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Displacement eigenmodes for cold-fluid and warm-fluid magnetized
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Cold-fluid and warm-fluid electrostatic plasma modes of magnetized nonuniform plasmas are
determined as eigenfunctions of an integral equation describing the perturbed fluid displacement.
The frequencies of these displacement eigenmodes are always real. In some cases, the modes are
singular and form a continuous spectrum, and this causes spatially Landau-damped quasimodes to
appear in the response to initial perturbations. In other cases the spectrum is discrete.
Finite-temperature frequency shifts, of interest as a temperature diagnostic, are evaluated and
compared to analytic theory. @005 American Institute of PhysidDOI: 10.1063/1.1854153

I. INTRODUCTION modes are singular, resulting in spatial Landau damping of
initial perturbations. The physical mechanism of the damping
This paper examines linear electrostatic plasma oscillais emission of magnetized plasma waves at a resonance layer.
tions in inhomogeneous magnetized plasmas, using coldFhis collisionless damping mechanism is well knofwh.
fluid and warm-fluid theory. Linear fluid theory for electro- However, when warm-fluid effects are added to the
static plasma modes in a bounded plasma is often formulatesigenmode dynamics, and wheg(z) is given by the thermal
as a differential equation for the plasma potentfalor, equilibrium density profile associated with a non-neutral
equivalently, the electric field. Here, by introducing a plasma, the spectrum is discrete and there is no spatial Lan-
Green’s function for the potential, the theory is recast as amlau damping.
integral equation for the perturbed fluid displacement along  On the other hand, for spherical non-neutral plasmas in
the magnetic field. The approach is similar to that taken bythermal equilibrium at finite temperature, we again find a
Case and Van Kampen in formulating the kinetic theory ofcontinuous spectrum of singular displacement eigenmodes,
plasma waves as an integral equation for the velocity distriresulting in spatial Landau damping. The physical mecha-
bution function®® Our approach is particularly useful when nism of the damping again appears to be emission of mag-
cross-magnetic-field drift motion can be ignored in the wavenetized plasma waves at a resonance layer, in close analogy
dynamics, as is assumed here. to the mechanism of collisionless damping in unmagnetized
Our integral equation involves a linear operatothat  fluid plasmas;® although several aspects of the process are
we refer to as thecceleration operatorThe action of this ~Nnot yet well understood.
operator on a given fluid displacement yields the acceleration ~For both slab and spherical geometries finite-temperature
associated with this displacement. An eigenmode of the sygnode frequency shifts, which can be used as a temperature
tem with frequency is an eigenfunction of this operator, diagnostic,”" are compared to results of perturbation
with real eigenvalue o i.€., it is a special fluid displace- theory” for the frequency shifts, and the perturbation theory
ment (a displacement eigenmodéor which the correspond- 1S shown to work well for sufficiently low temper_atures.
ing acceleration has the same functional form, except for a_ N Sec. Il we develop the general theory of displacement
constant of proportionality equal tow?. elgenm_odes. In Sec;. Il we discuss nume.rlcal methods for
This approach has several advantages: the acceleratigyaluation of the eigenmodes, and examine the results of
operator is Hermitian, so the displacement eigenmodes forf{'€S€ evaluations in slab and spherical thermal equilibria.
a complete orthogonal set. Any initial value problem can pe>ection IV summarizes the results and discusses several open

solved using a superposition of these eigenmodes. Alsdluestions.

since the eigenfrequencies can be easily found numerically

from the eigenvalues of a matrix, one can determine the evo-

lution of perturbations about arbitrary plasma equilibria, in-!- GENERAL THEORY

cluding finite-temperature corrections. Furthermore, the dis- We first review the warm-fluid description of electron

placement eigepmodes are oqu required inside the plasmﬁlasma waves in an inhomogeneous magnetized plasma, and
so vacuum regions surrounding the plasma need not bgen gerive the equations describing displacement eigen-
treated. This simplifies the numerics. modes. Assuming that the magnetic field is unifoBxBZ,

The approach is applied to determine eigenmodes fOfa5e magnetized plasma waves are described by the follow-
several different equilibria. For the case of plasma pancakqﬁg momentum, continuity, and Poisson equations:
(i.e., slab geometyywith continuously varying equilibrium 5
densityny(z), we find that in cold-fluid theory the spectrum men dz _ enf_¢ _Jp (1)
of displacement eigenmodes is continuous and the eigen- ¢ d? '

1070-664X/2005/12(4)/042107/13/$22.50 12, 042107-1 © 2005 American Institute of Physics

Downloaded 04 Apr 2005 to 132.239.73.69. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


http://dx.doi.org/10.1063/1.1854153

042107-2 Daniel H. E. Dubin Phys. Plasmas 12, 042107 (2005)

ng 9 az e 9o #nn 029 ( 96z
_e+_<ne_>zo, (2) _w252:__¢+52—0 +£_< 0_>
gt az\ ‘at Me 9z v Ny dz\ = 9z
(1)
24— _ —_
Vi = dme(ne=ny), © wherev=\T/m is the electron thermal speed, and
where Z(r ,t) is the axial displacement of a fluid element, ) 9
ne(r,t) andp(r ,t) are the electron density and pressure, re- V°0¢=- 3—2(4779%52)- (12)

spectively,é(r ,t) is the electrostatic potential, amg(r) is a

static background charge, provided either by ions or by rotaEquations(11) and(12) form a coupled set fobZ and ¢,

tion through the magnetic fieldas in the case of a non- which may be solved given appropriate boundary conditions.
neutral plasmga Only displacements along the magnetic field Here we will assume homogeneous Dirichlet conditions on
are kept in Eqs(1) and(2): the plasma is assumed to be in 6¢. The boundary conditions o8Z depend on the form of

the regime w,<Q. (where w, and (). are the electron
plasma and cyclotron frequencies, respectiyesp thatE
X B drifts and cyclotron motion are neglected.

In equilibrium, the electron density(r), pressurg(r),

and potentialgy(r) satisfy time-independent limits of Egs.

