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Cold-fluid and warm-fluid electrostatic plasma modes of magnetized nonuniform plasmas are
determined as eigenfunctions of an integral equation describing the perturbed fluid displacement.
The frequencies of these displacement eigenmodes are always real. In some cases, the modes are
singular and form a continuous spectrum, and this causes spatially Landau-damped quasimodes to
appear in the response to initial perturbations. In other cases the spectrum is discrete.
Finite-temperature frequency shifts, of interest as a temperature diagnostic, are evaluated and
compared to analytic theory. ©2005 American Institute of Physics. fDOI: 10.1063/1.1854153g

I. INTRODUCTION

This paper examines linear electrostatic plasma oscilla-
tions in inhomogeneous magnetized plasmas, using cold-
fluid and warm-fluid theory. Linear fluid theory for electro-
static plasma modes in a bounded plasma is often formulated
as a differential equation for the plasma potential1–3 or,
equivalently, the electric field. Here, by introducing a
Green’s function for the potential, the theory is recast as an
integral equation for the perturbed fluid displacement along
the magnetic field. The approach is similar to that taken by
Case and Van Kampen in formulating the kinetic theory of
plasma waves as an integral equation for the velocity distri-
bution function.4,5 Our approach is particularly useful when
cross-magnetic-field drift motion can be ignored in the wave
dynamics, as is assumed here.

Our integral equation involves a linear operatorÂ that
we refer to as theacceleration operator. The action of this
operator on a given fluid displacement yields the acceleration
associated with this displacement. An eigenmode of the sys-
tem with frequencyv is an eigenfunction of this operator,
with real eigenvalue −v2; i.e., it is a special fluid displace-
ment sa displacement eigenmoded for which the correspond-
ing acceleration has the same functional form, except for a
constant of proportionality equal to −v2.

This approach has several advantages: the acceleration
operator is Hermitian, so the displacement eigenmodes form
a complete orthogonal set. Any initial value problem can be
solved using a superposition of these eigenmodes. Also,
since the eigenfrequencies can be easily found numerically
from the eigenvalues of a matrix, one can determine the evo-
lution of perturbations about arbitrary plasma equilibria, in-
cluding finite-temperature corrections. Furthermore, the dis-
placement eigenmodes are only required inside the plasma,
so vacuum regions surrounding the plasma need not be
treated. This simplifies the numerics.

The approach is applied to determine eigenmodes for
several different equilibria. For the case of plasma pancakes
si.e., slab geometryd with continuously varying equilibrium
densityn0szd, we find that in cold-fluid theory the spectrum
of displacement eigenmodes is continuous and the eigen-

modes are singular, resulting in spatial Landau damping of
initial perturbations. The physical mechanism of the damping
is emission of magnetized plasma waves at a resonance layer.
This collisionless damping mechanism is well known.6–8

However, when warm-fluid effects are added to the
eigenmode dynamics, and whenn0szd is given by the thermal
equilibrium density profile associated with a non-neutral
plasma, the spectrum is discrete and there is no spatial Lan-
dau damping.

On the other hand, for spherical non-neutral plasmas in
thermal equilibrium at finite temperature, we again find a
continuous spectrum of singular displacement eigenmodes,
resulting in spatial Landau damping. The physical mecha-
nism of the damping again appears to be emission of mag-
netized plasma waves at a resonance layer, in close analogy
to the mechanism of collisionless damping in unmagnetized
fluid plasmas,6–8 although several aspects of the process are
not yet well understood.

For both slab and spherical geometries finite-temperature
mode frequency shifts, which can be used as a temperature
diagnostic,9,10 are compared to results of perturbation
theory11 for the frequency shifts, and the perturbation theory
is shown to work well for sufficiently low temperatures.

In Sec. II we develop the general theory of displacement
eigenmodes. In Sec. III we discuss numerical methods for
evaluation of the eigenmodes, and examine the results of
these evaluations in slab and spherical thermal equilibria.
Section IV summarizes the results and discusses several open
questions.

II. GENERAL THEORY

We first review the warm-fluid description of electron
plasma waves in an inhomogeneous magnetized plasma, and
then derive the equations describing displacement eigen-
modes. Assuming that the magnetic field is uniform,B=Bẑ,
these magnetized plasma waves are described by the follow-
ing momentum, continuity, and Poisson equations:

mene
d2Z

dt2
= ene

]f

]z
−

]p

]z
, s1d
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D = 0, s2d

¹2f = 4pesne − nbd, s3d

where Zsr ,td is the axial displacement of a fluid element,
nesr ,td and psr ,td are the electron density and pressure, re-
spectively,fsr ,td is the electrostatic potential, andnbsr d is a
static background charge, provided either by ions or by rota-
tion through the magnetic fieldsas in the case of a non-
neutral plasmad. Only displacements along the magnetic field
are kept in Eqs.s1d and s2d: the plasma is assumed to be in
the regime vp!Vc swhere vp and Vc are the electron
plasma and cyclotron frequencies, respectivelyd, so thatE
3B drifts and cyclotron motion are neglected.

In equilibrium, the electron densityn0sr d, pressurep0sr d,
and potentialf0sr d satisfy time-independent limits of Eqs.
s1d–s3d,

0 = en0
]f0

]z
−

]p0

]z
, s4d

¹2f0 = 4pesn0 − nbd, s5d

and these, together with an ideal-gas equation of state

p0 = n0T, s6d

allow one to uniquely determine the plasma equilibrium,
given the boundary conditions on the potential. In what fol-
lows we will assume that the electron temperatureT is uni-
form.

