
VOLUME 83, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 SEPTEMBER1999

cally
n of
itely:
es the
les are
ground
Vortex Motion Driven by a Background Vorticity Gradient
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The motion of self-trapped vortices on a background vorticity gradient is examined numeri
and analytically. The vortices act to level the local background vorticity gradient. Conservatio
momentum dictates that positive vortices (“clumps”) and negative vortices (“holes”) react oppos
clumps move up the gradient, whereas holes move down the gradient. A linear analysis giv
trajectory of small clumps and holes that rotate against the local shear. Prograde clumps and ho
always nonlinear, and move along the gradient at a slower rate. This rate vanishes when the back
shear is sufficiently large.

PACS numbers: 47.15.Ki, 47.32.Cc, 52.25.Wz
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Self-trapped vortices can be clumps (vorticity excess
or holes (vorticity deficits). The interaction of clumps an
holes with a background vorticity gradient often plays a
important role in 2D hydrodynamics. For example, th
decay of 2D turbulence can be controlled by the slo
drift of holes down a vorticity gradient [1]. The motion o
hurricanes on a rotating planet is influenced by the nor
south gradient in the Coriolis parameter, which can
thought of as a (potential) vorticity gradient [2–7].

Here, we calculate the rate at which clumps and ho
ascend or descend a background vorticity gradient un
the conditions that (i) the vortices are pointlike and (ii) th
background flow has strong shear. While pointlike vo
tices and strong background shear may be rare in geoph
cal settings, they are common in nonneutral plasmas [1
and may also be found on planets, such as Jupiter, that h
intense storms in strong zonal winds [9].

Clumps and holes can be classified as prograde
retrograde, depending on whether they rotate with
against the local background shear. We find that a lin
analysis gives the motion of a retrograde vortex. Progra
vortices are always nonlinear and move at a slower r
that is given by a simple “mix-and-move” estimate.

We neglect viscosity and consider flows that a
governed by the 2D Euler equations:

≠z

≠t
1 �y ? =z � 0, �y � ẑ 3 =c ,

=2c � z .
(1)

Here, �y�r , u, t� is the velocity field,z �r , u, t� � ẑ ? = 3
�y is vorticity, and c�r , u, t� is a stream function. For
analysis, the vorticity is decomposed into vortices (y)
and background (b): z � zb 1

P
zy . We focus on

the case wherezb is positive, cylindrically symmetric,
and monotonically decreasing att � 0, making clumps
retrograde and holes prograde.

Figure 1 shows that clumps ascend a background v
ticity gradient, whereas holes descend the gradient [2
At t � 0, a clump and a hole are placed in an axisymm
ric background. The system is evolved with a vortex-i
cell (VIC) simulation that numerically integrates Eq. (1
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[10]. Eventually, the clump is driven to the peak in bac
ground vorticity, whereas the hole is driven toward t
minimum. Such gradient-driven separation may help
ganize storms into bands of like-sign vortices on plan
with strong zonal winds, with holes in vorticity troughs
and clumps on vorticity peaks [9].

The opposite drifts of clumps and holes can be und
stood by momentum conservation. A similar argument h
been used to explain the motion of phase-space den
clumps and holes in plasma turbulence [11]. We focus
cylindrical geometry, where the flow conserves canoni
angular momentum,Pu �

R
d2r zr2. The analysis car-

ries over to planar geometry, where linear momentum
placesPu .

When there is just one vortex,Pu consists of two
parts, a background contribution and a vortex contrib
tion: Pu � Gb�r2�b 1 Gyr2

y. Here,Gb . 0 is the total
circulation of the background flow,Gy is the vortex circu-
lation,ry is the radial position of the vortex, and�r2�b de-
notes thezb-weighted spatial average ofr2. As indicated
in Figs. 1 and 2, both clumps and holes mix and flatten
(u-averaged) background vorticity. As the background
leveled,�r2�b increases (sincedzb�dr , 0). To conserve
Pu, a clump (Gy . 0) must climb the background gradi
ent and decreasery, whereas a hole (Gy , 0) must de-
scend the gradient and increasery .

