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Excitation of nonlinear electron acoustic waves
Francesco Valentini
Dipartimento di Fisica and INFM, Universitá della Calabria, 87036 Rende (CS) Italy,
and Department of Physics, University of California at San Diego, La Jolla, California, 92093

Thomas M. O’Neil and Daniel H. E. Dubin
Department of Physics,University of California at San Diego, La Jolla, California, 92093

�Received 12 June 2005; accepted 31 March 2006; published online 10 May 2006�

A particle in cell �PIC� simulation is used to investigate the excitation of electron acoustic waves
�EAWs� and the stability of the EAWs against decay. An EAW is a nonlinear wave with a carefully
tailored trapped particle population, and the excitation process must create the trapped particle
population. For a collisionless plasma, successful excitation occurs when a relatively low amplitude
driver that is spatially and temporally resonant with the EAW is applied for a sufficiently long time
�many trapping periods�. The excited EAW rings at a nearly constant amplitude long after the driver
is turned off, provided the EAW has the largest wavelength that fits in the simulation domain.
Otherwise, the excited EAW decays to a longer wavelength EAW. In phase space, this decay to
longer wavelength appears as a tendency of the vortex-like trapped particle populations to merge. In
a collisional plasma, successful excitation of an EAW requires the driver amplitude to exceed a
threshold value. The period for a trapped particle oscillation must be short compared to the time for
collisions to smooth out the trapped particle plateau. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2198467�
I. INTRODUCTION

In 1991, Hollway and Dorning1 noted that certain non-
linear wave structures can exist in a plasma, even at low
amplitude. They called these waves electron-acoustic waves
�EAW� since the dispersion relation is of the acoustic form
�i.e., �=1.31kvth for small k�. Here, � is the angular fre-
quency of the wave, k the wavenumber, and vth the thermal
velocity of the plasma electrons.

Note that EAWs are quite distinct from ion-acoustic
waves, which are linear waves that involve both electrons
and ions. The EAWs are higher frequency nonlinear waves
that involve only the electrons; the ions simply provide a
uniform neutralizing background charge.

Within linear theory, an EAW would be heavily Landau
damped, since the wave phase velocity is comparable to the
electron thermal velocity.2 However, the EAW is a Bernstein-
Green-Kruskal nonlinear mode �BGK mode�3 with electrons
trapped in the wave troughs. Because of the trapped elec-
trons, the distribution of electron velocities is effectively flat
at the wave phase velocity, and this turns off Landau damp-
ing.

These waves can be constructed even at low amplitude
by carefully tailoring the trapped particle distribution. How-
ever, the importance of the waves as elementary excitations
of the plasma �such as Langmuir waves� depends on the
extent to which they are excited by general perturbations and
drives applied to the plasma, and the extent to which they are
stable against decay to other modes. Because EAWs are in-
trinsically nonlinear structures, one expects that parametric
decay instabilities are possible.

A simple argument shows that the waves can be excited
by a sudden �or initial� perturbation only at large amplitude.

We assume here that the trapped particle distribution does
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not exist initially, but forms dynamically as the wave
evolves. For a wave electric field E sin�kx−�t�, the time to
form the trapped particle distribution is approximately the
period for trapped particles to oscillate in the trough of the
wave, �trap=2��m / �eEk�, where e and m are the electron
charge and mass, respectively.4 The wave is killed by Landau
damping before the trapped particle distribution can form
unless �L�trap�1, where �L is the linear Landau damping
rate.2 For a wave with phase velocity comparable to the ther-
mal velocity �� /k�vth�, the Landau damping rate is compa-
rable to the frequency ��L�kvth�, so the initial amplitude
must be large �i.e., e��eE /k�mvth

2 =Te�.
However, we will see that EAWs can be launched by a

small amplitude driver if the driver is applied resonantly over
many trapping periods. The driver continuously replenishes
the energy removed by Landau damping, so the trapped par-
ticle distribution �and the EAW� is eventually produced. This
result will be demonstrated using a particle in cell �PIC�
simulation.5,6 For the case where the wavelength is the long-
est wavelength that fits in the plasma and the plasma is col-
lisionless, the launched EAW persists at nearly constant am-
plitude long after the driver is turned off. For the large
number of particles used in the PIC simulation �N�5
�106−107�, the effect of collisions is negligible over the
duration of the run.

