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Everything should be as simple as it can be, but not simpler.

—Albert Einstein

The first principle is that you must not fool yourself and you are the easiest person to fool.

—Richard P. Feynman
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ABSTRACT OF THE DISSERTATION

Bernstein and Finite-Length Diocotron Modes in a Non-Neutral Plasma Column

by

Daniel Walsh

Doctor of Philosophy in Physics

University of California San Diego, 2018

Professor Daniel H. E. Dubin, Chair

This Dissertation consists of solutions to two major problems. Chapter 2 presents theory

and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical

plasma column. These modes rely on finite Larmor radius (FLR) effects to propagate radially

across the column until they are reflected when their frequency matches the upper hybrid frequency.

This reflection sets up an internal normal mode on the column, and also mode-couples to the

electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed

using external electrodes). Numerical results predicting the mode spectra, using a novel linear

Vlasov code on a cylindrical grid, are presented and compared to an analytic WKB theory. A

previous version of the theory[6] expanded the plasma response in powers of 1/B, approximating
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the local upper hybrid frequency, and consequently its frequency predictions are spuriously shifted

with respect to the numerical results presented here. A new version of the WKB theory avoids this

approximation using the exact cold fluid plasma response and does a better job of reproducing the

numerical frequency spectrum. The effect of multiple ion species on the mode spectrum is also

considered, to make contact with experiments that observe cyclotron modes in a multi-species

pure ion plasma.[1]

Chapter 3 presents theory and numerical calculation for the finite-length diocotron mode

frequency with arbitrary azimuthal mode number. The numerical calculation solves a bounce-

averaged version of the Vlasov equation to determine the perturbed potential in the presence

of the mode, along with its frequency. The analytic theory is also obtained from the bounce

averaged Vlasov equation, but we derive a theorem that allows us to obtain an effective fluid theory

consistent with the full Vlasov theory, which integrates out the surface phase space associated

with the bouncing motion, considerably simplifying the analysis. We use this effective fluid

theory to derive frequency shifts for finite-length cylindrical plasmas, and find good agreement

with experiment and with our numerical bounce-averaged Vlasov theory.
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Chapter 1

Introduction

1.1 Brief History and General Overview

This dissertation develops theory for two important wave phenomena in the physics of

strongly magnetized plasmas, both of which study how the plasma temperature affects magnetized

plasma modes traveling perpendicular to the magnetic field. The two topics study two distinct

regimes, first for high frequency modes near the cyclotron frequency; and second, for lower

frequency modes driven by ~E×~B drift dynamics.

The origin of the first topic of the dissertation was due to Ira B. Bernstein, who first

considered the propagation of thermal plasma waves perpendicular to the applied magnetic field

in 1958. These waves, called Bernstein modes, are collective excitations of the plasma near

the cyclotron frequency Ω = qB
mc (or integer multiples thereof). In this work, we will focus on

the fundamental modes, ignoring modes near multiples of the cyclotron frequency, although

the work presented here could also be naturally extended to include the higher harmonics, if

desired. Excluding mutual electrostatic particle interactions (and image charges), but including

thermal effects, the motion is quite trivial, as particles will simply undergo circular motion in a

uniform magnetic field, with constant frequency Ω. This theory has no wave propagation due

1



to the independence of the dispersion relation on the wave vector k. The theoretical inverse of

this situation is when we include mutual electrostatic effects, but exclude thermal effects. Such a

theory, called a “fluid theory” allows particles to communicate via the electrostatic potential Φ,

but assumes each spatial point can only possess a single “fluid velocity” to which all particles

at that point are attributed. The resulting motion in this case exhibits so-called “upper-hybrid

modes”, which are still analytically tractable modes, and again do not propagate! A natural

question arises, then: “What does the theory that includes both electrostatic interactions and

thermal effects predict?” Surprisingly, the combination of the restoring forces from the sum of the

magnetic Lorentz force and the mutual electric forces of these effects together creates a non-trivial

dispersion relation, and gives rise to traveling waves.

This can be understood physically when one realizes that as the temperature increases, the

cyclotron radius rc also increases, meaning that a single particle physically behaves more like its

charge is smeared around its finite, roughly-circular orbit. This means that the “effective electric

field” felt by a particle is not sampled at the instantaneous position of that particle, but rather

sampled over nearby spatial points over a distance roughly rc. For a wavelike solution, the effective

perturbed field, and consequently the effective restoring force, will tend to be somewhat smaller

than the field sampled at a point, since the concavity of the field, (and therefore the “effective field”

perturbation) always opposes the value of the field at that point, reducing its averaged magnitude.

For krc� 1, the correction is minor, whereas for krc� 1, the averaging takes place over many

wavelengths, and the effective field is almost entirely annihilated. Consequently, the effective

electric restoring force is a function of the wavenumber k, the dispersion relation becomes non-

trivial, and wave-propagation emerges. As such, Bernstein modes should be considered related

to, yet distinct from cyclotron and upper-hybrid modes in that they appear as a consequence

of finite Larmor radius effects, splitting a single cyclotron mode frequency into a number of

finer frequency peaks clustered near the bare cyclotron frequency, as determined by the discrete

spectrum of the resulting wave equation upon imposing boundary conditions.

2



This temperature dependence is also of great experimental interest, since it offers a non-

destructive and reliable plasma temperature measurement. Aside from temperature diagnostics,

however, this theory of Bernstein modes also shows promise in other types of diagnostics, such

as plasma density profile and isotope purity.