(1-3),
ddo  IPo
O=eny— - —, 4
o Jz Jz @
V2¢o = 4me(ng—ny), (5)
and these, together with an ideal-gas equation of state
Po= nOT! (6)

allow one to uniquely determine the plasma equilibrium
given the boundary conditions on the potential. In what fol-

lows we will assume that the electron temperatlris uni-
form.

the equilibrium densityyy. Assuming the plasma is contained
away from surrounding electrodes so tingt- 0, the singu-
larity in the last term of Eq(11) implies that the general
solution will typically have singular behavior in the vacuum
region. An eigenvalue problem can then be specified by sim-
ply requiring thatéZ remain finite outside the plasma.

For a homogeneous plasma, a dispersion relation follows
by assuming perturbed quantities varyes, wherek is the
wave number. Equationd1) and(12) then reduce to

w?’= wgk—; + y2K2 (13
the well-known dispersion relation for magnetized electron
plasma wave$’ However, for a nonuniform plasma Egs.
(11) and(12) must generally be solved numerically.

The approach taken in this paper is to recast these equa-

'tions in the form of a single integral equation f&. This is

accomplished by solving Eq.12) via a Green’s function
G(r,r’) that implicitly accounts for the homogeneous
boundary conditions imposed a:

Equations describing small perturbations away from this

equilibrium are found by subtracting Eggl) and (5) from
Egs. (1) and(3) and linearizing, writingg=¢y+ 8¢, Nne=n
+0n, p=py+dp, andZ=45Z.

These perturbations are assumed to have time depen-

op(r,t) = —47-ref d3r’G(r,r’)%[no(r’)ﬁz(r’,t)],

(14)

dence of the forme . The resulting linearized fluid equa- whereG satisfies the homogeneous boundary conditions, and

tions are
do¢ dg Iop
- MNw?SZ = eny—— +edn—— - —, 7
Melo® oz 9z 9z ™
on+ i(n 6Z2)=0 (8)
gz 0T
V28¢ = 4meon. 9)

V2G(r,r")=68(r -r’). (15)

Integrating by parts in Eq(14) and substituting the result
into Eqg. (11) leads to an eigenvalue problem
- w25Z=AdZ, (16)

whereA is an integrodifferential operator, defined below by
its action on an arbitrary functiof(r):

AfEfds, Z(r/) [92

,(r,r’)f(r')

In addition, an adiabatic equation of state for the pressure

perturbations is employedt(p/n?)/dt=0, wherey=3 is the
ideal-gas ratio of specific heatsrf@ D motions along the
magnetic field. Linearization of this equation yields

d6L
iz’

3po

—_ ~YPo—_—

p=-oz

(10

These equations can be reduced by combining Ejs(6),
(8), and(10) with Eq. (7):

#In ng of
{ Py 2 O noﬁz( az)} A7

andwz(r) 47e?ny(r)/me.. Thus, normal mode frequencies

are given by the eigenvalues of the opera%orWlth corre-
sponding eigenfunctiondZ. Physically, this operator yields
the acceleration associated with a given displacement from
equilibrium, and is therefore referred to as the acceleration
operator.
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The acceleration operatéris Hermitian with respect to
the following inner product: o Eq.(25 xD/L=0>.<075X
151 X Eq.(28) «
% X
(to = f A" (g wf(r), (19 - < o
3 It xﬁxxx}\bx_xxa
wheref andg are arbitrary functions. Therefore, eigenfunc- 8
tions 6Z(r) of A form a complete orthogonal set and eigen- 05t
valuesw? are real. K Lo
This implies that the evolutiorsZ(r ,t) of any initial 0 . - . L
L S . . 0 2 4 6 8 10
axial displacemendZy(r) or initial axial velocity 5Vy(r) can n
be written as a superposition of these eigenmodes: ) ) ) )
FIG. 1. (Color onling. Cold-fluid and warm-fluid normal mode frequencies
520) for k,L=1. The integen enumerates the modes in order of their frequen-
O(r,t) = E w(r)COSwt cies. Circles are solutions of E(5), crosses are from discretized displace-
(5Zw152 ) ment eigenmodes, E@28). For \p/L=0, cold-fluid dynamics is used and
the equilibrium is a uniform plasma slab of thickness(a top-hat profile
(5Zwv éVo) 57 (I’)SII’] wt (19) For \p/L=0.075, warm-fluid dynamics is used and the equilibrium is the
w(ézw, 5zw) corresponding thermal equilibrium profilsee Fig. 3.
where 6Z,,(r) is the eigenmode corresponding to eigenfre-
quencyw.
. . . - 3.0, 2 2 2_ 2 2y —
It remains only to determine the eigenmodesofn the fd M@’V 6%+ (0* = wp)|d6¢l92]°) = 0, (22)

following section we evaluate these eigenmodes numerically
for several cases, and compare the results to known theowhere V , =(d/dx,d/dy). It is only possible to satisfy this
for the modes. equation if the second term is negative over some region of
r, which implies thatw?<Max(w}). On the other hand, if
2< 0, then the integrand is everywhere negative, which also

Ill. DISPLACEMENT EIGENMODES prohibits a solution. Therefore,<0w? <Max(w,2)).

A. General remarks on the cold-fluid limit
B. Slab geometry

In the cold-fluid limit, the pressure term in E@L) is 1. Cold-fluid limit, top-hat profile
negligible. Terms in the acceleration operator proportional to

thermal speed are dropped, yielding a cold-fluid acceleration As afirst test of the displacement eigenmode method, we
operatoer given by only the first term in Eq17): will consider a top-hat profile for which

PG wp(2) = wy |7 <L
AgdZ= fd3’ 2 el GLLAUDE (20) 0, [4>L, 23

Cold-fluid eigenmodes can alternately be written as solution¥/herewy is a constant plasma frequency. _
to a differential equation involving the potential rather than ~ For a uniform-density plasma slab in free space, running
the displacement. Using Eq&) and(12), it is easy to show from -L<z<L, the solution of Eq.(21) for the potential

that eigenmodes breaks into even and odd modes. Inside the
plasma, this mode potential has the form
2y2sp= (w279, (21) sin ik -(xy)
W Vo= |y 3(r) = os[k Zle(w)]er Y (24)