When Coulomb collisions are explicitly added to the
simulation, there is a threshold for a driver amplitude that is
large enough to launch an EAW. The threshold is due to a
competition between trapping and collisional effects. Trap-
ping oscillations try to make the distribution flat at the wave
phase velocity �create a plateau�, whereas collisions try to
maintain the Maxwellian velocity distribution. The driver

amplitude must be sufficiently large that the trapping period,
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�trap=2� /�ekE /m, is smaller than the time for collisions to
smooth out the plateau.

Finally, stability of the EAWs against decay to other
modes is investigated. As mentioned, an EAW with wave-
length equal to the length of the plasma can be resonantly
launched by a low amplitude driver and then persists at a
nearly constant amplitude long after the driver is turned off.
Here, collisional damping is negligible in the simulation.
When this EAW is replicated in space and used as an initial
condition for the simulation of a much longer plasma, the
EAW is observed to decay to longer wavelength EAWs. In
phase space, the trapped particles for an EAW appear to be a
vortex structure, and the decay to a longer wavelength in-
volves a merger of the vortices.7–11

Our results are complementary to recent results reported
by Afeyan, Won, Savchenko, Johnson, Ghizzo, and
Bertrand.12 These authors also carry out numerical simula-
tions of nonlinear waves launched by a driver in an unmag-
netized plasma. Motivated by suggestions that EAWs might
be launched in laser-plasma interaction experiments,13

Afeyan et al. focused on relatively large driver amplitudes.
They found novel BGK waves that they call “Kinetic Elec-
trostatic Electron Nonlinear �KEEN� Waves.” These waves
are comprised of four or five significant phase-locked har-
monics, persist only when driven hard enough, and are
driven by a wide range of frequencies. In contrast to our
work, these authors reported that low amplitude drive does
not produce coherent EAWs, presumably because the driver
was not applied resonantly for a long enough time. We will
see that the resonance is relatively narrow and can easily be
missed.

II. DISPERSION RELATIONS

For convenience, we scale time by the inverse plasma
frequency �p

−1, where �p=�4�ne2 /m and n is the electron
density. The length is scaled by the Debye length �D

=vth /�p. With these choices, velocity is scaled by the elec-
tron thermal velocity �D�p=vth and electric field by
�4�nmvth

2 .
Using these scalings, the Landau dispersion relation

takes the form2

1 −
1

k2�
L

dv
� f0/�v
v − �/k

= 0, �1�

where �=�r− i� is the complex frequency, k the wavenum-
ber, and f0�v� the distribution of electron velocity compo-
nents in the direction of wave propagation. Here, we take
this distribution to be Maxwellian, f0�v�=exp�−v2 /2� /�2�.
The subscript L on the integral sign indicates that the veloc-
ity integral is to be taken along the Landau contour, dropping
down around the pole at v=� /k. For the high frequency
modes of interest, the ions do not participate; throughout the
paper the ions are taken to be a uniform neutralizing back-
ground charge.

For the case where the phase velocity is large compared
to the thermal velocity �v�	� /k	1�, Eq. �1� yields the

2 1/2
weakly damped dispersion root, �= �1+3k � and �=�L=
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−�� /2�v�
2 /k�e−v�

2 /2. This is Landau’s well-known solution
for the frequency and damping rate of a Langmuir wave
�LW�. Since the phase velocity is large compared to the ther-
mal velocity, the damping rate is exponentially small.

There are other more heavily damped roots for smaller
phase velocity. For example, there is a root at �r�3.6k and
��k,14,15 which can be thought of as the linear progenitor of
the EAW.