The second type of plasma mode, called the diocotron mode, was first measured in pure

electron plasmas by DeGrassie and Malmberg in 1980. “Diocotron” derives from a Greek word

meaning “pursue”, as the first experimental studies of these plasmas showed instabilities in which

the plasma would break up into smaller pieces that seemed to be in pursuit of each other, drifting

around the axis of the plasma trap. The reason for this azimuthal drift is a subtle consequence of

the interplay between the cyclotron motion discussed in the previous paragraph with an electric

field. While a charged particle at rest remains motionless in a magnetic field, the addition of a

perpendicular electric field will push on the stationary particle, starting it in motion. Since the

magnetic field does no work, the charge moves with a higher speed at lower electric potential

energy than higher potential energy, causing the particle’s mean velocity to deviate from that of

the case of simple cyclotron motion. The resulting motion resembles circular cyclotron motion,

except that the particle’s orbit will drift gradually in a direction perpendicular to both the electric

and magnetic fields. This behavior is called ~E×~B drift dynamics. In strong magnetic fields, the

cyclotron radius can become quite small to the point that often it becomes superfluous to follow

the minute details of the cyclotron motion, justifying a “course graining” analysis where only the

guiding center, and not the tiny cyclotron orbits around that center can be resolved.

In this guiding center drift theory, the perpendicular velocity is immediately dictated by

the local electric and magnetic fields as v⊥ = c~E×~B
B2 . The velocity is determined at each point in

space and time, so the notion of a temperature associated with a 2D ~E×~B drift plasma ceases

to be relevant. Instead, we turn to the more complex problem of studying 3D diocotron modes,

where axial bounce motion and finite-length effects are retained, and for which a temperature

(called T‖) is defined (the subscript notation will usually be dropped since T⊥ is not relevant in this
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chapter). In this body of work, we focus on the 3D diocotron mode frequencies, and the central

goal, analogous to chapter 2, is to theoretically understand the dependence of diocotron mode

frequencies on T‖. Because only the slow drift motion is kept, diocotron frequencies are always

smaller than the cyclotron frequency (often by orders of magnitude or greater). Understanding

temperature dependence on mode frequency is critical to many areas of plasma physics (even to

those not directly studying diocotron modes) because this dependence can be used to measure the

plasma temperature in a non-destructive way (i.e. without modifying or destroying the plasma in

the process).

To give a sense of how a “diocotron thermometer” could work, consider a single plasma

particle, which rapidly travels axially at constant r, like a bead on a wire. Since the plasma is

axially contained electrostatically, there comes a point at the end of the plasma where the particle

is reflected by the external confinement fields, and is forced to turn around and return to the

other side, after which it bounces again. Inside the plasma, the radial electric field Er (which is

responsible for driving the azimuthal drift motion) is practically uniform, so the particle gradually

orbits the center of the trap at a constant rate. However, while the particle is in the end region,

Er, and consequently the drift velocity, deviate significantly from their previous values, causing

the particle to move azimuthally in a non-uniform manner. This brings about a correction to the

diocotron mode frequency due to this unexpected kick (as compared to the infinite-length theory).

Furthermore, it is clear that the size of this correction will depend on how much time a particle

spends in these ends, and how deeply the particle penetrates into the end. The conclusion is that a

hotter plasma, which has more higher-velocity particles, will experience a greater correction than

a cold plasma. It is this observation that provides the motivation to theoretically study thermal

effects on finite-length diocotron modes, which would provide a new way for experimentalists to

non-destructively measure temperature.

The theoretical analysis turns out to be more subtle than it appears at first glance due to

two competing thermal effects (which we call µ, for “magnetron”; and λ, for “length”) that can
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partially cancel each other out. As we will see, the diocotron mode frequency tends to increase as

temperature is increased, when holding the central density and radial profile fixed, due to this

additional “kick” particles experience at the end. However, the plasma also expands axially as

temperature increases, which effectively lowers the central plasma density, and consequently the

mode frequency. It is then not at all clear which of these effects will win; as we will see, both

frequency increase and decrease with temperature are possible. These two opposite dependencies

are readily seen when comparing an `= 1 with an `= 2 diocotron mode. A positive temperature

dependence is predicted and observed for `= 1, while a negative dependence is predicted and

observed for `= 2.

To gain some understanding of the reversal of temperature dependence between ` = 1

and `= 2, it is useful to recognize that the λ effect comes from a change to the central density,

which has a multiplicative effect on the mode frequency (central density and mode frequency are

proportional), while the µ effect comes from an absolute kick on the ends, which has an additive

effect on the mode frequency. As a result, the contribution from µ is roughly the same for either

mode, while the effect from λ can be significantly larger for `= 2 than for `= 1, since the mode

frequencies can be markedly different between these two modes for narrow plasmas compared to

the wall radius. After all, the `= 1 diocotron mode frequency for a plasma with no conducting

wall is zero (the wall is required to drive this mode), while all higher ` modes have non-zero

frequencies.

Finally, in this diocotron section, we also develop a formalism to study non-uniform

temperature effects (where temperature is a function of radius), to gain a theoretical understanding

to make contact with recent experiments. It is shown that for a well-contained plasma, there is

only very small radial dependence, and the relevant quantity to predict frequency shift is the total

thermal energy introduced to the plasma, regardless of radial distribution.