This form of the eigenvalue problem has the advantage tha¥ith frequencies satisfying

it is local as opposed to the integral opera%@r On the other f(w)=0, (259
hand, it is not a standard eigenvalue problem, but rather a

generalized eigenvalue problem requiring somewhat mor?—’)\'here

complex numerical methods to determine the eigenmddes. 1 k, L

Also, unlike displacement eigenmodes, the potential eigen- f(w) —mta e(w) -1 (25b
functions do not form a complete orthogonal basis. This cre-

ates difficulties when evaluating the time-dependent refor é¢ odd inz,

sponse to an initial perturbation, since there is no expansion k,L

involving 8¢ that is equivalent to Eq19). f(w) = &(w) tan< s(w)) +1 (259

Nevertheless, a useful analytic result follows from the
simple form of Eq.(21): one can show that eigenfrequenciesfor 8¢ even inz, and wheres(w):\,wf,/wz—l. For given
fall in the range G<w? <Max(w2) By application of k,L, Eq. (259 can be solved numerically. Examples are
Jd% 6¢" to both sides of Eq(21), an integration by parts shown in Fig. 1 fork, L=1 (the circle3. Here, the positive
then yields integern counts the modes in order of their frequency.
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FIG. 3. (Color onling. Thermal equilibrium density profile for three tem-
peraturesip/L=0 (a top-hat profile given by the solid linep/L=0.075

FIG. 2. (Color onling. The first three cold-fluid displacement eigenmodes (dotted ing, Ap/L=0.2 (dashed ling

for a uniform plasma slaka top-hat profilg, assumingk, L=1.

In order to solve this problem using the displacementresult fork, L=1 to an accuracy of a few parts in ?0The
eigenmodes for a plasma slab, we first note that the Greengigenfunctions for the lowest three modes are displayed in
function for perturbations of the forndZ(r)=y(z)ek+*y Fig. 2. These also closely match the expected form given by

can be written as Eq. (24).
. o The lowest frequencyn=1) mode represents a “drum-
gk 1xy)=(<"y")] , N . .
Glr,r)=-———gkulz?l, (26) head” type of displacement, where the slab as a whole is
2k, displaced inz asek 1 *¥7et Then=2 mode is a “breathing

mode” where the slab expands and contracts. Increasing
corresponds to shorter axial wavelength and higher fre-
quency, approachingy, as expected qualitatively from the

K. v , , cold-fluid limit of the homogeneous dispersion relation, Eq.
- Y2 = - D)D) + f dz e i@ pz). (g J P a

(27)

Using this result in Eq(20) implies that cold-fluid displace-
ment eigenmodes of a plasma slab satisfy

We solve for the eigenmodes numerically by discretizing2, Cold-fluid limit, continuous profile
#(z) on a uniform gridzj=zy+jAz, 0<j<M. Then Eq.(20)

becomes Next, we consider a continuous density profile. Although

5 any density dependence could in principle be chosen, we
~ oY = A, (28) focus here on thermal equilibrium profiles associated with
non-neutral plasmaf§’,since they are of current experimental
interest % The thermal equilibrium density,(z) satisfies
Egs. (4)—(6), yielding the following equations forwg(z)
=4me’ny(2)/ mg:

where the matrixd;, is a discretized form OAO:

k, Az

A= w3z G+ = —e i Hol(z). (29)
Note that a grid is needed only whe#é(2) is nonzero: there wh(2) = wper®, (30)
is no need to deal with vacuum regions outside the plasm"i'zvhere)((z) satisfies

since boundary conditions are already built into the Green’s

function. Also, Ay is Hermitian with respect to the finite- 2d_X —eX—1 10) = - 1
differenced inner produdf ,g)=X;f; gjw5(z), S0 w? must be )\Ddzz e-1 X(0=0, x0=-e, (3D
real.

and wherexp=1\T/4me’n, is the constant Debye length as-
sociated with the uniform background density,, wﬁ
=4me’n,/m,, ande is chosen so that

Numerical error in the eigenfrequencies and eigenfunc
tions is introduced by this discretization, but can be mini-
mized if z, and Az are chosen appropriately. Takizg=-L
+Az/2 andAz=2L/(M+1) yields a symmetric grid that is
matched to the sharp plasma boundary, and for which the
discretization error is 0O[(Az/L)?]. Other nonoptimal grid
choices do not necessarily match the sharp boundary anthis constraint condition keeps the total particle number
yield larger errors of0(Az/L). Even so, for sufficiently fine fixed as temperature varies.
grid the method works admirably. Examples are displayed in ~ Normalizingng(2) to n,, and normalizing distances tg
Figs. 1 and 2 assumirg L=1, and for an unoptimized grid, Egs.(31) and(32) may be seen to depend on a single param-
taking M=100 andzy=-1.1L, and Az=2|7|/M which in-  eter, A\p/L. We solve these equations numerically. For
cludes a small vacuum region outside the plasma. Even withy/L=0.075,ny(2) is displayed in Fig. 3. Using these density
this poor grid choice, frequencies match the expected theorpgrofiles in Eq.(29), the grid is chosen so that it starts and

fw dzny(z) = 2Lny,. (32
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n density profile given by the dotted line in Fig. 3. The initial conditiéiy, is

ann=2, k, L=1 top-hat displacement modlsee Fig. 2 and Eq19)].
FIG. 4. (Color onling. Main plot shows both cold-fluifcircles and warm- + P P ¢ 9 q19]

fluid (crossepdisplacement mode frequencies for a single equilibrium den-
sity profile given by the dotted line in Fig. 3. We takke=200, and a grid on

z=-1.5 to 1.5. Inset shows the first 20 warm-fluid mode frequencies for Sot=1 (33
dynamics with temperature such thag/L=0.01, for bothM =200 and 400. me
There is no discernible difference betwedn=200 andM =400, indicating

nioie where dw,, is the maximum frequency difference between
that the spectrum is discrete.

adjacent eigenmodes in the numerical spectrum. For continu-
ous density profiles§w,,=0(Az).

ends well outside the plasma; we takgL=-1.5 andAz A continuous spectrum indicates the possibility of
=27,/M for M=200. Resulting numerical mode frequenciesdamped guasimodes in the response of the system to a given
for k,L=1 are displayed in Fig. 4. initial condition. These quasimodes are wave packets of