We now determine the radial speed of the vorte
The vortex’s dominant translational motion is rotatio

FIG. 1. Gradient-driven radial separation of a clump (bla
dot) and hole (white dot) in a circular shear flow.
© 1999 The American Physical Society 2191
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FIG. 2. Local mixing of the background increases �r2�b . By
conservation of Pu , clumps and holes react oppositely.

about the center of the background. We work in this
rotating frame, so the vortex is nearly stationary, and we
define a local �x, y� coordinate system centered at the
vortex. In these coordinates, the initial velocity due to
the background is �y � Ayx̂ near the vortex, where A is
the shear, and the initial background vorticity gradient is
z 0

oŷ (where ŷ points in the local r direction).
Figure 3 shows the initial streamlines in the vicinity of

a retrograde clump [3(a)] and a prograde hole [3(b)]. The
stagnation points in Fig. 3(a) are at a distance l above and
below the clump, where

l �
q
jGy�2pAj . (2)

We treat the vortex and the disturbance that it generates
as perturbations to the initial shear flow, and suppose
that the Euler equation for the evolution of zb can be
linearized:∑

≠

≠t
1 Ay

≠

≠x

∏
dzb � 2z 0

o
Gy

2p

x
x2 1 y2 . (3)

Here, dzb is the background vorticity perturbation, and
we have used zy � Gyd��x �. This assumes that the vortex
is pointlike and moves slowly compared to the evolution
of the background. We have also neglected the velocity
perturbation due to dzb, assuming that it is negligible
compared to the vortex velocity field.

Equation (3) can be solved by the method of character-
istics, yielding

dzb �
2Gy

4p

z 0
o

Ay
ln

∑
x2 1 y2

�x 2 Ayt�2 1 y2

∏
. (4)

The radial velocity (�ry) of the vortex is the y component
of the velocity perturbation that develops at the origin.
By summing the contributions to the velocity field from
each vorticity element, we obtain the following integral
expression for �ry (here, u � x�y):

�ry �
Gy

4p2

z 0
o

A

Z L

l

dy
y

3
Z `

2`
du

u
u2 1 1

ln

∑
u2 1 1

�u 2 At�2 1 1

∏
. (5)

A small scale (l) and a large scale (L) cutoff are
introduced to escape infinities in the y integral. The
small scale cutoff describes the minimum distance from
2192
the vortex at which nonlinearities in the background flow
can be ignored. Thus, we identify the small scale cutoff
with l [Eq. (2)], the size of the shaded trapping region
in Fig. 3(a). To determine the upper cutoff, we note that
curvature in the unperturbed flow cannot be ignored for
jyj * ry , where ry is the radial position of the vortex.
We therefore set L � cry , where c is presumably O�1�.

The integrals in Eq. (5) yield

�ry �
Gy

2p

z 0
o

jAj
ln�L�l� tan 21�T�2�

� 6z 0
ol2 ln�cry�l� tan 21�T�2� , (6)

where T � jAjt and 1�2 is for clumps/holes. For T ¿
1, the inverse tangent is approximately p�2, and �ry is
approximately constant. Equation (6) gives a reasonable
scaling for the vortex speed: �ry increases with Gy and z 0

o ,
while it decreases as the local shear A intensifies.

However, the validity of Eq. (6) rests on the accuracy
of Eq. (3), which neglects curvature in the unperturbed
flow, the velocity perturbation due to dzb, motion of the
vortex, and all nonlinear terms. We now test Eq. (6)
against a VIC simulation that keeps all of these effects
[10]. A linear simulation that incorporates the first three
effects is used as an independent check.

We consider the specific case where the initial back-
ground vorticity distribution (zb at t � 0) is given by

zo�r� �

Ω
1 2 1.25 ? r r # 0.8
0 r . 0.8 . (7)

The rotation frequency of this background is Vo�r� �
0.5 2 0.417 ? r , for r , 0.8. We assume that the flow
is bounded by a circular wall with radius Rw � 1, and
that there is free slip at the wall (c � 0 at Rw). The
background chosen here represents a larger class, where
the radial derivatives z 0

o and V0
o vary slowly with r .