In the next sections, we will give a more detailed overview of these two subjects, briefly

reviewing the major results of the two following chapters.
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1.2 High-Frequency Magnetized Modes

In chapter 2, the first topic is covered, in which the theory of “fast” Bernstein modes is

developed and extended from the existing literature, examining both analytical and computational

solutions to non-uniform plasma columns, with either a single species, or multiple species,

which allow comparison to experiments that are neither uniform, nor comprised of a single

species. In the discussion of this first topic, the plasma is always assumed to be axially symmetric

(and infinite in length), but not azimuthally symmetric, such that the system is modeled as a

two-dimensional plasma. Since Bernstein modes are thermal effects, arising from the finite

Larmor Radius of particles in the magnetized plasma, the cold fluid theory is only valid in the

T = 0 limit, where a single cyclotron resonance is observed in the plasma response to a driver,

and no additional structure is seen. As the temperature is increased, a family of new modes,

called Bernstein modes are predicted to emerge from the single cyclotron resonance. At low

temperatures, these modes are very closely spaced in frequency, and are not resolvable due to

some physical damping mechanism such as particle collisions. However, when the temperature

is increased, the mode spacing increases, and a number of Bernstein modes appear, no longer

hidden by the finite collisionality. The origin of these modes is that the non-zero Larmor radius

of the plasma particles allows them to explore a finite neighborhood around their guiding center

positions as they undergo their small circular orbits. As a result, at any time, the force felt by

these particles differs from the force that would be predicted from cold fluid theory, where every

point in space has a single unambiguous fluid velocity rather than some non-trivial distribution of

particle velocities.

This Bernstein chapter presents many new results on these Bernstein modes. First, the

fluid theory of these cyclotron modes are studied, and the resulting differential equation is

studied by examining its singular points, which correspond to locations in the plasma where

the mode potential diverges. While these modes are unphysical, their physical nature becomes
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clear when considered as a continuum basis of modes; some continuous combination of which

forms a continuous, physical quasimode. This fluid theory, however, is insufficient to explain

Bernstein modes, which only appear when thermal effects are introduced. Two distinct theoretical

approaches are employed to understand these modes: first, a powerful numerical Vlasov approach

is derived, which studies the details of the plasma evolution in phase-space, allowing details of the

thermal distribution to be retained, and thereby giving rise to Bernstein modes. Anti-Hermiticity

of the resulting operator describing the mode is established, which aids in numerical solution to the

problem. Second, an advanced WKB theory is developed, allowing a much simpler description of

Bernstein modes, which generalizes the Bernstein dispersion relation to be applicable to a plasma

with gradually changing density as a function of space. After developing a theorem on the form

of the perturbed potential with e−iωt+i`θ in a uniform plasma, and partitioning the solution region

into partially overlapping subsets, the Bernstein mode frequencies are calculated, and compared

to the results of the numerics. Good agreement is seen between the Vlasov and WKB approaches

for both `= 2 and `= 4, although the behavior near wave-particle resonances is still not fully

understood. Next, the problem is generalized to account for impure plasmas, consisting of other

ion isotopes, or even different ions altogether. With this generalization, necessary conditions are

established for Bernstein modes, and presented in the form of plots. Finally, the somewhat special

`= 0 (azimuthally symmetric) mode is studied and compared to existing numerical work done in

this regime, again demonstrating good agreement.

1.3 Low-Frequency Magnetized Modes

In chapter 3, a completely different problem of “slow” diocotron modes in the same

geometry as chapter 2, is studied. In this section, we also consider 3D effects due to the finite

axial extent of the plasma, which were neglected in chapter 2. The axial extent is determined by

two end confinement rings whose potential keeps the plasma contained axially. Again, the effect
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of plasma temperature on mode frequency is studied on this finite-length column. Much like

Bernstein modes, the diocotron mode is critical for experimental manipulation of plasmas, and is

used for a variety of nondestructive experimental diagnostics. Similar to the situation in chapter

2, while a cold diocotron mode is well-described with cold fluid theory, a temperature increase

produces a frequency shift to the mode. We will see that there are two physical reasons for this.

First, the plasma density changes as temperature increases and the particles travel farther axially

before returning. Since even the infinite-length diocotron frequency depends on the density,

this effect tends to make the mode frequency decrease as temperature increases. Second, these

warm particles also feel a stronger radial force from the confinement cylinders which acts to

increase the mode frequency. Third, the fact that the plasma itself has a finite length means that

the self-consistent plasma fields differ from that of an infinite column, either from the image field

(as in `= 1), and in the non-image field (as in ` > 1). The net frequency shift is a combination

of these effects. These findings motivate a new temperature diagnostic using diocotron mode

frequency dependence on finite plasma length and thermal corrections, made possible by the

theoretical results of chapter 3.
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Chapter 2

Bernstein Modes

2.1 Introduction

This chapter presents a linearized theory of electrostatic cyclotron waves in both single

and multiple-species nonneutral plasma columns. For simplicity we consider the component of

plasma response independent of axial position z, but we include thermal effects on the waves,

focussing mainly on Bernstein modes. There have been several experimental[1, 17, 9] and

theoretical[6, 8, 10] papers studying electrostatic cyclotron waves in a nonneutral plasma in the

cold-fluid regime (neglecting thermal effects). In seminal work that included thermal effects,

Gould et. al.[9] treated a parabolic-profile plasma using an approximate wave equation to estimate

Bernstein mode frequencies, and also performed experiments that observed the modes on a

pure electron plasma column. A partial WKB theory analysis was provided, but it neglected

mode-coupling between the Bernstein and surface cyclotron modes. While Bernstein modes

were observed in these experiments, the plasma was not well characterized, as parameters of the

plasma (radius, temperature, etc.) were time-dependent as the plasma decayed toward the wall.