The cold-fluid displacement mode frequencies now formeigénmodes with a roughly Lorentzian spectral shape cen-
a continuous spectrurtthe circles in Fig. & Even more tered on top-h_at profile que frequenmes_. _T_hey car_1_be un-
striking differences from the top-hat profile can be seen incOVered by using top-hat eigenmodes as initial conditions in
the displacement eigenfunctiofig. 5), which display sin- £d- (19). An example is displayed in Figs. 6 and 7. Taking
gularities at the locations=z, wherew?=w3(z,). Physically 6Vp=0 and 6Z, as the top-hat eigenmode fo=2 k L=1
these singularities arise because an eigenmode with fréS€€ Fig. 2 the excitation spectrut¥Z,,, 6Zo)/(6Z,,, 6Z,,) is
quencyw resonates with the local plasma frequeneyz,). shown in Fig. 6. One can see a peak in th_|s spectrum cen-
Since these eigenfunctions are singular, they cannot be eféréd near the cold-fluid frequency for this mode/wy
cited individually. Rather, wave packets of eigenfunctions:0'897' . ) )
contribute to the response to initial perturbations, through owever, the peak is broadened, which causes spatial
Eq. (19). For a continuous spectrum, the sum over frequenl@ndau damping. A global measure of the overall mode am-
cies in this equation becomes an integral. plitude,

Numerical error is introduced through discretization,
which turns the integral back into a sum over the numerical fdzéh(z,t)zz
eigenmodes. This implies that the numerical solution given — &z°)(t) =
by Eq. (19) breaks down for times so large thet! varies fdz&w(z, 02
rapidly in  compared to the frequency differende be-

tween adjacent numerical eigenmodes. That is, the numerici’aé displayed in Fig. 7. This global measure displays the spa-
solution breaks down for timessuch that® : . . - . -
tial Landau damping associated with a quasimode with

06 : : : : :
o = 0.894 1
04l | N\

)

exp(-0.0374 U)I t)

02

e
<

06 , . A , .
15 1 05 0 05 115 - - : -
2L 0 20 40 60 80 100

b

FIG. 5. A cold-fluid displacement eigenmode for the equilibrium density
given by the dotted line in Fig. 3, assumikgL=1. This mode corresponds FIG. 7. (Color onling. Temporal evolution of%z?) following from the
to the peak of the excitation spectrum shown in Fig. 6. excitation spectrum shown in Fig. 6.
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FIG. 9. (Color onling. Spatial Landau damping rate of the n=2 quasi-
mode vsk,, assuming cold-fluid dynamics, for two equilibrium density
profiles; one with a sharp edd&p/L=0.04 and one with a broader edge
(A\p/L=0.075 (see Fig. 3 Lines: Eq.(34). Dots: fits to the decay of
&Z2)(1), as in Fig. 7. Squaresp/L=0.04. Solid circlesAp/L=0.075.

a5 w05 0 05 1 15
z/L

FIG. 8. Cold-fluid displacemeniZ(z,t) for then=2 quasimoddsee Fig. 2
at three times. The plasma equliibrium is taken to be the dotted line in Fig

3. andk. L=1 is assurned purely exponential at all times. This is expected theoretically
3 L= .

since exponential Landau damping is valid only in the time-
asymptotic limit. The points match the theory for an equilib-
rium profile with Ap/L=0.04 better than foip/L=0.075
damping ratev/w,=0.0374. That is, then=2 breathing because in the former case the profile has a sharper density
“mode” is damped, even though all displacement eigenfall-off at the edge, making the assumptions behind (B4)
modes have real frequencies. a better approximation.

In Fig. 8, 6Z(z,1) is displayed three times, and the physi-  The preceding eigenmode analysis used cold-fluid theory
cal mechanism of the damping becomes apparent. Filamefio evaluate the plasma eigenmodes of continuous density
tary structures form indoZ(z,t) around the resonance at profiles such as that given by the dotted line in Fig. 3. This
=Z. These structures are localized bulk plasma OSCi”ationgort of prof”e could occur in cold-fluid theory if the back-
that are driven by the global fluid mode. ground density were due to ijons with this nonuniform-

This spatial Landau damping of the cold-fluid plasmagensity distribution. In the cold-fluid limit electrons would
response is well known from the early days of plasmamatch their density to this profile, and the preceding analysis
physics.™™ A similar quasimode analysis to that used hereof the continuous spectrum would apply. However, in a ther-
has also been applied to spatial Landau damping of diocotromg| equilibrium non-neutral plasma confined in a Penning
qua3|m'ode§. The damping rate of the quasimodes can beap 1, is constant and the nonuniform density arises from
determined by the method of contour deformatisee Ap-  {hermal effects. To properly solve for the modes of a non-

pendix A) with the result that, for weakly damped modes, thepgtra| plasma, we should include these thermal effects in
complex quasimode frequeneyis given by the solution to 4, eigenmode equation.

H 2
| WkaL

flwy=-———"7",
« |é’w;2)/’?z|z=zr

(34)

where wy is the real solution to the top-hat mode equation,

Eqg. (25). According to this equation, the low-order quasi- 0.1l

modes with the lowest real frequencies have resonances at -

the plasma edge wherewﬁl z9z|Fzr is large, and therefore are 0.05} 7

less heavily damped than higher order higher frequency n=3 /N

modes withw — wy,. |

In Fig. 9 we display the spatial Landau damping rate aosl 2 7

predicted by Eq(34) for then=2 quasimode as a function of ‘ R ‘\

k,L, taking equilibrium density profiles for whichp/L olpm=<"" s

=0.075(the solid ling and\p/L=0.04 (the dashed line In - ‘ ‘ N

the same figure we also display the damping tatétained | 2/L ’

from fitting an exponentially decaying oscillation to HiG. 10, (Col in6. The first th tuid dicol o
2 H H . . olor onling. e 1rs ree warm-tiuil Isplacement eigen-

XZ)(0) m. the range @: wpt <100. For several of the pOIHtS modes of a thermal equilibrium plasnisee Fig. 3 for kllf)zl, andAD/I?

we also fit only data in the range 50wyt <100. The differ- -0 .075 in both the equilibrium and the dynamics. Corresponding frequen-

ence in the resulting rate indicates that the decay is naties are shown in Fig. 1.
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3. Warm-fluid effects on a continuous profile

The behavior of the displacement eigenmodes changes
dramatically when finite temperature-effects are added to the
eigenmode equation, which now becomes

(w/ (x)b) 2

- P2 = - w22 + f dz’%e‘“'*z"wﬁ(z')w')