Equations describing small perturbations away from this
equilibrium are found by subtracting Eqs.s4d and s5d from
Eqs. s1d and s3d and linearizing, writingf=f0+df, ne=n0

+dn, p=p0+dp, andZ=dZ.
These perturbations are assumed to have time depen-

dence of the forme−ivt. The resulting linearized fluid equa-
tions are

− men0v2dZ = en0
]df

]z
+ edn

]f0

]z
−

]dp

]z
, s7d

dn +
]

]z
sn0dZd = 0, s8d

¹2df = 4pedn. s9d

In addition, an adiabatic equation of state for the pressure
perturbations is employed:dsp/ne

gd /dt=0, whereg=3 is the
ideal-gas ratio of specific heats for 1 D motions along the
magnetic field. Linearization of this equation yields

dp = − dZ
]p0

]z
− gp0

]dZ

]z
. s10d

These equations can be reduced by combining Eqs.s4d, s6d,
s8d, ands10d with Eq. s7d:

− v2dZ =
e

me

]df

]z
+ v2]2ln n0

]z2 dZ +
gv2

n0

]

]z
Sn0

]dZ

]z
D ,

s11d

wherev=ÎT/me is the electron thermal speed, and

¹2df = −
]

]z
s4pen0dZd. s12d

Equationss11d and s12d form a coupled set fordZ and df,
which may be solved given appropriate boundary conditions.
Here we will assume homogeneous Dirichlet conditions on
df. The boundary conditions ondZ depend on the form of
the equilibrium densityn0. Assuming the plasma is contained
away from surrounding electrodes so thatn0→0, the singu-
larity in the last term of Eq.s11d implies that the general
solution will typically have singular behavior in the vacuum
region. An eigenvalue problem can then be specified by sim-
ply requiring thatdZ remain finite outside the plasma.

For a homogeneous plasma, a dispersion relation follows
by assuming perturbed quantities vary aseik·r , wherek is the
wave number. Equationss11d and s12d then reduce to

v2 = vp
2kz

2

k2 + gv2kz
2, s13d

the well-known dispersion relation for magnetized electron
plasma waves.12 However, for a nonuniform plasma Eqs.
s11d and s12d must generally be solved numerically.

The approach taken in this paper is to recast these equa-
tions in the form of a single integral equation fordZ. This is
accomplished by solving Eq.s12d via a Green’s function
Gsr ,r 8d that implicitly accounts for the homogeneous
boundary conditions imposed ondf:

dfsr ,td = − 4peE d3r 8Gsr ,r 8d
]

]z8
fn0sr 8ddZsr 8,tdg,

s14d

whereG satisfies the homogeneous boundary conditions, and

¹2Gsr ,r 8d = dsr − r 8d. s15d

Integrating by parts in Eq.s14d and substituting the result
into Eq. s11d leads to an eigenvalue problem

− v2dZ = ÂdZ, s16d

whereÂ is an integrodifferential operator, defined below by
its action on an arbitrary functionfsr d:

Âf ;E d3r8vp
2sr 8d

]2G

]z] z8
sr ,r 8dfsr 8d

+ v2F ]2ln n0

]z2 fsr d +
g

n0

]

]z
Sn0

] f

]z
DG , s17d

andvp
2sr d=4pe2n0sr d /me. Thus, normal mode frequenciesv

are given by the eigenvalues of the operatorÂ, with corre-
sponding eigenfunctionsdZ. Physically, this operator yields
the acceleration associated with a given displacement from
equilibrium, and is therefore referred to as the acceleration
operator.
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The acceleration operatorÂ is Hermitian with respect to
the following inner product:

sf,gd ; E d3rf *sr dgsr dvp
2sr d, s18d

where f andg are arbitrary functions. Therefore, eigenfunc-

tions dZsr d of Â form a complete orthogonal set and eigen-
valuesv2 are real.

This implies that the evolutiondZsr ,td of any initial
axial displacementdZ0sr d or initial axial velocitydV0sr d can
be written as a superposition of these eigenmodes:

dZsr ,td = o
v
H sdZv,dZ0d

sdZv,dZvd
dZvsr dcosvt

+
sdZv,dV0d

vsdZv,dZvd
dZvsr dsinvtJ , s19d

where dZvsr d is the eigenmode corresponding to eigenfre-
quencyv.

It remains only to determine the eigenmodes ofÂ. In the
following section we evaluate these eigenmodes numerically
for several cases, and compare the results to known theory
for the modes.

III. DISPLACEMENT EIGENMODES

A. General remarks on the cold-fluid limit

In the cold-fluid limit, the pressure term in Eq.s1d is
negligible. Terms in the acceleration operator proportional to
thermal speed are dropped, yielding a cold-fluid acceleration

operatorÂ0 given by only the first term in Eq.s17d:

Â0dZ =E d3r8vp
2sr 8d

]2G

]z] z8
sr ,r 8ddZsr 8d. s20d

Cold-fluid eigenmodes can alternately be written as solutions
to a differential equation involving the potential rather than
the displacement. Using Eqs.s7d ands12d, it is easy to show
that

v2¹2df =
]

]z
Svp

2]df

]z
D . s21d

This form of the eigenvalue problem has the advantage that

it is local as opposed to the integral operatorÂ0. On the other
hand, it is not a standard eigenvalue problem, but rather a
generalized eigenvalue problem requiring somewhat more
complex numerical methods to determine the eigenmodes.2

Also, unlike displacement eigenmodes, the potential eigen-
functions do not form a complete orthogonal basis. This cre-
ates difficulties when evaluating the time-dependent re-
sponse to an initial perturbation, since there is no expansion
involving df that is equivalent to Eq.s19d.

Nevertheless, a useful analytic result follows from the
simple form of Eq.s21d: one can show that eigenfrequencies
fall in the range 0,v2,Maxsvp

2d. By application of
ed3rdf* to both sides of Eq.s21d, an integration by parts
then yields

E d3rsv2u¹'dfu2 + sv2 − vp
2du]df/]zu2d = 0, s22d

where ¹'=s] /]x,] /]yd. It is only possible to satisfy this
equation if the second term is negative over some region of
r , which implies thatv2,Maxsvp

2d. On the other hand, if
v2,0, then the integrand is everywhere negative, which also
prohibits a solution. Therefore, 0,v2,Maxsvp

2d.

B. Slab geometry

1. Cold-fluid limit, top-hat profile

As a first test of the displacement eigenmode method, we
will consider a top-hat profile for which

vpszd = vb uzu , L

= 0, uzu . L, s23d

wherevb is a constant plasma frequency.
For a uniform-density plasma slab in free space, running

from −L,z,L, the solution of Eq.s21d for the potential
eigenmodes breaks into even and odd modes. Inside the
plasma, this mode potential has the form

dfsr d = sin
scosd fk'z/«svdgeik'·sx,yd s24d

with frequencies satisfying

fsvd = 0, s25ad

where

fsvd =
1

«svd
tanS k'L

«svd
D − 1 s25bd

for df odd in z,

fsvd = «svd tanS k'L

«svd
D + 1 s25cd

for df even in z, and where«svd=Îvb
2/v2−1. For given

k'L, Eq. s25ad can be solved numerically. Examples are
shown in Fig. 1 fork'L=1 sthe circlesd. Here, the positive
integern counts the modes in order of their frequency.