In 1995, E. Sarid et. al. [17] measured cyclotron modes in a Magnesium ion plasma

with multiple species. Multiple modes were observed near the ion cyclotron frequency, some of
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which may have been Bernstein modes, but the plasma was not sufficiently well-characterized to

determine this. Recently, Hart and Spencer performed particle-in-cell simulations on an infinite-

length plasma in global thermal equilibrium.[10], and observed azimuthally-symmetric Bernstein

modes. Meanwhile, Dubin carried out a full WKB warm fluid theory describing Bernstein modes,

extending the work of Gould by accounting for accurate equilibrium distributions, and retaining

the crucial linear mode coupling between the internal Bernstein and surface cyclotron modes.[6]

However, a large magnetic field limit was assumed by Dubin, and it is a priori unclear how large

the magnetic field must be for this approximation to be valid.

In this chapter we present a novel computational method for solution of the linearized

Vlasov equation that makes no assumptions about the magnetic field strength, and makes direct

comparison to previous work by Dubin, and Hart and Spencer. Using the numerical Bernstein

spectrum obtained from the code, we find that the 1/B expansion used by Dubin introduces

a spurious shift of the local upper-hybrid frequency, leading to a significant shift of Dubin’s

predicted Bernstein mode frequencies away from the values obtained from our code. We resolve

this issue by constructing a new WKB theory, which avoids taking the large magnetic field limit.

The results of the Vlasov code and the new WKB theory are then compared, and better agreement

is found between the mode frequencies obtained from the two methods. We also consider the

effect of multiple species on the Bernstein mode spectrum, finding that wave-particle resonances

will damp the waves if the impurity species concentrations are too large. We predict that for

ongoing experiments at UCSD, where the modes are excited using applied oscillatory voltages

on external electrodes, Bernstein modes will be easiest to observe in the majority species of a

clean, hot plasma for azimuthal mode number l = 2. For l = 1 there is negligible Bernstein mode

response to this type of excitation, and for l = 0 the Bernstein mode component to the plasma

response is small and heavily damped. However, the `= 0 Bernstein frequencies predicted by

our computations are the same as the results of Hart and Spencer[10].

10



2.2 Equilibrium

In this chapter, we assume throughout that the equilibrium plasma is a thermal equilibrium

nonneutral plasma with uniform temperature T and uniform rotation frequency ωr. We assume

that the plasma consists of charge species all with positive charge q, in a uniform magnetic field

in −z direction of strength B. This choice of magnetic field direction implies that the plasma

rotates in the positive θ direction (i.e. ωr > 0), and cyclotron motion is also a rotation in the

positive θ direction with cyclotron frequency Ω = qB/(mc)> 0. (If the plasma consists instead

of negative charge species, the results in this chapter can be applied by assuming a magnetic field

in the +z direction.)

We will use nondimensionalized variables. Times are scaled by the central plasma

frequency ωp(r = 0) =
√

4πq2n(0)/m associated with one plasma species of mass m and charge

q, and lengths are scaled to the central Debye length λD(r = 0) =
√

T/(4πq2n(0)) where here

(and here alone) n(r) is the unscaled plasma number density of the given species. Everywhere

else, densities are scaled by the central equilibrium density n(0). Masses of other species are

scaled to the mass m. Electric potentials are also scaled via Φ = qφ/T , where φ is the unscaled

electrostatic potential. This definition of Φ, along with the scaling of n gives, for a single-species

plasma, the scaled Poisson’s Equation ∇2Φ =−n. These scalings imply the velocities are scaled

by the thermal speed vT =
√

T/m.

The thermal equilibrium density profile of the plasma satisfies Poisson’s equation with

the constraint that n(r) is a Boltzmann distribution. For a single species plasma, write

n(r) = eψ(r), (2.1)

where ψ =−Φ−ωr(Ω−ωr)r2/2 is the negative of the (scaled) equilibrium potential energy as

seen in a frame rotating with the plasma.[16] Then Poisson’s equation reduces to
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Figure 2.1: Equilibrium densities scaled by central density for various values of γ.

1
r

∂

∂r

[
r

∂ψ

∂r

]
= eψ− (1+ γ), (2.2)

where γ≡ 2ωr(Ω−ωr)−1. Densities predicted by Eqs. (2.1) and (2.2) are displayed in FIG. 3.6

for a set of different γ values. As γ approaches zero, the plasma radius (measured in Debye

lengths) increases.

In later work we will find it useful to define the equilibrium radius of the plasma rp as

rp =

√∫ rW

0
2rn(r) dr (2.3)

This radius is equal to the radius of an imaginary “top-hat” plasma whose central density and

total particle number (per unit axial length) are both equal to our plasma. In scaled units, there is

a relationship between γ and rp, good when rp� 1:

rp ∼ 0.513− logγ+
1
2

loglog1/γ.

Consequently, γ parametrizes the scaled radius of the plasma, i.e. the number of Debye lengths

across the column radius.
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The equilibrium distribution function is a product of n(r) and a rotating Maxwellian,

which in our scaled units becomes

f0(r,v) =
n(r)
2π
× exp

[
−(v−ωrrθ̂)2

2

]
. (2.4)

For nonneutral plasmas containing multiple species, species with different masses can

centrifugally-separate in the rotating plasma column, with heavier species pushed to the outside

of the column by centrifugal force effects. According to the Boltzmann distribution, the ratio of

densities between two species i and j is [15]

ni(r)/n j(r) = ci, j exp(−(mi−m j)ω
2
r r2/2), (2.5)

where ci, j is a constant depending on the overall concentration of the two species. Here, however,

we will assume that the density ratio is close enough to a constant over the plasma profile so that

centrifugal separation effects can be neglected. This is not a good approximation in some very

low temperature experiments (T < 10−4 eV) on ion plasmas at UCSD, but is a reasonably good

approximation at higher temperatures where, as we will see, it is easier to see Bernstein modes.