The linear simulation integrates the following set of
equations. The vorticity perturbation is expanded as a
Fourier series in the polar angle u:

dzb �
X̀

m�2`

Z�m��r, t� ? eimu . (8)

The linear evolution of Z�m� is given by∑
≠

≠t
1 imVo�r�

∏
? Z�m� � im

z 0
o

r
�C�m�

b 1 C�m�
y � . (9)

FIG. 3. Initial streamlines for a retrograde clump (a) and a
prograde hole (b) in a shear flow �y � Ayx̂, A . 0.
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Here, Cy and Cb are Fourier coefficients of the vortex
stream function and the stream function of dzb. The vor-
tex moves radially according to �ry � 2≠dcb�≠uj�ry

r21
y ,

which can be written

�ry �
2
ry

X̀
m�1

m Im�C�m�
b �ry , t�eimuy � . (10)

The angular velocity of the vortex is given by the
unperturbed flow,

�uy � Vo�ry� . (11)

In the linear simulation, Poisson’ s equation is solved
for C

�m�
b to second-order accuracy in the radial grid-

point spacing (	Rw�2000). The vortex position �ry and
the Fourier coefficients 
Z�m�� are evolved with third-
order Adams-Bashforth steps (	103 steps per background
rotation). The number of (excited) Fourier components is
made finite in the linear simulation by setting C�m�

y � 0
for m .

p
e ry�t��l�t�. This wave number is the inverse

of the horizontal width (in radians) of the trapping region
(TR) that is shaded in Fig. 3(a). Neglecting larger m
amounts to neglecting the contribution to �ry from the TR,
where the fluid is rapidly (T & 1) mixed by the vortex.
Although the TR is defined only for a retrograde vortex,
we try the same cutoff for a prograde vortex.

Figure 4 shows the linear (dashed line) and the VIC
(solid line) computations of ry�t� for a retrograde clump
and a prograde hole of initial strength l�ry � 0.12. The
ratio l�ry is called the “vortex strength” because it is
a dimensionless measure of the vortex intensity relative
to the background shear A � 2ryV0

o�ry�. The linear
simulation of clump motion is in good agreement with the
VIC simulation. In contrast, the hole moves much slower
in the VIC simulation than in the linear simulation. The
results for uy�t� (not shown) give similar agreement for
clumps and disagreement for holes.

Consider first the motion of the retrograde clump. It is
apparent from Fig. 4 that the clump rapidly accelerates to
a constant radial speed. Equation (6) offers a value for
this speed, up to a factor c (of order 1) in the logarithm.

Rather than set c � 1 on physical grounds, we use a
precise value for c that can be obtained by a standard (but
lengthy) analysis of Eqs. (9)–(11). Unlike the previous
derivation of Eq. (6), this analysis incorporates curvature
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FIG. 4. Radial position of vortex versus time T � ry�0�jV0
o jt

for linear (dashed) and VIC (solid) simulations.
of the unperturbed flow, and the velocity perturbation due
to dzb. However, the calculation still makes use of an
unperturbed orbit approximation: dzb is evolved with the
vortex fixed on a circular orbit [uy � Vo�ry�t], and �ry is
taken to be the radial velocity perturbation at the vortex
center. Wave numbers m .

p
e ry�l are neglected, as

in the linear simulation. The analysis yields a time-
asymptotic value for �ry that converges to Eq. (6) in the
limit of small l�ry . In general, the factor c depends on
ry and the form of zo�r�. In our example [Eq. (7)], the
expression for �ry reduces to Eq. (6) for l�ry & 0.1, with
c � 0.43 for ry & 0.7.

Figure 5 shows that the radial speed of the clump
converges to linear theory [Eq. (6)] as the clump strength
l�ry approaches zero. All clumps start at ry � 0.4 and
the background is always given by Eq. (7). We vary l�ry

by changing Gy only. We obtain �ry from a straight-line
fit to ry vs t, as ry decreases from 0.375 to 0.35. In
the plot, �ry is normalized to z 0

or2
y . Both z 0

or2
y and the

clump strength l�ry are evaluated at ry � 0.363. The
diamonds correspond to linear simulations and each “3”
corresponds to a VIC simulation. The solid curve is the
T ! ` limit of Eq. (6), with c � 0.43. Both linear and
VIC simulations converge to the solid curve as l�ry tends
to zero, indicating that the linear theory of Eq. (6) works
well for retrograde vortices.