FIG. 1. sColor onlined. Cold-fluid and warm-fluid normal mode frequencies
for k'L=1. The integern enumerates the modes in order of their frequen-
cies. Circles are solutions of Eq.s25d, crosses are from discretized displace-
ment eigenmodes, Eq.s28d. For lD /L=0, cold-fluid dynamics is used and
the equilibrium is a uniform plasma slab of thickness 2L sa top-hat profiled.
For lD /L=0.075, warm-fluid dynamics is used and the equilibrium is the
corresponding thermal equilibrium profilessee Fig. 3d.
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In order to solve this problem using the displacement
eigenmodes for a plasma slab, we first note that the Green’s
function for perturbations of the formdZsr d=cszdeik'·sx,yd

can be written as

Gsr ,r 8d = −
eik'·fsx,yd−sx8,y8dg

2k'

e−k'uz−z8u. s26d

Using this result in Eq.s20d implies that cold-fluid displace-
ment eigenmodes of a plasma slab satisfy

− v2cszd = − vp
2szdcszd +E dz8

k'

2
e−k'uz−z8uvp

2sz8dcsz8d.

s27d

We solve for the eigenmodes numerically by discretizing
cszd on a uniform gridzj =z0+ jDz, 0ø j øM. Then Eq.s20d
becomes

− v2c j = Ajkck, s28d

where the matrixAjk is a discretized form ofÂ0:

Ajk = − vp
2szjdd jk +

k'Dz

2
e−k'uzj−zkuvp

2szkd. s29d

Note that a grid is needed only wherevp
2szd is nonzero: there

is no need to deal with vacuum regions outside the plasma,
since boundary conditions are already built into the Green’s
function. Also, Ajk is Hermitian with respect to the finite-
differenced inner productsf ,gd=o j f j

*gjvp
2szjd, sov2 must be

real.
Numerical error in the eigenfrequencies and eigenfunc-

tions is introduced by this discretization, but can be mini-
mized if z0 and Dz are chosen appropriately. Takingz0=−L
+Dz/2 andDz=2L / sM +1d yields a symmetric grid that is
matched to the sharp plasma boundary, and for which the
discretization error is ofOfsDz/Ld2g. Other nonoptimal grid
choices do not necessarily match the sharp boundary and
yield larger errors ofOsDz/Ld. Even so, for sufficiently fine
grid the method works admirably. Examples are displayed in
Figs. 1 and 2 assumingk'L=1, and for an unoptimized grid,
taking M =100 andz0=−1.1L, and Dz=2uz0u /M which in-
cludes a small vacuum region outside the plasma. Even with
this poor grid choice, frequencies match the expected theory

result fork'L=1 to an accuracy of a few parts in 10−4. The
eigenfunctions for the lowest three modes are displayed in
Fig. 2. These also closely match the expected form given by
Eq. s24d.

The lowest frequencysn=1d mode represents a “drum-
head” type of displacement, where the slab as a whole is
displaced inz aseik'·sx,yd−ivt. Then=2 mode is a “breathing
mode” where the slab expands and contracts. Increasingn
corresponds to shorter axial wavelength and higher fre-
quency, approachingvb, as expected qualitatively from the
cold-fluid limit of the homogeneous dispersion relation, Eq.
s13d.

2. Cold-fluid limit, continuous profile

Next, we consider a continuous density profile. Although
any density dependence could in principle be chosen, we
focus here on thermal equilibrium profiles associated with
non-neutral plasmas,13 since they are of current experimental
interest.9,10,14The thermal equilibrium densityn0szd satisfies
Eqs. s4d–s6d, yielding the following equations forvp

2szd
=4pe2n0szd /me:

vp
2szd = vb

2exszd, s30d

wherexszd satisfies

lD
2 d2x

dz2 = ex − 1, x8s0d = 0, xs0d = − «, s31d

and wherelD=ÎT/4pe2nb is the constant Debye length as-
sociated with the uniform background densitynb, vb

2

=4pe2nb/me, and« is chosen so that

E
−`

`

dzn0szd = 2Lnb. s32d

This constraint condition keeps the total particle number
fixed as temperature varies.

Normalizingn0szd to nb, and normalizing distances toL,
Eqs.s31d ands32d may be seen to depend on a single param-
eter, lD /L. We solve these equations numerically. For
lD /L=0.075,n0szd is displayed in Fig. 3. Using these density
profiles in Eq.s29d, the grid is chosen so that it starts and

FIG. 2. sColor onlined. The first three cold-fluid displacement eigenmodes
for a uniform plasma slabsa top-hat profiled, assumingk'L=1.

FIG. 3. sColor onlined. Thermal equilibrium density profile for three tem-
peratures:lD /L=0 sa top-hat profile given by the solid lined, lD /L=0.075
sdotted lined, lD /L=0.2 sdashed lined.

042107-4 Daniel H. E. Dubin Phys. Plasmas 12, 042107 ~2005!

Downloaded 04 Apr 2005 to 132.239.73.69. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



ends well outside the plasma; we takez0/L=−1.5 andDz
=2z0/M for M =200. Resulting numerical mode frequencies
for k'L=1 are displayed in Fig. 4.

The cold-fluid displacement mode frequencies now form
a continuous spectrumsthe circles in Fig. 4d. Even more
striking differences from the top-hat profile can be seen in
the displacement eigenfunctionssFig. 5d, which display sin-
gularities at the locationsz=zr wherev2=vp

2szrd. Physically
these singularities arise because an eigenmode with fre-
quencyv resonates with the local plasma frequencyvpszrd.
Since these eigenfunctions are singular, they cannot be ex-
cited individually. Rather, wave packets of eigenfunctions
contribute to the response to initial perturbations, through
Eq. s19d. For a continuous spectrum, the sum over frequen-
cies in this equation becomes an integral.

Numerical error is introduced through discretization,
which turns the integral back into a sum over the numerical
eigenmodes. This implies that the numerical solution given
by Eq. s19d breaks down for times so large thateivt varies
rapidly in v compared to the frequency differencedv be-
tween adjacent numerical eigenmodes. That is, the numerical
solution breaks down for timest such that15

dvmt * 1, s33d

where dvm is the maximum frequency difference between
adjacent eigenmodes in the numerical spectrum. For continu-
ous density profiles,dvm=OsDzd.