Thus, we will assume that each species has the same radial density profile, multiplied by a factor

proportional to the overall concentration of that species.

2.3 Cold Fluid Theory of Cyclotron Waves

In this section we briefly review the general theory of cold fluid electrostatic waves in a

plasma column. Readers interested in more detail should refer to the original work of Trivelpiece

and Gould[20], as well as a more recent cold fluid theory of z-independent cyclotron waves

developed by Gould[9, 8]. Temperature is assumed to be zero in this theory and the plasma

equlibrium density is assumed to have an arbitrary radial dependence n(r). The theory considers
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cyclotron waves that are excited by oscillating an external electrode voltage at frequency ω. The

electrode radius is r = rW , and its voltage is oscillated to produce a potential on the electrode

of the form δΦW e−iωt+i`θ where ` is an integer. For a single-species plasma, Gould derived a

linear fluid theory for small amplitude waves, where the perturbed potential δΦ(r,θ, t) is also

proportional to e−iωt+i`θ, and satisfies the following boundary-value problem:

∇ · ε∇δΦ = 0, (2.6)

with a 2-dimensional dielectric tensor ε given by

ε = 1−

 1 −iΩv
ω̂

iΩv
ω̂

1+
rω′f Ωv

ω̂2

X(ω,r). (2.7)

Here

X(ω,r) =
ω2

p

ω̂2−Ωv(Ωv− rω′f )
, (2.8)

where we have momentarily relaxed our scaled units, so that the dependence of X on the plasma

frequency ωp is apparent (in our scaled units ω2
p = n(r)). The primes denote derivatives with

respect to r, ω̂ = ω− `ω f is the Doppler-shifted wave frequency as seen in a frame rotating with

the plasma, Ωv = Ω− 2ω f is the “vortex frequency” (the cyclotron frequency shifted by the

Coriolis force from rotation), and ω f (r) is the cold-fluid rotation rate of the plasma (neglecting

the thermal diamagnetic drift correction that affects ωr), which is given by the solution of the

quadratic equation

2ω f (Ω−ω f ) = 〈n〉r. (2.9)

Here 〈n〉r is the average equilibrium density within radius r given by

〈n〉r =
2
r2

∫ r

0
r̄dr̄n(r̄). (2.10)
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Equation (2.6) is merely a restatement of the Maxwell’s equation ∇ ·D = 0, where the

electric displacement vector is D =−ε ·∇δΦ.

Writing out Eq. (2.6) one obtains the following second order differential equation that

must be solved for the wave potential δΦ:

0 = ε11δΦ
′′+
(

ε11

r
+ ε
′
11

)
δΦ
′+

(
i`
r

ε
′
12−

`2

r2 ε22

)
δΦ, (2.11)

where again primes denote derivatives with respect to r. Here εi j refers to the i, jth component of

the dielectric tensor. This equation is to be solved using the boundary conditions that at r = 0 the

potential must remain finite, and at the surrounding electrode with radius r = rW the potential is

δΦ(rW ) = δΦW .

Gould made further progress in obtaining the solution of Eq. (2.11) by taking a large

magnetic field limit in order to simplify several terms. We will not use this approximation here

because it introduces small but important errors in the solution. Instead, we solve Eq. (2.11)

numerically. However, we will later find it useful to compare to the large field solution, so for

completeness we provide the solution below. The general solution to the large-field ODE can be

written analytically as a linear combination of two independent solutions:

δΦ = Ar−`
∫ r

dr̄
r̄(2`−1)

D(r̄)
+Br−`, (2.12)

where D(r) is the large-field form for ε11,

D = 1−
ω2

p/(2Ω)

ω̂−Ωv + rω′f /2
, (2.13)

and where the coefficients A and B are determined by the boundary conditions on the solution.[6]

For the simplest possible case of a uniform plasma completely filling the electrode volume

out to r = rW , Eq. (2.11) simply becomes ε11∇2δΦ = 0. This implies that either the potential
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satisfies Laplace’s equation, so that there is no density perturbation (and no cyclotron wave) or else

ε11 = 0, which is the dispersion relation for upper hybrid waves in the uniform plasma column.

The frequency of these waves (as seen in the rotating frame) is the upper hybrid frequency, given

by

ω̂
2 = ω

2
p +Ω

2
v . (2.14)

In a uniform plasma these upper hybrid oscillations can have any functional form, i.e. ∇2δΦ is

not determined in cold fluid theory.

Another case that can be handled analytically is a uniform plasma column with radius

rp less than rW . In this case there are surface waves in addition to the upper hybrid waves. The

surface waves can be excited by the external electrode potential oscillation, i.e. they are driven to

large amplitude if the external electrode potential oscillates at the surface wave frequency. The

surface waves themselves have a potential of the form δΦ ∝ r` inside the plasma, and a frequency

given by the solution of the equation

`(ε11 + iε12) =−`
1+(rp/rW )2`

1− (rp/rW )2` . (2.15)

This equation yields a quadratic equation for the wave frequency whose solution is

ω̂ =
Ωv

2
±

√
Ω2

4
−

ω2
p

2

(
rp

rW

)2`

. (2.16)

The upper sign yields the frequency of the surface cyclotron wave, while the lower sign yields

the frequency of the diocotron wave. When the magnetic field is large, the surface cyclotron

frequency can can be approximated as

ω̂ = Ωv +
ω2

p

2Ωv

[
1−
(

rp

rW

)2`]
. (2.17)
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This surface mode frequency is greater than the vortex frequency but less than the upper hybrid

frequency.