05 n=1
#nn 3 ( (w)
—2 o Y
+v| —— w2+ ——(ng—|. 35
{ Fra W2 Ny dz\ ° 9z (35 o , , ,
0 0.05 0.1 0.15 0.2
We solve this problem numerically using the same finite- Ay /L
difference scheme as before. For the term involving the de-
rivatives Ofl/f we use the following difference scheme: FIG. 11. (Color onling. Warm-fluid mode frequencies vs temperature for
! ’ the first three displacement eigenmodes of a thermal equilibrium plasma,
1 9 9 1 Nn(z) + N(z; o where\, is the Debye length associated with both the equilibrisee Fig.
— (no—lp) = [ O( J) O( J+l) d/”l l'//J 3) and the dynamics, and assumikglL=1. Circles are numerical results,
No(2) 9z Jz = no(zj) 2 AZ lines are Eq(37).
_No(Z) +no(Zi-1) ¥~ Y1 36 ,
2 AR (36) quencywy, as the mode numbaer increases, also due to the
effect of plasma pressure on the modes, as expected qualita-
which is second-order accurate Az, and Hermitian. tively from Eq. (13) (taking k,>n/L in that equation For

We calculate numerical results fdr,L=1 and \p/L  low temperatures, the form of the eigenfunctions is similar to
=0.075, the same case as we studied previously. The warnthat for zero temperature, as may be seen by comparing Fig.
fluid corrections completely change the character of thelO to Fig. 2. There is no spatial Landau damping of these
eigenmodes. The frequency spectrum is again dis¢Féte = modes. Mode frequencies are shifted upward as temperature
1), and eigenfunctions are no longer singulgig. 10. This  increasegFig. 11).
is because the restoring force from plasma pressure smoothes For low temperatures, one can analytically predict the
out rapid density variations in the low-order modes. Theshift in the mode frequencigsdue to finite temperature. The
mode frequencies increase above the maximum plasma fré&equency shiftAw is predicted to be

)=l
)

PO

v2| 998 |7\ _wn( #9667\ yay
woN oz w3\ 22| oz w§
Aw= f ‘
2 95
0z

wherewy and 6¢ are the frequency and potential eigenmodeture T in the eigenmode equation to vary independently. For
at T=0, respectively{given by Egs.(24) and (25) for slab  T=0, we obtain the continuous cold-fluid spectrum consid-
geometry, and( ) is a volume average over the interior of ered in Sec. Ill B 2, and fof chosen so thaty/L=0.075 we
the uniform-density zero-temperature plasma. The analytigbtain the discrete spectrum discussed in Sec. Ill B 3. For
prediction fork, L=1 matches the numerically defined fre- intermediate values of such that G<\p/L<0.075 in the
quencies for the lowest modes, provided tRgtL is small  ejgenmode equatiofbut fixed density profile we find that
(Fig. 1D. the spectrum is still discrete. An example spectrum is shown

in Fig. 4, for A\p/L=0.01 andk, L=1. Although the mode

frequencies are closely spaced, their values become indepen-

dent ofM asM increases, at least for those low-order modes
4. Disappearance of spatial landau damping with frequencies belowwy, (§ee the inset to Fig.)4

As \p/L—0, the spacingdw between the eigenmodes
We consider how and why spatial Landau damping dis-approaches zertwithin numerical resolution Although in-

appears when thermal pressure effects are added to tigévidual eigenmodes are not singular for small but finite
eigenmode equation. We will study the behavior of the sysAp/L, they display rapid variation outside the plasma, and so
tem for afixedcontinuous density profile, given by the dotted cannot be excited individually by initial conditions for which
line in Fig. 3(the\p/L=0.075 casg and allow the tempera- Zy(z) is slowly varying inz. Rather, such initial conditions
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FIG. 13. (Color onling. Estimate of the rate of kinetic Landau damping

FIG. 12. (Color onling. Time evolution of then=2 quasimode fok, L=1 for then=2 mode(see Fig. 2 for two temperatures, vs perpendicular wave

for four temperatures in the dynamics, keeping the equilibrium density pronumberk ; to be compared to Fig. 9.

file fixed (the dotted line in Fig. B

excite a range of eigenmodes, just as in the cold fluid limit. ~ Qualitatively, however, one might imagine that kinetic

This leads to dynamics that is almost indistinguishable froml-andau damping would be important if the kinetic Landau
dynamics in the cold fluid limit. damping rate is as large as the spatial Landau damping rate

For example, consider the evolution of the same2 v, and would not be important otherwise. For a plasma slab
k,L=1 initial condition as considered previously, in Secs.Calculation of the kinetic rate involves evaluation of multiple
1B 2 and 11l B 3. Results for&(z2)(t) are shown in Fig. 12 bounce resonances in the particle dynamics, and is rather
for several temperatures in the eigenmode dynamics. Fdpvolved. Here,_wg _simply estimate the kinetic rate using the
very small \p/L, say A\p/L=0.005, we observe the same formula for an infinite plasma,
behavior as folf =0: filamentation and spatial Landau damp- 3
ing of the smoqth initial perturbation. Thls is not surprising V= w\'%(v__@> e—1/2(v¢/v_)2, (38)
since the spacingw between modes is so small that the v
spectrum is nearly continuous. However, Tagicreasesgw
increases and the time over which spatial Landau dampingherev,=w/k, is the phase velocity of the mode, and we
occurs is reduced; it is as if we have introduced a finite gridake for k, the wave number associated with a cold-fluid
error into the response. According to E83), we expect to  eigenmodésee Eq(24)], k,=k, /e(v). This kinetic damping
see the spatial Landau damping only for timesuch that rate is plotted in Fig. 13 for two values ag/L, as a func-
dwm=1, wheredw,, is the maximum spacing between adja- tion of k, L, for the n=2 top-hat mode(see Fig. 2 For
cent modegdue now to thermal effects, not numerical grid k; L =<1, » is negligible, and we might then expect to see the
resolution. This is in fact what our numerical solutions effects associated with spatial Landau damping. However, a
show. For short times, Landau damping occurs as inTthe definite answer to this question must await further calcula-
=0 case, but for large times the solution no longer decays.tion.