A continuous spectrum indicates the possibility of
damped quasimodes in the response of the system to a given
initial condition. These quasimodes are wave packets of
eigenmodes with a roughly Lorentzian spectral shape cen-
tered on top-hat profile mode frequencies. They can be un-
covered by using top-hat eigenmodes as initial conditions in
Eq. s19d. An example is displayed in Figs. 6 and 7. Taking
dV0=0 anddZ0 as the top-hat eigenmode forn=2 k'L=1
ssee Fig. 2d, the excitation spectrumsdZv ,dZ0d / sdZv ,dZvd is
shown in Fig. 6. One can see a peak in this spectrum cen-
tered near the cold-fluid frequency for this mode,v /vb

=0.897.
However, the peak is broadened, which causes spatial

Landau damping. A global measure of the overall mode am-
plitude,

dkz2lstd ;
E dzdnsz,tdz2

E dzdnsz,0dz2

is displayed in Fig. 7. This global measure displays the spa-
tial Landau damping associated with a quasimode with

FIG. 4. sColor onlined. Main plot shows both cold-fluidscirclesd and warm-
fluid scrossesd displacement mode frequencies for a single equilibrium den-
sity profile given by the dotted line in Fig. 3. We takeM =200, and a grid on
z=−1.5 to 1.5. Inset shows the first 20 warm-fluid mode frequencies for
dynamics with temperature such thatlD /L=0.01, for bothM =200 and 400.
There is no discernible difference betweenM =200 andM =400, indicating
that the spectrum is discrete.

FIG. 5. A cold-fluid displacement eigenmode for the equilibrium density
given by the dotted line in Fig. 3, assumingk'L=1. This mode corresponds
to the peak of the excitation spectrum shown in Fig. 6.

FIG. 6. Excitation spectrum of cold-fluid eigenmodes of the equilibrium
density profile given by the dotted line in Fig. 3. The initial conditiondZ0 is
an n=2, k'L=1 top-hat displacement modefsee Fig. 2 and Eq.s19dg.

FIG. 7. sColor onlined. Temporal evolution ofdkz2l following from the
excitation spectrum shown in Fig. 6.
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damping raten /vb=0.0374. That is, then=2 breathing
“mode” is damped, even though all displacement eigen-
modes have real frequencies.

In Fig. 8,dZsz,td is displayed three times, and the physi-
cal mechanism of the damping becomes apparent. Filamen-
tary structures form indZsz,td around the resonance atz
=zr. These structures are localized bulk plasma oscillations
that are driven by the global fluid mode.

This spatial Landau damping of the cold-fluid plasma
response is well known from the early days of plasma
physics.6–8 A similar quasimode analysis to that used here
has also been applied to spatial Landau damping of diocotron
quasimodes.15 The damping rate of the quasimodes can be
determined by the method of contour deformationssee Ap-
pendix Ad with the result that, for weakly damped modes, the
complex quasimode frequencyv is given by the solution to

fsvd = −
ipv0

2k'

u]vp
2/]zuz=zr

, s34d

wherev0 is the real solution to the top-hat mode equation,
Eq. s25d. According to this equation, the low-order quasi-
modes with the lowest real frequencies have resonances at
the plasma edge whereu]vp

2/]zuz=zr
is large, and therefore are

less heavily damped than higher order higher frequency
modes withv→vb.

In Fig. 9 we display the spatial Landau damping rate
predicted by Eq.s34d for then=2 quasimode as a function of
k'L, taking equilibrium density profiles for whichlD /L
=0.075sthe solid lined andlD /L=0.04 sthe dashed lined. In
the same figure we also display the damping raten obtained
from fitting an exponentially decaying oscillation to
dkz2lstd in the range 0,vbt,100. For several of the points
we also fit only data in the range 50,vbt,100. The differ-
ence in the resulting rate indicates that the decay is not

purely exponential at all times. This is expected theoretically
since exponential Landau damping is valid only in the time-
asymptotic limit. The points match the theory for an equilib-
rium profile with lD /L=0.04 better than forlD /L=0.075
because in the former case the profile has a sharper density
fall-off at the edge, making the assumptions behind Eq.s34d
a better approximation.

The preceding eigenmode analysis used cold-fluid theory
to evaluate the plasma eigenmodes of continuous density
profiles such as that given by the dotted line in Fig. 3. This
sort of profile could occur in cold-fluid theory if the back-
ground density were due to ions with this nonuniform-
density distribution. In the cold-fluid limit electrons would
match their density to this profile, and the preceding analysis
of the continuous spectrum would apply. However, in a ther-
mal equilibrium non-neutral plasma confined in a Penning
trap, nb is constant and the nonuniform density arises from
thermal effects. To properly solve for the modes of a non-
neutral plasma, we should include these thermal effects in
the eigenmode equation.

FIG. 10. sColor onlined. The first three warm-fluid displacement eigen-
modes of a thermal equilibrium plasmassee Fig. 3d for k'L=1, andlD /L
=0.075 in both the equilibrium and the dynamics. Corresponding frequen-
cies are shown in Fig. 1.

FIG. 8. Cold-fluid displacementdZsz,td for then=2 quasimodessee Fig. 2d
at three times. The plasma equliibrium is taken to be the dotted line in Fig.
3, andk'L=1 is assumed.

FIG. 9. sColor onlined. Spatial Landau damping raten of the n=2 quasi-
mode vsk', assuming cold-fluid dynamics, for two equilibrium density
profiles; one with a sharp edgeslD /L=0.04d and one with a broader edge
slD /L=0.075d ssee Fig. 3d. Lines: Eq. s34d. Dots: fits to the decay of
dkz2lstd, as in Fig. 7. Squares:lD /L=0.04. Solid circles:lD /L=0.075.
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3. Warm-fluid effects on a continuous profile

The behavior of the displacement eigenmodes changes
dramatically when finite temperature-effects are added to the
eigenmode equation, which now becomes

− v2cszd = − vp
2szdcszd +E dz8

k'

2
e−k'uz−z8uvp

2sz8dcsz8d

+ v2F ]2ln n0

]z2 cszd +
g

n0

]

]z
Sn0

]c

]z
DG . s35d

We solve this problem numerically using the same finite-
difference scheme as before. For the term involving the de-
rivatives ofc, we use the following difference scheme:

1

n0szd
]

]z
USn0

]c

]z
DU

z=zj

=
1

n0szjd
Fn0szjd + n0szj+1d

2

c j+1 − c j

Dz2

−
n0szjd + n0szj−1d

2

c j − c j−1

Dz2 G s36d

which is second-order accurate inDz, and Hermitian.
We calculate numerical results fork'L=1 and lD /L

=0.075, the same case as we studied previously. The warm-
fluid corrections completely change the character of the
eigenmodes. The frequency spectrum is again discretesFig.
1d, and eigenfunctions are no longer singularsFig. 10d. This
is because the restoring force from plasma pressure smoothes
out rapid density variations in the low-order modes. The
mode frequencies increase above the maximum plasma fre-

quencyvb as the mode numbern increases, also due to the
effect of plasma pressure on the modes, as expected qualita-
tively from Eq. s13d staking kz~n/L in that equationd. For
low temperatures, the form of the eigenfunctions is similar to
that for zero temperature, as may be seen by comparing Fig.
10 to Fig. 2. There is no spatial Landau damping of these
modes. Mode frequencies are shifted upward as temperature
increasessFig. 11d.