Both cyclotron and diocotron waves are incompressible distortions of the shape of the

plasma column that rotate in θ with angular phase velocity given by ω̂/`, as seen in the frame of

the plasma’s rotation. These surface waves have finite multipole moments, which is why they can

create a potential outside of the plasma that can be detected on the wall. For instance, for `= 1

the plasma center is shifted off-axis and rotates about the center of the trap at the wave phase

velocity, while for `= 2 the plasma distorts into a uniform-density ellipse whose shape rotates

about its center.

On the other hand, upper hybrid oscillations in the uniform plasma column cannot be

detected, or excited, using wall potentials. For instance, an ` = 0 upper hybrid oscillation

corresponds to any cylindrically-symmetric radial velocity perturbation; such a perturbation will

oscillate at the upper hybrid frequency of the column. This perturbation obviously conserves total

charge, and therefore, by Gauss’ law, creates no field outside the plasma that can be used to detect

or excite the mode.

Similarly, upper hybrid oscillations internal to the plasma column can be found with

any azimuthal mode number ` and (almost) arbitrary radial dependence (again assuming that

the plasma column has uniform density). For instance, any initial ` = 1 density perturbation

of the form δn(r)eiθ, chosen so as not to change the center of mass location of the plasma (i.e.∫ rp
0 dr̄r̄2δn(r̄) = 0), will not create an `= 1 (dipole) moment and will therefore be unobservable

from outside the plasma. This initial perturbation can then evolve in two ways, depending on

the self-consistent initial velocity field. That part of the field which is curl-free evolves as an

upper hybrid oscillation; that part which is divergence-free has zero frequency (as seen in the

plasma’s rotating frame). Although not the subject of this chapter, the zero-frequency modes are

“convective cell” vortical motions that do not change the perturbed plasma density, by construction.

There are an uncountable infinity of such degenerate upper hybrid oscillations and zero-frequency
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convective cells, but only two surface modes (the diocotron and upper-hybrid branches). Only the

surface modes are detectable, or excitable, from the wall.

For a nonuniform plasma column with density that smoothly approaches zero at some

radius less than rW , the surface mode and the continuum of upper hybrid oscillations now couple

in an interesting (and nontrivial) way. (Something similar can happen with the diocotron surface

mode and the zero-frequency modes.[18]). As the plasma density varies, the upper hybrid

frequency varies and the spectrum of upper hybrid oscillations becomes a continuum that spans

the range from the vortex frequency (where the density approaches zero) to the central upper

hybrid frequency. This continuum includes the surface plasma frequency, and consequently the

formerly discrete surface plasma eigenmode becomes a “quasimode”;[18] i.e. it is no longer

an undamped eigenmode of the system. However, there remains a damped plasma response

to an external driver that consists of a phase-mixed potential response from the upper hybrid

continuum, peaked around the former surface plasma frequency. This is a well-known form of

spatial Landau-damping that has been discussed previously for other types of plasma waves,

such as Langmuir waves [2] and Trivelpiece-Gould modes. [4] (Sidenote: `= 0 and `= 1 are

exceptional cases. For ` = 0 there is no surface plasma mode, and there is still no coupling

between an external wall potential and the upper hybrid continuum (see Sec. VIII D); while for

`= 1 the surface mode remains a discrete “center of mass” eigenmode, even for a nonuniform

column.)

To describe the driven response of a nonuniform plasma column at frequencies near the

cyclotron frequency, one must now solve Eq. (2.11) numerically in general (except for the `= 0

case, which can be calculated analytically, as we discuss later). However, notice that Eq. (2.11)

has regular singular points for radii where ε11 vanishes, causing δΦ to diverge. This occurs when

X(ω,r) = 1. (2.18)
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Note that this is the same condition we had when considering modes in a uniform plasma,

resulting in upper-hybrid oscillations in Eq. (2.14). Accordingly, we define rUH(ω) to be a root

of Eq. (2.18), which we refer to as an upper-hybrid radius.

For a single species plasma with a thermal equilibrium density profile, one can show that

there is at most one solution to Eq. (2.18), r = rUH(ω). However, for multispecies plasmas, there

can be more than one solution.

To understand the nature of the fluid theory divergences near an upper-hybrid radius, we

perform asymptotic analysis on Eq. (2.11) near rUH(ω) in the case where terms of any order in 1
r

are neglected. Dropping all such terms in Eq. (2.11), we obtain

δΦ
′′+

ε′11
ε11

δΦ
′ = 0. (2.19)

Under typical conditions, the root in Eq. (2.18) is first-order, that is, X ′(ω,rUH) 6= 0, so it is viable

to expand ε11(r) around rUH. We write

ε11 ∼
1
L
(r− rUH), (2.20)

with L ≡ 1/ε′11(rUH), so that Eq. (2.19) becomes

δΦ
′′+

1
r− rUH

δΦ
′ = 0. (2.21)

The order of the equation can be reduced, and the equation can be directly integrated:

δΦ
′(r) =

A
r− rUH

. (2.22)

We should emphasize that Eq. (2.22) is only correct for r near rUH, and should be regarded as the

first term in a series expansion of δΦ′ about the point rUH. The next-order terms in the expansion
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are proportional to log(r/rUH−1), a constant of order unity, and so on.