For sufficiently weak damping, the velocity integral
along the Landau contour can be approximated by

�
L

dv
� f0/�v
v − �/k

= 
P�
−


+


dv
� f0/�v
v − �/k

+ �i
� f0

�v 

�/k

, �2�

where P indicates that the principle part is to be taken. As
mentioned earlier, the trapped particle distribution for an
EAW effectively makes the distribution flat at the wave
phase velocity �i.e., �f0 /�v��/k�0�. Thus, Holloway and
Dorning1 obtain a dispersion relation for small amplitude
EAWs by retaining only the principle part in the velocity
integral of Eq. �1�.

Solving for the roots of the resulting dispersion relation
then yields the solid curve in Fig. 1. This so-called “thumb”
dispersion curve exhibits two roots for small k. The upper
root ��= �1+3k2�1/2� is the LW and the lower root ��
=1.31k� is the EAW.

We emphasize that Fig. 1 describes only small amplitude
EAWs. Using a Maxwellian distribution for f0�v� and taking
the principle value in the velocity integral assumes that the
width of the plateau, where �f0 /�v=0, is infinitesimal. For a
finite amplitude EAW, the plateau width is the velocity range
over which electrons are trapped in the wave troughs, that is
�vtrap, where ��vtrap�2�E /k. An infinitesimal trapping width
corresponds to an infinitesimal wave amplitude. We will see
that the phase velocity for a large amplitude EAW is shifted

FIG. 1. The “thumb” dispersion relation. The frequency is expressed in
units of the electron plasma frequency and the wavenumber in units of the
inverse of the electron Debye length.
upward from the value indicated in Fig. 1.
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III. PARTICLE IN CELL SIMULATIONS

A. Excitation of the EAWs

The PIC simulation follows the electron dynamics in the
x direction, which is the direction of wave propagation. The
electron phase space domain for the simulation is D
= �0,Lx�� �−vmax,vmax�, where vmax=5. For an initial set of
simulations, we choose Lx=2� /k=20, but in later simula-
tions the plasma length is increased to Lx=40 and Lx=80.
This increase in length allows for decay to longer wave-
length EAWs. The time step is �t=0.1. The simulations fol-
low the evolution of N�5�106 to 107 electrons for many
plasma periods �tmax=4000�. The initial electron velocity dis-
tribution is taken to be Maxwellian. Periodic boundary con-
ditions in physical space are imposed, and Poisson’s equation

FIG. 2. Plasma response for two different values of the driver phase veloc-
ity: v�=0.4 �at the top� and v�=1.70 �at the bottom�.
FIG. 3. The peak of resonance for the EAW.
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is solved using a standard Fast Fourier Transform �FFT� rou-
tine. The external driver electric field is taken to be of the
form

ED�x,t� = ED
max�1 + 
 t − �

��
�n�−1

sin�kx − �t� , �3�

where ED
max=0.01, �=1200, ��=600, n=10, and k=� /10.

The plasma response is studied as a function of the driver
frequency �, or, equivalently, phase velocity v�=� /k
=10� /�. An abrupt turn on �or off� of the driver field would
excite LWs as well as EAWs, complicating the analysis.
Thus, the driver is turned on and off adiabatically. The driver
amplitude is near ED

max �within a factor of 2� for several trap-
ping periods �toff− ton�1200�11�trap�, and is near zero
again by toff=2000. Here, the trapping period associated with
the maximum driver field is �trap=2� /�kED

max=112.
Figure 2 shows the evolution of the plasma electric field,

Ek�t�, for two different values of the driver phase velocity. In
the top graph �for v�=0.4�, Ek�t� rises to a small value while
the driver is on, but falls to zero when the driver is turned
off. The time toff is indicated by the dashed line. In the bot-

FIG. 4. �Color online� The phase space contour plot of the distribution
function f at t=4000.

FIG. 5. Scatter plot of the distribution function f as a function of the energy
2
in the wave frame �= �v−v�� /2−��x , tmax�.
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tom graph �for v�=1.70�, Ek�t� grows to large amplitude and
maintains this amplitude �rings� after the driver is turned off.