For low temperatures, one can analytically predict the
shift in the mode frequencies11 due to finite temperature. The
frequency shiftDv is predicted to be

Dv =
v0lD

2

2

FK¹2U ]df

]z
U2L −

vb
2

v0
2K ]2

]z2U ]df

]z
U2L +

gvb
2

v0
2 KU ]2df

]z2 U2LG
KU ]df

]z
U2L , s37d

wherev0 anddf are the frequency and potential eigenmode
at T=0, respectivelyfgiven by Eqs.s24d and s25d for slab
geometryg, and k l is a volume average over the interior of
the uniform-density zero-temperature plasma. The analytic
prediction fork'L=1 matches the numerically defined fre-
quencies for the lowest modes, provided thatlD /L is small
sFig. 11d.

4. Disappearance of spatial landau damping

We consider how and why spatial Landau damping dis-
appears when thermal pressure effects are added to the
eigenmode equation. We will study the behavior of the sys-
tem for afixedcontinuous density profile, given by the dotted
line in Fig. 3sthelD /L=0.075 cased, and allow the tempera-

ture T in the eigenmode equation to vary independently. For
T=0, we obtain the continuous cold-fluid spectrum consid-
ered in Sec. III B 2, and forT chosen so thatlD /L=0.075 we
obtain the discrete spectrum discussed in Sec. III B 3. For
intermediate values ofT such that 0,lD /L,0.075 in the
eigenmode equationsbut fixed density profiled, we find that
the spectrum is still discrete. An example spectrum is shown
in Fig. 4, for lD /L=0.01 andk'L=1. Although the mode
frequencies are closely spaced, their values become indepen-
dent ofM asM increases, at least for those low-order modes
with frequencies belowvb ssee the inset to Fig. 4d.

As lD /L→0, the spacingdv between the eigenmodes
approaches zeroswithin numerical resolutiond. Although in-
dividual eigenmodes are not singular for small but finite
lD /L, they display rapid variation outside the plasma, and so
cannot be excited individually by initial conditions for which
dZ0(z) is slowly varying inz. Rather, such initial conditions

FIG. 11. sColor onlined. Warm-fluid mode frequencies vs temperature for
the first three displacement eigenmodes of a thermal equilibrium plasma,
wherelD is the Debye length associated with both the equilibriumssee Fig.
3d and the dynamics, and assumingk'L=1. Circles are numerical results,
lines are Eq.s37d.
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excite a range of eigenmodes, just as in the cold fluid limit.
This leads to dynamics that is almost indistinguishable from
dynamics in the cold fluid limit.

For example, consider the evolution of the samen=2
k'L=1 initial condition as considered previously, in Secs.
III B 2 and III B 3. Results fordkz2lstd are shown in Fig. 12
for several temperatures in the eigenmode dynamics. For
very small lD /L, say lD /L=0.005, we observe the same
behavior as forT=0: filamentation and spatial Landau damp-
ing of the smooth initial perturbation. This is not surprising
since the spacingdv between modes is so small that the
spectrum is nearly continuous. However, asT increases,dv
increases and the time over which spatial Landau damping
occurs is reduced; it is as if we have introduced a finite grid
error into the response. According to Eq.s33d, we expect to
see the spatial Landau damping only for timest such that
dvm&1, wheredvm is the maximum spacing between adja-
cent modessdue now to thermal effects, not numerical grid
resolutiond. This is in fact what our numerical solutions
show. For short times, Landau damping occurs as in theT
=0 case, but for large times the solution no longer decays.

Thus, we expect Landau damping to disappear entirely
whenn&dvm, wheren is the Landau damping rate for cold-
fluid dynamics. This inequality is well-satisfied when the
eigenmode dynamics has the same temperature as the equi-
librium. For instance, whenlD /L=0.075,dvm/vb,0.2 ssee
Fig. 1d but n /vb=0.0374 ssee Fig. 7d. This explains why
Landau damping was not observed in the warm-fluid results
of Sec. III B 3.

5. Kinetic effects

Spatial Landau damping of plasma modes is purely a
fluid effect: a quasimode resonantly excites short wavelength
plasma waves, filamenting the densitysFig. 8d. However,
wave-particle resonance can cause filamentation and phase
mixing of thevelocitydistribution that induceskinetic Lan-
dau damping. While the competition between spatial and ki-
netic Landau damping has been considered in certain
geometries,16 its effect on normal modes of a plasma slab has
not been elucidated, to our knowledge.

Qualitatively, however, one might imagine that kinetic
Landau damping would be important if the kinetic Landau
damping rate is as large as the spatial Landau damping rate
n, and would not be important otherwise. For a plasma slab
calculation of the kinetic rate involves evaluation of multiple
bounce resonances in the particle dynamics, and is rather
involved. Here, we simply estimate the kinetic rate using the
formula for an infinite plasma,

nk = vÎp/8Svf

v
D3

e−1/2svf/v̄d2, s38d

wherevf=v /kz is the phase velocity of the mode, and we
take for kz the wave number associated with a cold-fluid
eigenmodefsee Eq.s24dg, kz=k' /«snd. This kinetic damping
rate is plotted in Fig. 13 for two values oflD /L, as a func-
tion of k'L, for the n=2 top-hat modessee Fig. 2d. For
k'L&1, nk is negligible, and we might then expect to see the
effects associated with spatial Landau damping. However, a
definite answer to this question must await further calcula-
tion.