Thus, we expect Landau damping to disappear entirely
whenv= dw,,, Wwherev is the Landau damping rate for cold-
flgid dynamics. Th_is inequality is well-satisfied when the C. Penning trap geometry, continuous profile, warm-
eigenmode dynamics has the same temperature as the ediiq effects
librium. For instance, whehp/L=0.075, dw,/ w,~ 0.2 (see

Fig. 1) but v/w,=0.0374 (see Fig. 7. This explains why Displacement eigenmodes can also be numerically
Landau damping was not observed in the warm-fluid result§valuated for plasmas confined in the cylindrical geometry
of Sec. Il B 3. typical of Penning traps, where the equilibrium density is

Ny=ng(p,2) in cylindrical coordinates. We finite difference

5 Kinetic effects Eqg. (17) on a uniform rectangular grid ip andz,
Spatial Landau damping of plasma modes is purely a pj=Ap(j-1/2), j=1,..M

fluid effect: a quasimode resonantly excites short wavelength (39)
plasma waves, filamenting the densifyig. 8). However, z=—-L+(k-1/2Az, k=1,....M
wave-particle resonance can cause filamentation and phase
mixing of the velocity distribution that inducegineticLan-  where Az=2L/M, and Ap=L/(M-1/2). For simplicity we
dau damping. While the competition between spatial and kiuse anM X M grid in a rectangular region with a fixed aspect
netic Landau damping has been considered in certaimatio of 2:1, but it is easy to generalize to grids with unequal
geometries? its effect on normal modes of a plasma slab hasnumbers of points in the and z directions and to regions
not been elucidated, to our knowledge. with variable aspect ratio. The warm-fluid part of the
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acceleration operator is differenced using the same scheme (A §2); = 27> 0prze) plpAZG pis prozin20) 5Z
as in Eq.(36). For the cold-fluid part of the acceleration Pod2 w 7 PloZOPEP PirPro %y 20 0%k

operator, we note th&=G(p,p’,|z-Z'|), and that this func- (40)
tion varies rapidly whemp =~ p’ andz~=2z'. Therefore we use
the following difference scheme: writingz;; = 6Z(p;, z), where

FG(pi.plz — z)1dz; 32, Arije >5Ap

Glpupz,z) =4 (M2 (R PG : (41)
Pirlaip2e p'dp dZ ———(pi.plzj — ZDIpApAz,  Arjy < 5Ap
p-Apl2 2-A2 94 0Z
|
andArjj = \/(Pi ‘Pk)2+(2j ~2,)2. V2¢ = - 4Ame’ny(p,2) (44

The integral over a grid cell is performed when the rela-
tive displacementAr;,, between source and field point is
small(less than &p), so as to account for the rapid variation ¢— 0 as|r| — . (45)
of the Green’s function in this region. Here tlak integral
can be performed analytically via the fundamental theore
of calculus, and in some cases the radial integral can also be ¢(p,2) = %mwg(zz- p2/2), (46)
performed analytically, depending on the form of the Green’s ) ] i ) _
function. The asymmetry in Eq(41) between field and wherew, is the axial bounc_e freque_n_cy. With this choice Egs.
source points implies that the discretized acceleration operd43 and(44) can be combined, writing them as
tor is not perfectly Hermitian; however as a practical matter — _ (0,00 Y
the negative consequences of tfiie., small imaginary com- V2y = - ——— g TDx0.0+F+5p%/22p+1), (47)
ponents to the frequencieare far outweighed by the supe- Ny
rior accuracy of the discretized integral over source points.where y(p,2z)=¢/T, barred variables are normalized xg,

We will concentrate here on free-space boundary condiand the trap parametgtis defined as
tions where the plasma is far from any boundaries, so that )
the mode potential vanishes @at We also specialize to cy- - }(ﬂ) - 1). (48)
lindrically symmetric eigenmodes. In this case the Green’s 2\ w?
function required in Eq(41) is

with the free-space boundary condition that

nhor the external potential we choose

z

Solutions depend op as well as omy(0,0)/n,. This latter

) o parameter is chosen so that

Glp.p’ Z):_LK(‘4PP lp—p)+Z))
p!p 1 2772 \//(p—p')2+22

, 2
(42 fd?’rno(p,z) =N, (49)

where K(x) is a complete elliptic integral of the first kind a fixed particle number as the temperature varies. In general
(this Green’s function is proportional to the potential of athe plasma is a spheroid, prolate {61 and oblate foiB
charged ring in free spageAn integral equation similar to <1. In Fig. 14 we show equilibrium density profiles that are
Eg. (40), also involving this Greens function, has been usedsolutions of Eq.(47) for the spherically symmetric case
by Jenkins and Spen&érto study the cold fluid drumhead
modes of a plasma disc.

In order to proceed, we must specify an equilibrium den- 1

sity ng(p,z). While any plasma equilibrium could be used,
we will concentrate on thermal equilibrium density profiles
in free space. These profiles are given by generalizations of .
Egs.(30)—<32): % 05
=D
No(p,2) = (0, 0) &40 2+ 0e(p.2=9(0.0~¢(0.0+(1/Amogy?], \
\
(43 o . 10
0 0.5 1 L5

whereny(0,0) is the central densityp.(p,2) is the external r/R

confinement potential from distant electrodes, @itf,2) IS FiG. 14. (Color onling. Thermal equilibrium density vs spherical radius
the plasma potential that satisfies Poisson’s equation for three temperatures.
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TABLE I. Cold-fluid magnetized plasma displacement modes of a sphere.

07 (@) Eq. (53) 3
Mode number wl w, 8(p,2) ’ L
L
=Y .6
(1,0 1/\3 1 . 0.65} '_',.
(2,0 V3/5 z e {_g;
_-I
(3.0 V(3+2/6/5)/7  1022-5[1-(wy/ ©)?]p?~ 2R wy/ )? c 0.6}--5--5""8
o M=3g
X M=6
055, o N B

=1. Here the temperature is parametrized by the ngtitR
rather thamg(0, 0)/ny, whereR is the cold-fluid radius given i
by (4/3)myR®=N.