We now consider the motion of prograde holes. The
failure of linear theory for holes can be understood by
considering the streamlines in Fig. 3(b). Linear theory
breaks down for times greater than the orbital period t

of a fluid particle initially at x 	 l, the small length scale
cutoff. The orbit of this particle is dashed. Since t 	
l2�Gy , t remains constant for holes as Gy approaches zero,
while the time scale for the hole to move a distance of order
l becomes infinite. Thus, the background perturbation
around a small hole becomes nonlinear “ instantaneously”
for all practical considerations. For clumps [Fig. 3(a)], this
problem does not arise, since fluid particles at x * l are
not trapped around the vortex. Note that linear theory fails
for holes, not because the hole has negative vorticity, but
because the hole is prograde with respect to the shear flow
in our example [Eq. (7)].
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FIG. 5. �ry versus l�ry for linear simulation (�’ s), VIC
simulation (3’ s and �’ s), and experiment (�).
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FIG. 6. Initial streamlines and mixing layer (shaded) for a
prograde hole in a circular shear flow [Eq. (7)].

The following mix-and-move argument gives a good
estimate for the hole velocity. A hole will attempt to
mix a thin layer of background vorticity and move a
distance Dr in response [Fig. 2(b)]. This mixing layer
(ML) corresponds to the shaded region in Fig. 6, which
shows the flow around a hole with l�ry � 0.05. The ML
extends from u � 2p to p and has an average radial
width of 	2l. Suppose that the hole levels the entire ML
( d�zb �u

dr ! 0) and has a negligible effect on fluid outside the
ML. Then, using conservation of Pu , it can be shown that
ry must increase by Dr 	 lz 0

o�V0
o . To obtain the hole

velocity also requires an estimate of the time Dt required
for the ML to flatten. The orbital speed of a trapped
particle is on average dominated by the background shear,
so Dt is approximately 4p�ljV0

oj. The velocity of the hole
is Dr�Dt, or equivalently

�ry 	 2
1

4p
l2z 0

o . (12)

In Fig. 5, we compare Eq. (12) to the late time hole
velocities that are observed in the VIC simulations. As
before, zo is given by Eq. (7) and the holes are located
initially at ry � 0.4. The plotted values of �ry are from
straight-line fits to ry vs t, as ry increases from 0.5 to
0.6. The ratio l�ry and the velocity normalization z 0

or2
y

are evaluated at ry � 0.55. The simulation velocities
(denoted by �’ s) are between 0.6 and 1.1 times the
estimate, indicating that Eq. (12) is a reasonably accurate
approximation for the speed of prograde vortices.

The speed of a prograde hole down a vorticity gradient
was recently measured in an experiment [1]. The speed
(plotted in Fig. 5) is within a factor of 4 of Eq. (12),
which is at the level of estimated error. Although strong
conclusions should not be drawn from a single datum, it
appears that we have captured the basic mechanism for the
radial motion of holes in the experiment.

The mix-and-move estimate assumes that the hole con-
tinuously moves into new regions where the u-averaged
background vorticity has a slope d�zb �u

dr � z 0
o . However, if

the ML moves with the hole, d�zb�u

dr shortly becomes zero at
ry , and the background and hole equilibrate in a phenome-
non akin to the formation of a Bernstein-Greene-Kruskal
2194
mode in a nonlinear plasma wave [12]. This will occur if
Dt ø tl , where tl is the time for ry to increase by l and
Dt is the mixing time. Using Eq. (12) for �ry then implies
that an equilibrium forms when z 0

o�V0
o ø 1 [13].

For the simulation data in Fig. 5, z 0
o�V0

o � 3, so
only a small fraction of the ML moves with the hole
[14]. However, by artificially increasing jV0

oj in the VIC
simulation so that z 0

o�V0
o is less than 1, one can examine

hole motion when the mix-and-move model breaks down.
For z 0

o�V0
o equal to 3�4 and 3�8 (and l�ry � 0.2), we

find that the ML moves with the hole and an equilibrium
is reached after a small radial displacement (&0.1ry).

Several issues remain. First, undamped modes or quasi-
modes can affect vortex motion if their phase velocities
resonate with the vortex velocity. This is particularly im-
portant when the background has steps [15]. Also, when
l�ry * 1, our linear treatment of retrograde vortex motion
becomes invalid. Finally, our analysis indicates that there
is a critical value of z 0

o�V0
o , of order 1 for a prograde vortex

and smaller for a retrograde vortex, below which equilibria
form and above which the vortex continues to move. This
nonlinear behavior merits further study.
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