C. Penning trap geometry, continuous profile, warm-
fluid effects

Displacement eigenmodes can also be numerically
evaluated for plasmas confined in the cylindrical geometry
typical of Penning traps, where the equilibrium density is
n0=n0sr ,zd in cylindrical coordinates. We finite difference
Eq. s17d on a uniform rectangular grid inr andz,

r j = Drs j − 1/2d, j = 1,…M

s39d
zk = − L + sk − 1/2dDz, k = 1,…,M

whereDz=2L /M, and Dr=L / sM −1/2d. For simplicity we
use anM 3M grid in a rectangular region with a fixed aspect
ratio of 2:1, but it is easy to generalize to grids with unequal
numbers of points in ther and z directions and to regions
with variable aspect ratio. The warm-fluid part of the

FIG. 12. sColor onlined. Time evolution of then=2 quasimode fork'L=1
for four temperatures in the dynamics, keeping the equilibrium density pro-
file fixed sthe dotted line in Fig. 3d.

FIG. 13. sColor onlined. Estimate of the rate of kinetic Landau dampingnk

for the n=2 modessee Fig. 2d for two temperatures, vs perpendicular wave
numberk'; to be compared to Fig. 9.
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acceleration operator is differenced using the same scheme
as in Eq. s36d. For the cold-fluid part of the acceleration
operator, we note thatG=Gsr ,r8 , uz−z8ud, and that this func-
tion varies rapidly whenr<r8 andz<z8. Therefore we use
the following difference scheme: writingdZij ;dZsri ,zjd,

sÂ0dZdi j = 2po
k,

vp
2srk,z,drkDrDzGsri,rk,zj,z,ddZk,,

s40d

where

Gsri,rk,zj,z,d ; 5]2Gsri,rk,uzj − z,ud/]zj ] z,, Dr ijk, . 5Dr

E
rk−Dr/2

rk+Dr/2

r8dr8E
z,−Dz/2

z,+Dz/2

dz8
]2G

]zj ] z8
sri,rk,uzj − z8ud/rkDrDz, Dr ijk, , 5Dr

s41d

andDr ijk,=Îsri −rkd2+szj −z,d2.
The integral over a grid cell is performed when the rela-

tive displacementDr ijk, between source and field point is
small sless than 5Drd, so as to account for the rapid variation
of the Green’s function in this region. Here thez8 integral
can be performed analytically via the fundamental theorem
of calculus, and in some cases the radial integral can also be
performed analytically, depending on the form of the Green’s
function. The asymmetry in Eq.s41d between field and
source points implies that the discretized acceleration opera-
tor is not perfectly Hermitian; however as a practical matter
the negative consequences of thissi.e., small imaginary com-
ponents to the frequenciesd are far outweighed by the supe-
rior accuracy of the discretized integral over source points.

We will concentrate here on free-space boundary condi-
tions where the plasma is far from any boundaries, so that
the mode potential vanishes at`. We also specialize to cy-
lindrically symmetric eigenmodes. In this case the Green’s
function required in Eq.s41d is

Gsr,r8,zd = −
1

2p2

Ks− 4rr8/fsr − r8d2 + z2gd
Îsr − r8d2 + z2

, s42d

where Ksxd is a complete elliptic integral of the first kind
sthis Green’s function is proportional to the potential of a
charged ring in free spaced. An integral equation similar to
Eq. s40d, also involving this Greens function, has been used
by Jenkins and Spencer17 to study the cold fluid drumhead
modes of a plasma disc.

In order to proceed, we must specify an equilibrium den-
sity n0sr ,zd. While any plasma equilibrium could be used,
we will concentrate on thermal equilibrium density profiles
in free space. These profiles are given by generalizations of
Eqs.s30d–s32d:

n0sr,zd = n0s0,0de−ffsr,zd+fesr,zd−fs0,0d−fes0,0d+s1/4dmvb
2r2g,

s43d

wheren0s0,0d is the central density,fesr ,zd is the external
confinement potential from distant electrodes, andfsr ,zd is
the plasma potential that satisfies Poisson’s equation

¹2f = − 4pe2n0sr,zd s44d

with the free-space boundary condition that

f → 0 asur u → `. s45d

For the external potential we choose

fesr,zd = 1
2mvz

2sz2 − r2/2d, s46d

wherevz is the axial bounce frequency. With this choice Eqs.
s43d and s44d can be combined, writing them as

¹2x = −
n0s0,0d

nb

e−fxsr̄,z̄d−xs0,0d+sz2+br̄2d/2s2b+1dg, s47d

wherexsr ,zd=f /T, barred variables are normalized tolD,
and the trap parameterb is defined as

b =
1

2
Svb

2

vz
2 − 1D . s48d

Solutions depend onb as well as onn0s0,0d /nb. This latter
parameter is chosen so that

E d3rn0sr,zd = N, s49d

a fixed particle number as the temperature varies. In general
the plasma is a spheroid, prolate forb.1 and oblate forb
,1. In Fig. 14 we show equilibrium density profiles that are
solutions of Eq.s47d for the spherically symmetric caseb

FIG. 14. sColor onlined. Thermal equilibrium density vs spherical radiusr
for three temperatures.
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=1. Here the temperature is parametrized by the ratiolD /R
rather thann0s0,0d /nb, whereR is the cold-fluid radius given
by s4/3dpnbR

3=N.
To find accurate eigenfrequencies associated with these

density profiles, we require a computational grid that is suf-
ficiently fine to resolve the plasma edge. For low tempera-
tures wherelD /R!1, this requiresM to be very large. On
our current computer system, computational efficiency be-
gins to degrade forM *60 si.e., M2=3600 eigenmodesd, so
this requireslD /R*0.035 si.e., roughly 2 grid points per
Debye length whenM =60 and L.Rd. The numerical
method givesM2 eigenmodes spanning a continuous fre-
quency band from 0 to abovevb, depending on the tempera-
ture T.

For largeM values, it can be a painful task to sort the
low-order modes of experimental interest out of the set ofM2

eigenmodes. Therefore, it is useful to have some prior
knowledge of the mode structure. For example, we can use
knowledge of the modes in the cold-fluid limit, where
n0sr ,zd is constant within the plasma. If the temperature is
not too large, these cold-fluid eigenmodes can then be used
to determine warm-fluid mode frequencies without needing
to compute the eigenmodes of theM2 by M2 matrixAij . If we
are looking for the frequency of the warm-fluid version of a
given cold-fluid modedZfsr ,zd, we can take the inner prod-
uct of Eq.s16d with respect to this mode:

− v2sdZf,dZd = sdZf,ÂdZd. s50d

For low T we may approximatedZ by dZf in the equation,
obtaining

− v2 =
sdZf,ÂdZfd
sdZf,dZfd

. s51d

The inner products in Eq.s51d can be easily evaluated
numerically, using the second-order-accurate finite-
difference scheme

sf,gd = o
j ,k

vp
2sr j,zkdr j f

*sr j,zkdgsr j,zkd2pDrDz s52d

for any two functionsfsr ,zd, gsr ,zd. Equations51d allows us
to obtain eigenfrequencies for low-order modes over a range
of temperatures, including the rangelD /R,0.05. However,
its use requires knowledge of the-cold fluid modes for the
given equilibrium.