We would like to integrate this expression to obtain δΦ(r). However, the divergence at

r = rUH requires careful consideration of the physics: in any physical plasma there will be a

small effect from particle collisions, causing waves to damp. Later in the chapter, we introduce a

simple Krooks model of collisions. This model has the effect of replacing the frequency ω by

ω+ iν in Eqs. (2.6) - (2.18), where ν is the collision rate. This in turn implies that rUH, the root

of the modified Eq. (2.18), X(ω+ iν,r) = 1, is complex. For small ν a Taylor expansion of this

equation implies that the imaginary part of rUH is

Im(rUH) =−ν
∂X/∂ω

∂X/∂r
|rUH0 = ν

∂rUH0

∂ω
=− 2ω̂ν

ω2
p∂ε11/∂r

≡ ∆r (2.23)

where rUH0 and ∆r are the real and imaginary parts of the upper hybrid radius respectively:

rUH = rUH0 + i∆r, (2.24)

and the last form for ∆r in Eq. (2.23) follows by substitution for X from Eqs. (2.7), (2.8) and

(2.18). The sign of ∆r can be either positive or negative depending on the sign of the radial

gradient of ε11. The effect of this in integrating Eq. (2.22) is to move the pole at rUH slightly away

from the real r axis, allowing integration around the pole:

δΦ(r) = A log
( rUH− r

rUH− r0

)
+δΦ(r0), (2.25)

where r0 is a radius below the cutoff radius, and both r and r0 are close enough to the upper hybrid

radius to make Eq. (2.20) as good approximation. The coefficient A is given here by matching to

the derivative of the potential using Eq. (2.22):

A =−δΦ
′(r0)(rUH− r0) (2.26)
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The logarithmic divergence of the perturbed potential near the upper hybrid radius can be

seen in FIG. 2.2 for several different scaled frequencies λ, [8] where

λ =
ω−Ω

ωE
, (2.27)

and where ωE ≡ 1/(2Ω) is the E×B equilibrium rotation rate at the center of the plasma column

(in our dimensionless units). (This frequency scaling is useful because the plasma response to

the forcing is largest for frequencies ω for which λ is of order unity. The fluid rotation rate

ω f , given by Eq. (2.9), differs from ωE at the column center in that it includes the F×B drift

from centrifugal force effects, but this difference is typically small.) As shown in FIG. 2.2, the

logarithmic divergence changes radius as λ varies because the upper hybrid radius is a function of

frequency through Eq. (2.18).

The potential picks up an imaginary part, as shown in FIG. 2.2, even for small ν because,

for r > rUH0, the real part of the argument of the logarithm in Eq. (2.25) changes sign:

δΦ(r) = A log
( r− rUH

rUH− r0

)
+δΦ(r0)+ iπASign(∆r). (2.28)

Next, using the Plemelj formula, we evaluate the limit as δr→ 0:

δΦ(r) =− iπAh(r− rUH0)+P
∫ r

r0

A dr′

r′− rUH0
+δΦ(r0)

=− iπAh(r− rUH0)+A log
∣∣∣∣ r− rUH

r0− rUH0

∣∣∣∣+δΦ(r0),

where h(x) is the Heaviside step function. Due to the step function this integral takes a different

form for r < rUH compared to r > rUH. For r < rUH, we have

δΦ
−(r) = A log

(
rUH0− r
rUH0− r0

)
+δΦ(r0), (2.29)
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while for r > rUH0, the solution is

δΦ
+(r) =−iπA+A log

(
r− rUH0

rUH0− r0

)
+δΦ(r0) (2.30)

Note that these two equations can be written at once by carefully specifying the branch cut of the

logarithm so that log(−y) = iπ+ log(y), for y > 0:

δΦ(r) = A+B log(r− rUH). (2.31)

With this interpretation, the additive offset encountered by circumnavigating the pole at r = rUH

is accounted for quite naturally by the behavior of the logarithm when the argument switches

sign. A solution for the perturbed potential beyond the upper hybrid radius can now be obtained

by integrating Eq. (2.11) from r = 0 (with δΦ(0) = 0), up to r = rUH−∆r (i.e. just before the

upper hybrid radius, with ∆r→ 0+)), and then using Eqs. (2.29) and (2.30) to write δΦ(rUH +

∆r)−∆Φ(rUH−∆r) =−iπA and δΦ′(rUH−∆r) =−δΦ′(rUH +∆r) =−A/∆r. This allows us to

determine a jump condition relating the perturbed potential and its derivative just before and just

after the upper-hybrid radius:

δΦ
+ = δΦ

−+ iπ∆r
∂δΦ

∂r

−
,

∂δΦ

∂r

+

=−∂δΦ

∂r

−
, (2.32)

where the notation δΦ− and δΦ+ is the perturbed potential evaluated at rUH +∆r and rUH−∆r

respectively. These formulae allow numerical integration of Eq. (2.11) through the divergence, by

taking ∆r small but finite. Note that Eq. (2.22) implies that ∆r∂Φ−/∂r is finite as ∆r approaches

zero. Physically, the fact that the perturbed potential has an imaginary part when ν→ 0 is due to

a collisionless damping mechanism: at the upper hybrid radius, the driven potential oscillation

is resonant with a radially-localized upper hybrid oscillation. Unlike the uniform plasma case
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Figure 2.2: Radial dependence of the imaginary part of the perturbed potential Im{δΦ(r)}
driven at frequencies from λ = 1 (red) down to λ = 0.6 (violet) in equal steps. rp = 4.76,
rW = 10, `= 2, Ω = 5 and ν→ 0+.

discussed previously, this resonant upper-hybrid oscillation can be excited by the external driving.