To find accurate eigenfrequencies associated with these o
density profiles, we require a computational grid that is suf- ER
ficiently fine to resolve the plasma edge. For low tempera- E

0.8}

tures where\p/R<1, this requiredM to be very large. On 04r Eq. (55)

our current computer system, computational efficiency be- 02l ___..4—\¢~r”"'
gins to degrade foM =60 (i.e., M?=3600 eigenmod@sso

this requiresAp/R=0.035 (i.e., roughly 2 grid points per 00 005 01
Debye length whenM=60 and L=R). The numerical A /R

method givesM? eigenmodes spanning a continuous fre-

guency band from 0 to abows,, depending on the tempera- FIG. 15. (Color onling. Warm-fluid mode frequency vs temperature in a
ture T spherical plasma, wherg, is the Debye length associated with both the

. . equilibrium (see Fig. 14 and the dynamics, and is the cold-fluid plasma
For IargeM values, it can be a palnful task to sort the radius. Open circles, crosses, and squares are results HEat different

low-order modes of experimental interest out of the se#1&f  resolutions. Solid circles are obtained from a fit to the plasma evolution,
eigenmodes. Therefore, it is useful to have some priofliscussed in the texta) (2,00 mode;(b) (3,0) modes.

knowledge of the mode structure. For example, we can use

knowledge of the modes in the cold-fluid limit, where

No(p,2) is constant within the plasma. If the temperature isand ¢ is the axial mode number. The integen counts the
not too large, these cold-fluid eigenmodes can then be usetbimber of zeros in the potential around the equator of the
to determine warm-fluid mode frequencies without needingspheroid, and~|m| is the number of zeros encountered as
to compute the eigenmodes of th by M2 matrix A;. If we ~ one traverses a great circle from pole to pole. Fer0 (i.e.,

are looking for the frequency of the warm-fluid version of aazimuthally symmetric modgsthere are 1+Ift€—1)/2]
given cold-fluid modeSZ:(p,z), we can take the inner prod- plasma modes for a given value 6f each with different

uct of Eq.(16) with respect to this mode: radial and axial variation. For th&,0) mode, Eq(51) can be
5 - evaluated analytically to obtam2=w§, independent of tem-
~ (824, 62) = (8Z;,ASZ). (50)  perature, as expected for the center-of-mass mode in a

plasma in a harmonic confinement potential.
For the spherical casg=1, the frequency as a function
R of temperature is plotted in Fig. 15 for tH@,0) and (3,0
> (8Z:,AZ;) modes, determined using EGl). WhenAp/R is small, the
Tes (82,8Z;) (51) grid must be very fine in order to obtain well-converged
results; we use up ttM=120 in the computations involving
The inner products in Eq51) can be easily evaluated Eq. (51) (the open circles, crosses, and squiargse (2,0)
numerically, using the second-order-accurate finite-and (3,0 modes display thermal frequency shifts that are in
difference scheme good agreement with the frequencies expected from(Eq.

For low T we may approximatéZ by &Z; in the equation,
obtaining

(1,9)= = oi(p, 2001 (0,200(p,20270pAz (52 and Table L
. (wf' Lo (53
for any two functionsf(p,2), g(p,2). Equation(51) allows us o,/ 5 R2’

to obtain eigenfrequencies for low-order modes over a range

of temperatures, including the rangg/R<0.05. However, wib\? Ap )2
its use requires knowledge of the-cold fluid modes for the Z; =0.7415+51.686 | . (54)
given equilibrium.
Fortunately, the cold fluid-eigenmodes of a spheroidal w(322) 2 Ao 2
plasma in free space are known analyticafistable | pro- (Tb) =0.1156 + 7-31€—> : (59)

vides the functional forms of some of the low-order cylindri-
cally symmetric plasma modes. Modes are enumerated b§Note that these results hold only for a spherical plasma.
two integers(¢,m), wherem is the azimuthal mode number More general expressions can be found in Ref) 11.
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FIG. 16. Warm-fluid excitation spectrum in a spherical plasma vs frequency
for (2,0)-type initial conditiondZ,=z, assuming\p/R=0.1 in both the dy- 0 0.4 /RO'S 12
namics and the equilibrium. P

FIG. 18. Contour plot in the-z plane of the warm-fluid eigenmode at the
peak of the spectrum shown in Fig. 16.

However, this agreement should not be taken as suggest-
ing that the spectrum is discrete. Surprisingly, the warm-fluid
eigenmodes obtained directly from Eq%6), (17), (36), and  w,(p,2)=w,. However, this condition would yield a singular
(40) again exhibit a continuous spectrum, and result in spasurface at a spherical radins 0.87R, not atp=1.2R.
tial Landau damping of initial perturbations. This can be seen = We can directly observe the filamentation of the density
in several ways: from examining evolution of an initial con- profile caused by spatial Landau damping, by following
dition that displays Landau damping, from the singular formdéZ(p,z,t) as it evolves according to E¢L9). Surface plots
of the eigenmodes, and from filamentation of the density at &f 6Z(p,z,t) are shown in Fig. 19 three times. It appears that
resonance layer. the filamentation is associated with the resonant emission of

First, we determine the overlap of the eigenmodes with gplasma waves with long axial wavelength and progressively
given low-order fluid mode, choosing for this example theshorter radial wavelength as time evolves. The long axial
(2,0 mode where 6Z;=z. The excitation spectrum wavelength of the waves implies that warm-fluid theory re-
(6z,,21(82,,82,) for \p/R=0.1 is shown in Fig. 16 as a mains valid throughout the filamentation process. These
function of frequency, using a 40 by 40 grid jmand z.  waves are centered aroupd 1.2R and travel toward smaller
Although there is a sharp peak in this spectrum near the¢adius. This may be seen in Fig. 20, which plots contours of
expected fluid frequency ab,=\3/5wy, there is also broad- 8Z(p,z=0.5R,t). The negative slope of the contours @t
ening of the spectrum. As a result, when this spectrum is 1.2R indicates waves traveling radially inward. Also, one
used to evaluate the initial value problem given by B),  can see that the intensity of these waves increases with time,
one finds that global measures of the perturbation amplitudgs at a resonance.
such as(z?)(t) decay with time(Fig. 17. Also, the eigen- The overall frequency of the mode, as determined by a
modes that contribute to the peak of the excitation spectrurfit to the data displayed in Fig. 17, matches the results of the
have a singularity ap=1.2R, as would be expected for the perturbation calculations. This can be seen in Figan5
singular eigenmodes associated with a continuous spectrunihere the frequency determined in this manner is given by
(Fig. 18. However, the functional form and the location of the closed circle akp/R=0.1. The error bars reflect the un-
this singularity is not yet understood. It is presumably con-certainty in the frequency caused by the damping. The cal-
nected in some way to a resonance condition such agulation was repeated for several values gf R, and for the
two (3,00 modes, as shown by the other closed circles in Fig.
15. In every case, the frequency follows the results of Egs.
(53)—(55) within the error.