Fortunately, the cold fluid-eigenmodes of a spheroidal
plasma in free space are known analytically.18 Table I pro-
vides the functional forms of some of the low-order cylindri-
cally symmetric plasma modes. Modes are enumerated by
two integerss, ,md, wherem is the azimuthal mode number

and , is the axial mode number. The integerumu counts the
number of zeros in the potential around the equator of the
spheroid, and,−umu is the number of zeros encountered as
one traverses a great circle from pole to pole. Form=0 si.e.,
azimuthally symmetric modesd, there are 1+Intfs,−1d /2g
plasma modes for a given value of,, each with different
radial and axial variation. For thes1,0d mode, Eq.s51d can be
evaluated analytically to obtainv2=vz

2, independent of tem-
perature, as expected for the center-of-mass mode in a
plasma in a harmonic confinement potential.

For the spherical caseb=1, the frequency as a function
of temperature is plotted in Fig. 15 for thes2,0d and s3,0d
modes, determined using Eq.s51d. WhenlD /R is small, the
grid must be very fine in order to obtain well-converged
results; we use up toM =120 in the computations involving
Eq. s51d sthe open circles, crosses, and squaresd. The s2,0d
and s3,0d modes display thermal frequency shifts that are in
good agreement with the frequencies expected from Eq.s37d
and Table I:

Sv2,0

vb
D2

=
3

5
+ 11

lD
2

R2 , s53d

Sv3,0
s1d

vb
D2

= 0.7415 + 51.683SlD

R
D2

, s54d

Sv3,0
s2d

vb
D2

= 0.1156 + 7.317SlD

R
D2

. s55d

sNote that these results hold only for a spherical plasma.
More general expressions can be found in Ref. 11.d

TABLE I. Cold-fluid magnetized plasma displacement modes of a sphere.

Mode number v /vb dZsr ,zd

s1,0d 1/Î3 1

s2,0d Î3/5 z

s3,0d Îs3±2Î6/5d /7 10z2−5f1−svb/vd2gr2−2R2svb/vd2

FIG. 15. sColor onlined. Warm-fluid mode frequency vs temperature in a
spherical plasma, wherelD is the Debye length associated with both the
equilibrium ssee Fig. 14d and the dynamics, andR is the cold-fluid plasma
radius. Open circles, crosses, and squares are results of Eq.s51d at different
resolutions. Solid circles are obtained from a fit to the plasma evolution,
discussed in the text.sad s2,0d mode;sbd s3,0d modes.
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However, this agreement should not be taken as suggest-
ing that the spectrum is discrete. Surprisingly, the warm-fluid
eigenmodes obtained directly from Eqs.s16d, s17d, s36d, and
s40d again exhibit a continuous spectrum, and result in spa-
tial Landau damping of initial perturbations. This can be seen
in several ways: from examining evolution of an initial con-
dition that displays Landau damping, from the singular form
of the eigenmodes, and from filamentation of the density at a
resonance layer.

First, we determine the overlap of the eigenmodes with a
given low-order fluid mode, choosing for this example the
s2,0d mode where dZf =z. The excitation spectrum
sdZv ,zd / sdZv ,dZvd for lD /R=0.1 is shown in Fig. 16 as a
function of frequency, using a 40 by 40 grid inr and z.
Although there is a sharp peak in this spectrum near the
expected fluid frequency ofv0=Î3/5vb, there is also broad-
ening of the spectrum. As a result, when this spectrum is
used to evaluate the initial value problem given by Eq.s19d,
one finds that global measures of the perturbation amplitude
such askz2lstd decay with timesFig. 17d. Also, the eigen-
modes that contribute to the peak of the excitation spectrum
have a singularity atr.1.2R, as would be expected for the
singular eigenmodes associated with a continuous spectrum
sFig. 18d. However, the functional form and the location of
this singularity is not yet understood. It is presumably con-
nected in some way to a resonance condition such as

vpsr ,zd=v0. However, this condition would yield a singular
surface at a spherical radiusr =0.87R, not atr=1.2R.

We can directly observe the filamentation of the density
profile caused by spatial Landau damping, by following
dZsr ,z,td as it evolves according to Eq.s19d. Surface plots
of dZsr ,z,td are shown in Fig. 19 three times. It appears that
the filamentation is associated with the resonant emission of
plasma waves with long axial wavelength and progressively
shorter radial wavelength as time evolves. The long axial
wavelength of the waves implies that warm-fluid theory re-
mains valid throughout the filamentation process. These
waves are centered aroundr=1.2R and travel toward smaller
radius. This may be seen in Fig. 20, which plots contours of
dZsr ,z=0.5R,td. The negative slope of the contours atr
=1.2R indicates waves traveling radially inward. Also, one
can see that the intensity of these waves increases with time,
as at a resonance.

The overall frequency of the mode, as determined by a
fit to the data displayed in Fig. 17, matches the results of the
perturbation calculations. This can be seen in Fig. 15sad,
where the frequency determined in this manner is given by
the closed circle atlD /R=0.1. The error bars reflect the un-
certainty in the frequency caused by the damping. The cal-
culation was repeated for several values oflD /R, and for the
two s3,0d modes, as shown by the other closed circles in Fig.
15. In every case, the frequency follows the results of Eqs.
s53d–s55d within the error.

IV. DISCUSSION

We have seen that displacement eigenmodes provide a
straightforward numerical method for evaluating both the
cold- and warm-fluid magnetized plasma dynamics of pertur-
bations around a variety of plasma equilibria. Several aspects
of the eigenmodes could be understood theoretically: for in-
stance, frequency shifts of the modes due to warm-fluid ef-
fects were found to agree with previously calculated shifts.11

This is actually rather surprising since the previous analytic
theory involved approximations that appeared to restrict the
results to strongly correlated plasmas. Furthermore, in slab

FIG. 16. Warm-fluid excitation spectrum in a spherical plasma vs frequency
for s2,0d-type initial conditiondZ0=z, assuminglD /R=0.1 in both the dy-
namics and the equilibrium.