Repeating such simulations for many different phase ve-
locities �but holding the other driver parameters fixed at the
values listed� yields the peaked graph in Fig. 3. Here, the

FIG. 6. Time evolution of the spectral component of the electric field, plot-
ted for different values of the parameter r and for v�=1.70.
FIG. 7. �Color online� The coalescence an
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ordinate is the amplitude of the oscillating plasma electric
field at the end of the simulation �long after the driver has
been turned off�, and the abscissa is the driver phase velocity.
For this set of driver parameters, an EAW is driven reso-
nantly for phase velocity v��1.70.

For the wavenumber k=� /10, Figure 1 implies the reso-
nant phase velocity v��1.45. However, we must remember
that Fig. 1 applies only to small amplitude �infinitesimal�
EAWs. For the relatively large EAW in the simulation, the
resonant phase velocity is shifted up to 1.70 by the finite
plateau width. A separate calculation, for which dispersion
relation �2� is solved numerically for the distribution func-
tion f�v�= fM�v�− �fM�v�− fM�v����1+ �2�v−v�� /�vtrap�20�−1

�where fM indicates a Maxwellian function�, yields the phase
velocity v��1.74. In this distribution, the plateau width is
taken to be the trapping width �vtrap=2�2Esat /k, for the satu-
rated amplitude Esat=2Ek

sat�0.11.
As a more accurate procedure, we show that the distri-

bution function obtained in the simulation is a BKG structure
and use the BGK formalism to get the EAW solution. Figure
4 shows a false color contour plot of the electron distribu-
tion, f�x ,v�, at the end of the run �tmax=4000�. The color
code assigns higher values of f to longer wavelengths in the
spectrum. The vortex-like structure in Fig. 4 represents
trapped particles, and, as expected, these particles have a
mean velocity equal to the phase velocity v=1.7. The veloc-
ity width of the trapped particle region is about �vtrap�1.7,
d merging of two phase space holes.
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which is in agreement with the theoretical expectation
�vtrap=2�2Esat /k=1.674. Here, the saturation amplitude of
the electric field is Esat=2Ek

sat�0.11 �see the bottom graph in
Fig. 2�. In Fig. 5, we plot the distribution function f at the
end of the run as a function of the energy in the wave frame
�= �v−v��2 /2−��x , tmax�. That is, for each �x ,v� in the simu-
lation domain, we plot f�x ,v� vs ��x ,v�, resulting in the
single curve shown in Fig. 5. The fact that the points in this
scatter plot fall on a single curve shows that the electron
distribution f is a function of the energy � alone, as expected
for a BGK distribution. By using this distribution in the BGK
formalism3 for the phase velocity v�=1.7 and the electric
potential amplitude Esat /k�0.35, we get a sinusoidal solu-
tion whose wavelength is �BGK�19.5, which is very close to
the wavelength of the electric perturbation in the simulation
��=20�.

B. Effect of collisions

For a PIC simulation with one spatial dimension and

FIG. 8. �Color online� The coalescence and merging of four phase space
holes.
with grid spacing smaller than the Debye length ��x /�D
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�1/6 in our simulations�, the effective collision time is
longer than t=�p

−1n�D, where n=N /Lx is the one-
dimensional �1−D� density of particles in the simulation.5 In
scaled units, the collision time is larger than t=N /Lx�5
�105 �for Lx=20�D�, which is much longer than duration of
our runs tmax=4000. This estimate is consistent with the em-
pirical observation that the EAW in Fig. 2 persists at a nearly
constant amplitude after the driver is turned off. To deter-
mine the effect of collisions on the EAW lunching process,
we explicitly add collisions to the simulation using a Lange-
vin model. The equation of motion for each electron is taken
to be

dv
dt

= E�x,t� + R�t� − 
v , �4�

where −
v is the collisional drag, 
 is the collision fre-
quency, and R�t� the stochastic acceleration. Each time step,
�t, the stochastic acceleration term provides a velocity step
�v of random sign. This step produces velocity diffusion
with diffusion coefficient Dv= ��v�2 /2 �t. According to the
Einstein relation, the collision frequency and diffusion coef-
ficient are related through 
=Dv. �Recall that vth