0.5 ” : IV. DISCUSSION

B We have seen that displacement eigenmodes provide a
g0 straightforward numerical method for evaluating both the

cold- and warm-fluid magnetized plasma dynamics of pertur-

0.5 U bations around a variety of plasma equilibria. Several aspects

of the eigenmodes could be understood theoretically: for in-

1 ‘ ‘ stance, frequency shifts of the modes due to warm-fluid ef-
0 30 (LOOt 150 200 fects were found to agree with previously calculated shiits.

This is actually rather surprising since the previous analytic

FIG. 17. Time evolution 0fXz2)(t) in a spherical plasma, arising from the theory involved approximations that appeared to reStr_iCt the
excitation spectrum of Fig. 16. results to strongly correlated plasmas. Furthermore, in slab
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0 0.4 0.8 1.2
p/R

FIG. 20. Contour plot of6Z(p,z=0.5R,t) for same evolution as shown in
Fig. 19.

profiles, especially finite-length cylindrical columns, and to
compare the theory results to actual experimental Hata.
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APPENDIX A: LAPLACE TRANSFORM APPROACH
TO COLLISIONLESS DAMPING OF COLD-
FLUID MAGNETIZED PLASMA WAVES

In this appendix we review the cold-fluid theory for spa-
tial Landau damping of collisionless magnetized plasma
waves in slab geometry, for an arbitrary equilibrium density
profile ny(z), assuming only thahy(z) —~0 asz— . By
Laplace-transforming the linearized versions of H4$(3),
we obtain the following equations for evolution of the per-

FIG. 19. (Color onlina. Surface plots ofiZ(p,z,t) at three times, for a turbed potential, which is of the form*Y) 5¢(z,1):
spherical plasma witi\p/R=0.1 in both the equilibrium and dynamics.
Initially, 6Z=z.

Sp(z,t) = f %e‘“&&)(z,s), (A1)
c 2mi

geometry and in the cold-fluid limit, spatial Landau damping
of initial perturbations was observed and connected to thgvheresis the Laplace transform variable, the cont@uruns
well-known theory of collisionless fluid damping due t0 from —je to i, to the right of all poles indé(z,s), and

resonant excitation of short-wavelength p_Iasma waves. where the Laplace transform functitﬁiﬁ(z,s) satisfies
However, other aspects of our numerical results still re-

quire theoretical explanation. For spherical plasmas, we ob- ) -
served spatial Landau damping that also appears to be due to ﬁl(l + wE(Z))ﬁ_‘ﬁ] ~ K 53=F(zs). (A2)
a fluid resonance; but the form of the resonance is not un- 9z &£ )z + '

derstood. Another related issue that remains to be fully ad-

dressed is the addition of kinetic effects to the theory, whichHere F(z,5)=—(d/ dz)(4meny[S6Zy(2) + Vo(2)]/s?), where
will allow additional collisionless damping due to direct 6Z; and 6V, are initial fluid displacement and velocity, re-
wave-particle resonance. In future work we intend to studyspectively. Equation/A2) can be solved using a Green'’s
these issues in plasmas with different shapes and densifunction to yield
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R " ® F /’ 6’\ I’
29 == bz | arEEmES oite)= sz vim [ oz of 12 )l&b (2o
F(Z,9)8¢,(Z,9) K2 z d7 55(2" ] o[ dZ ~

- 6¢,(z,9) J dz ——————=, (A3) +ki Zop(z') | -P 5| 99" (Zouw)

W(Z',s) Zout | z 1 _gg

@o
Whereb‘&l and 5&52 are solutions to the homogeneous equa- L2 JZ' 47 %(z,)_ (A7)

tion (F=0) with boundary conditions thai&&l(z: —0)=0 and Zout | ’

Sdo(z=+2)=0, and where W= 5, 5h,~ 5dydh, is the

Wronskian. whereP denotes the principal part of the integral.

For the case of a density profile with a rather sharp edge,
Spatially Landau-damped quasimodes appear as poles Iy as in the thermal equilibrium profiles considered in Sec. I,

5¢(Z’S,)' By deformlng the con_tour in EA1) around these Eq. (A7) provides a simple jump condition on the potential
poles[l.e.,_movmg it to the Igft into the ligs) <0 half plang, _inside and outside the plasma. Taking=L+¢ and z,=L
the behavior of6¢ at large times can be shown to be domi- —& wheres=0(\p) is sufficiently large to take us beyond the

nated by the pole with the smallest real pagt: —iwo=v: edge region of the profile but<L, we can approximate Eq.

(A7) as
lim 5¢(Z,t) = Resot, (A4) R R . Z(Z )
o 3P(zin) = 0P(Zow) + iw&ﬁ’(zom) dZ 5(1 —p—)
whereR is the residue oﬁfﬁ(z s) ats=s,. According to Eq. (A8)

(A3), poles |n5¢ occur where the Wronskian vanishes, andTh|s result, combined with the standard jump condition on
this in turn occurs wher(i§¢1 and 5¢2 are no longer inde-

54)’ at the plasma edge
pendent, i.e., at values sfwhere there is a nontrivial solu-

. 2
tion to wp\ A, ~,
(1 + ;5) 8¢’ (zin) = 8¢’ (Zow) (A9)
9 w(2) a&}, - provides us with quasimode frequencies. Inside the plasma
7 Cp\TNOOP 2 o5 -
32{(1 * P ) 97 kK 6=0, d¢p=0atz= 1o ¢ takes the form of Eq(24); and outside it takes the form

ek, When these forms are substituted into E@s8) and
(A9) and the integral over thé function is performed, a
nontrivial solution is obtained only if Eq34) is satisfied.
Values ofs for which this equation is satisfied nontrivially

provide the quasimode frequencies. Such solutions are foundN. A. Krall and A. W. Trivelpiece,Principles of Plasma PhysicéSan
by deforming thez integration in Eq(A5) below the singu- Francisco Press, San Francisco, 1986
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