FIG. 17. Time evolution ofdkz2lstd in a spherical plasma, arising from the
excitation spectrum of Fig. 16.

FIG. 18. Contour plot in ther-z plane of the warm-fluid eigenmode at the
peak of the spectrum shown in Fig. 16.
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geometry and in the cold-fluid limit, spatial Landau damping
of initial perturbations was observed and connected to the
well-known theory of collisionless fluid damping due to
resonant excitation of short-wavelength plasma waves.

However, other aspects of our numerical results still re-
quire theoretical explanation. For spherical plasmas, we ob-
served spatial Landau damping that also appears to be due to
a fluid resonance; but the form of the resonance is not un-
derstood. Another related issue that remains to be fully ad-
dressed is the addition of kinetic effects to the theory, which
will allow additional collisionless damping due to direct
wave-particle resonance. In future work we intend to study
these issues in plasmas with different shapes and density

profiles, especially finite-length cylindrical columns, and to
compare the theory results to actual experimental data.19
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APPENDIX A: LAPLACE TRANSFORM APPROACH
TO COLLISIONLESS DAMPING OF COLD-
FLUID MAGNETIZED PLASMA WAVES

In this appendix we review the cold-fluid theory for spa-
tial Landau damping of collisionless magnetized plasma
waves in slab geometry, for an arbitrary equilibrium density
profile n0szd, assuming only thatn0szd→0 as z→ ±`. By
Laplace-transforming the linearized versions of Eqs.s1d–s3d,
we obtain the following equations for evolution of the per-
turbed potential, which is of the formeik·sx,yddfsz,td:

dfsz,td =E
C

ds

2pi
estdf̂sz,sd, sA1d

wheres is the Laplace transform variable, the contourC runs
from −i` to i`, to the right of all poles indf̂sz,sd, and
where the Laplace transform functiondf̂sz,sd satisfies

]

]z
FS1 +

vp
2szd
s2 D ]f̂

]z
G − k'

2 df̂ = Fsz,sd. sA2d

Here Fsz,sd=−s] /]zds4pen0fsdZ0szd+dV0szdg/s2d, where
dZ0 and dV0 are initial fluid displacement and velocity, re-
spectively. EquationsA2d can be solved using a Green’s
function to yield

FIG. 19. sColor onlined. Surface plots ofdZsr ,z,td at three times, for a
spherical plasma withlD /R=0.1 in both the equilibrium and dynamics.
Initially, dZ=z.

FIG. 20. Contour plot ofdZsr ,z=0.5R,td for same evolution as shown in
Fig. 19.
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df̂sz,sd = − df̂1sz,sdE
z

`

dz8
Fsz8,sddf̂2sz8,sd

Wsz8,sd

− df̂2sz,sdE
−`

z

dz8
Fsz8,sddf̂1sz8,sd

Wsz8,sd
, sA3d

wheredf̂1 anddf̂2 are solutions to the homogeneous equa-
tion sF=0d with boundary conditions thatdf̂1sz=−`d=0 and
df̂2sz= +`d=0, and whereW=df̂18df̂2−df̂28df̂1 is the
Wronskian.

Spatially Landau-damped quasimodes appear as poles in
df̂sz,sd. By deforming the contour in Eq.sA1d around these
polesfi.e., moving it to the left into the Imssd,0 half planeg,
the behavior ofdf at large times can be shown to be domi-
nated by the pole with the smallest real part,s0=−iv0−n:

lim
t→`

dfsz,td = Res0t, sA4d

whereR is the residue ofdf̂sz,sd at s=s0. According to Eq.
sA3d, poles indf̂ occur where the Wronskian vanishes, and
this in turn occurs wheredf̂1 and df̂2 are no longer inde-
pendent, i.e., at values ofs where there is a nontrivial solu-
tion to

]

]z
FS1 +

vp
2szd
s2 D ]df̂

]z
G − k'

2 df̂ = 0, df = 0 atz= ± `.

sA5d

Values ofs for which this equation is satisfied nontrivially
provide the quasimode frequencies. Such solutions are found
by deforming thez integration in Eq.sA5d below the singu-
larity in this equation atvp

2szd=−s2, so as to analytically
continuedf̂ from the Imssd.0 half plane to the Imssd,0
half plane.

Analytic equations for the quasimode frequencies can be
found whenn /vb!1. By integrating twice, Eq.sA5d can be
expressed as

df̂szd = df̂szoutd −E
z

zout dz8

1 +
vp

2sz8d
s2

Fdf̂8szoutd

+ k'
2 E

zout

z8
dz9df̂sz9dG , sA6d

wherezout is a point outside the plasma and where the inte-
gration contours must proceed below the pole wheres2

+vp
2sz8d=0, takings=−iv0−n. For n /v0!1, we can apply

the Plemelj formula to obtain

df̂szd = df̂szoutd + ipE
z

zout

dz8dS1 −
vp

2sz8d
v0

2 DFdf̂8szoutd

+ k'
2 E

zout

z8
dz8df̂sz9dG − PE

z

zout dz8

1 −
vp

2

v0
2

Fdf̂8szoutd

+ k'
2 E

zout

z8
dz8df̂sz9dG , sA7d

whereP denotes the principal part of the integral.
For the case of a density profile with a rather sharp edge,

as in the thermal equilibrium profiles considered in Sec. III,
Eq. sA7d provides a simple jump condition on the potential
inside and outside the plasma. Takingzout=L+« and zin=L
−« where«=0slDd is sufficiently large to take us beyond the
edge region of the profile but«!L, we can approximate Eq.
sA7d as

df̂szind = df̂szoutd + ipdf̂8szoutdE
zin

zout

dz8dS1 −
vp

2sz8d
v0

2 D .

sA8d

This result, combined with the standard jump condition on
df̂8 at the plasma edge

S1 +
vp

2

s2 Ddf̂8szind = df̂8szoutd, sA9d

provides us with quasimode frequencies. Inside the plasma
df̂ takes the form of Eq.s24d; and outside it takes the form
e−k'uzu. When these forms are substituted into Eqs.sA8d and
sA9d and the integral over thed function is performed, a
nontrivial solution is obtained only if Eq.s34d is satisfied.
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