dve2v2E
2v2

`

ds
s2e2s/22xusu

Av21s

5
2

p

~118x2! lnS A2x111A2x21

A2x112A2x21
D 26xA4x221

~4x221!5/2 .

~59!

An asymptotic analysis in the limit of smallD/r yields

lim
D/r→0

gS 2D

r D5 lnS r

2D D221g, ~60!

whereg50.577... is Euler’s constant. A numerical evalu
tion of g(x) is shown in Fig. 2 and values are tabulated
Table I. The origin of the logarithmic divergence inD/r is
easy to understand. WhenD/r is small, we can approximate

x~r ,r 8l !;x~r ,r ,l !52
1

2Lu l u
, ~61!

where the last step follows from Eq.~54!.
Substituting foruxu2 into Eq. ~53! then yields the log

divergence in the sum overl , cut off at l max5r/D, beyond
which the approximation in Eq.~61! breaks down. As we
stated previously, the sum is dominated by largel values to
logarithmic accuracy, consistent with the approximation
an unshielded Green’s function in Eq.~54!.

Comparing the flux of rods, Eq.~56! @in units of 1/
~m s!#, to the particle flux, Eq.~5! @in units of 1/(m22s)#, we
see that the bounce-averaged viscosityh̄ has different units
than the usual fluid viscosityh. If L were constant as a
function of radius so that it could be moved through t
derivatives in Eq.~56!, we would find thath5h̄/L. SinceL
is not constant, Eq.~56! is the proper form for the flux of
rods, in that this form satisfies the conservation of mom
tum, particle number, and energy.

However, in order to connect Eq.~57! to our previous
estimate, Eq.~10!, it is useful for scaling purposes to tak
h5h̄/L. In this case Eq.~57! implies

h58p2mn
vb

urvE8 u
ncD

2g~2D/r !, ~62!

in agreement with the scaling estimate, Eq.~10!.

TABLE I. Table of values ofg(x).

x g

0.001 5.48
0.002 4.80
0.005 3.89
0.01 3.21
0.02 2.54
0.05 1.70
0.1 1.12
0.2 0.638
0.3 0.418
0.4 0.295
0.5 0.218
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IV. DISCUSSION

Equations~56! and~57! determine the radial flux of rod
~bounce-averaged electrons! due to long-range guiding cen
ter collisions in a non-neutral plasma whose length va
with radius. This local form of the viscous particle transp
rests on the assumption that the interaction distanceD, de-
fined in Eq.~8!, is small compared to the scale length of t
density and rotation frequency gradients. When these gr
ents are on the scale of the plasma radiusR, this assumption
is equivalent to the assumption that the Debye length
small: Eq.~8! implies D/R;(lD /R)2, so we requirelD /R
!1.

In deriving Eq. ~57! we also assumed that the plasm
was long:L@lD@D, so that the specular reflection approx
mation of Sec. III is valid, and so that the interaction b
tween rods is given by Eq.~54!, an unshielded interaction fo
the large azimuthal mode numbers that dominate the vis
ity to logarithmic order. Finally, the analysis was also aid
by the assumption that we consider the viscosity at a ra
position r @D, so that the exponential form of the intera
tion, Eq. ~55!, is valid.

On the other hand, in order for our analysis to be r
evant we also require that this 2-D viscosity be larger th
the flux caused by uncorrelated collisions, discussed in R
8. There the viscosity was shown to scale ash;mnvclD

2 ,
and comparing this viscosity to the 2-D viscosity of Eq.~62!
shows that the 2-D viscosity dominates only if

vB

urvE8 u
.S lD

D D 2

@1. ~63!

Thus, Eqs.~56!–~57! are relevant only when the plasma
well into the 2-D regime, where the bounce frequency
s
t

i-

is

-

s-

al

-
n
f.

s

much larger than theE3B drift rotation frequency. How-
ever, the second inequality in Eq.~63! can be relaxed if we
are willing to employ the full nonlocal kinetic equation, E
~43!, because in Eq.~43! D need not be small compared t
lD . Of course, solving for the flux in this case becom
considerably more difficult as a practical matter, since
fully shielded bounce-averaged Green’s function that appe
in Eq. ~43! must be evaluated numerically. Neverthele
such calculations are within the realm of possibility and m
well be required in order to provide a detailed comparison
theory to present experiments for which 1,vB /vE&20.9
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