2 =1 in scaled
units.�

As mentioned earlier, collisions introduce a competition
between the effort of trapping to produce a plateau and the
effort of velocity diffusion to smooth out the plateau. An
estimate of the time for collisional velocity diffusion to
smooth out a plateau of width �v is �diff���v�2 /2Dv
= ��v�2 /2
. For small �v /vth, this time is much smaller than

−1; physically, the time for a small angle scattering ���
��v /vth� is much smaller than the time for an effective 90°
scattering. For a plateau width corresponding to trapping in
the driver field �i.e., ��v�2 /4=ED

max/k�, the time to smooth
out the plateau is �diff�2ED

max/ �k
�. As a measure of the
competition between trapping and collisional smoothing we
introduce the time scale ratio

r =
�diff

�trap
=

�ED
max�3/2

�
k1/2 , �5�

where �trap=2� /�kED
max is the trapping period for the maxi-

mum driver amplitude.
We consider the evolution of the plasma electric field for

three values of the parameter r. In each case the driver elec-
tric field is as specified earlier and the phase velocity is the
resonant value v�=1.7. The case of negligibly weak colli-
sionality �i.e., r	1� is the bottom graph in Fig. 2. A case of
intermediate collisionality �r�9.3� is the top graph in Fig. 6.
For this case, the plasma electric field is driven resonantly to
large amplitude while the driver is on, but then damps away
when the driver is turned off. A case of stronger collisionality
�r�1.14� is shown as the bottom graph in Fig. 6. Here, the
plasma electric field remains small, since collisions effec-
tively preclude the formation of a trapped particle plateau.
We conclude that the condition r�1 specifies a threshold for

the launching of EAWs.
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C. Decay instability

Returning again to the case where the plasma is colli-
sionless, we note again that the EAW in the bottom graph of
Fig. 2 rings at nearly constant amplitude after the driver is
turned off. However, the wavelength for this mode is the
longest wavelength that fits in the simulation domain, so the
constant amplitude is no guarantee against decay to a longer
wavelength mode. Moreover, previous theory suggested that
BGK modes with trapped particles may be subject to such
decay instabilities.7–11

To investigate the possibility of decay to a longer wave-
length mode, we replicate the mode periodically in space and
use it as the initial condition for a simulation in a longer
domain. The matching from wavelength to wavelength is
smooth since periodic boundary conditions were used in the
initial simulation.

Figure 7 shows a temporal sequence of phase space con-
tours for the case where the simulation domain has been
doubled in length �Lx=20→Lx=40�. The contour plot for t
=0 is simply two copies of the plot in Fig. 4 placed side by
side. The t=0 plot shows two vortex-like structures repre-
senting trapped particles. The sequence of plots shows a pro-
gressive merger of the two vortices until there is only a
single vortex at t=4000. A decay instability has transferred
the energy from mode 2 �i.e., k=2·2� /40=� /10�, to mode 1
�i.e., k=1·2� /40=� /20�; that is, to the longest wavelength
that fits in the simulation domain.

Also, we have carried out simulations for Lx=80 �four
initial vortices� and again observed merger to a single vortex.
Figure 8 shows phase space contour plots for the times t=0,
2400, and 4000, and Fig. 9 shows the time evolution of the
electric field for the modes n=1,2 ,3, and 4. Initially, mode 4
�i.e., k=4· �2� /80�=� /10� is excited, but begins to decay at

FIG. 9. Time evolution of the electric field spectral compon
t=1000. By t=2400, mode 1 has reached a constant ampli-
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tude, and merger to a single vortex has taken place. How-
ever, even at the end of the run �t=4000�, there is significant
energy content in modes 2 and 3, since the wave structure is
distorted from sinusoidal.

From these observations, we expect that merger to a
single vortex �or decay to the longest mode� is a general
tendency for EAWs. This would be consistent with observa-
tions for the merger of phase space vortices in other situa-
tions, such as the vortical holes that result from the two
stream instability.7–11
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