The excitation requires energy that damps the oscillation, and is responsible for the imaginary

(out-of phase) potential response. This type of collisionless damping from linear mode-coupling

between a surface wave and an upper hybrid oscillation is a well-known form of spatial Landau-

damping that has been discussed previously for other types of plasma waves, such as Langmuir

waves [2] and Trivelpiece-Gould modes.[4] Later, when finite temperature effects are added to the

theory, the continuous spectrum of upper hybrid oscillations, with variable frequency depending

on the local plasma density, will be found to break into a discrete spectrum of finite-temperature

Bernstein oscillations. The Bernstein oscillations also couple to the surface wave at the upper

hybrid radius, in much the same way as described here.

In FIG. 2.2 we plot Im{δΦ(r)}/δΦW for various driving frequencies with mode number

`= 2, assuming a single species plasma with density profile given by the solution of Eq. (2.2),

for rp = 4.76 as given by Eq. (2.2),and rW = 10. This can be interpreted as the (imaginary part of

the) perturbed potential driven at unit wall amplitude. The imaginary part of the wave potential

was taken to eliminate the contribution from the wall potential. To determine a resonant surface

mode frequency using these results, we consider a dimensionless measure of the plasma response
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Y , the admittance function, defined as

Y =
rW

∂δΦ

∂r
δΦ

∣∣∣∣∣
r=rW

. (2.33)

Notice that a cylinder containing no plasma is a simple capacitor, which has purely imaginary

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Λ0.0

0.5
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1.5

2.0

ImHY L

Figure 2.3: A plot of Im(Y ) driven at various frequencies, for the plasma parameters of FIG. 2.2.
The colored arrows correspond to the potentials shown in FIG. 2.2. The dashed line is discussed
in the text.

experimental admittance (the ratio of current to voltage). Consequently, our theoretical definition

of Y for a vacant cylinder will be purely real (the surface charge on the electrode, proportional

to ∂δΦ/∂r|rW , is the time integral of the current). We conclude that the imaginary part of Y is

due to the presence of plasma, so for the remainder of this chapter we will focus on Im(Y ). For

the potential data in FIG. 2.2, the admittance function is plotted in FIG. 2.3. This data shows a

broad peak, caused by the mixing of the continuum of upper hybrid oscillations and the surface

mode, turning the surface mode into a damped quasimode. The width in this peak decreases as

the plasma edge becomes sharper (i.e. as temperature decreases holding the plasma radius rp

fixed), approaching a delta function at the surface cyclotron wave frequency given by Eq. (2.16)

(the dashed line), when the plasma density approaches a step function with radius rp.[6]

At this point, we should reflect on the agreement of FIG. 2.2 with the existing fluid
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theory in the literature for a uniform plasma with a sharp edge in the highly magnetized limit. In

that case, δΦ = Ar` inside the plasma, and δΦ = Br`+Cr−` outside, with appropriately chosen

coefficients to match boundary conditions at the plasma edge where δΦ is continuous, and at the

wall, where δΦ = 0. The result is a perturbed potential that is maximized at the plasma radius

where δΦ′(r) is discontinuous. Figure 2.2 resembles this solution, with a difference: the location

of the upper-hybrid radius is variable, where in the top-hat plasma it does not make an appearance

as it is buried in the edge. Then for the plasma studied in FIG. 2.2, the simple analytic fluid

solution outlined above is only valid away from the plasma edge where the density is changing.

In the limit as the plasma edge width goes to zero, the simple analytic form is valid all the way up

to the plasma edge, and the region of the logarithmic behavior is pinched out of existence. As the

driving frequency increases, the location of the logarithmic divergence (rounded out by finite ν)

at the upper-hybrid radius becomes closer to the center of the plasma. Because the divergence

moves toward the plasma center where the density profile is nearly uniform, ε′11(r) is nearly

zero, suppressing the divergent term in Eq. (2.19). Similarly, for smaller driving frequencies,

the divergence moves toward the plasma edge, where again ε′11(r) is nearly zero, and a similar

phenomenon occurs. Consequently, there is a range of frequencies where the upper-hybrid

divergence is most prominent. The width in frequency response of the surface cyclotron mode

has been studied in earlier work[6], and was found to become broader as the physical width of the

plasma edge widens, as well as the damping ν decreases. However, even at ν = 0+, the surface

cyclotron mode response has finite width due to energy absorption in the plasma edge where the

driving frequency matches the local upper-hybrid frequency. The plasma response While this

fluid theory can be used to predict the cyclotron mode frequency, it predicts no Bernstein modes.

These modes only appear in a kinetic theory which will be studied next.
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2.3.1 Determination of Mode frequencies

To determine the resonant frequencies, we take a cue from the experimentalists and mea-

sure the admittance (per unit length along z) of the plasma. This quantity is defined experimentally

by

Yexp =
I
V
,

where V is the applied electrode voltage, and I is the resulting (line density) current through the

electrode. A potential of the appropriate θ dependence is applied to some finite number of wall

electrodes. However, for theoretical purposes we instead imagine the wall composed of an infinite

number of infinitesimal electrodes, and apply a voltage V ∼ ei`θ. Consequently, in this limit the

current into any electrode vanishes, so we are instead interested in the angular admittance density,

defined by

y =
dYexp

dθ
=

j
V
,

where j = dI
dθ

is the angular current density. The potential in the vicinity of the wall electrodes

(where there is no plasma) satisfies Laplace’s Equation; integrating this equation from r = rW − ε

to r = rW + ε gives

2πσ =
∂δΦ

∂r

∣∣∣∣
r=rW

,

where σ is the surface charge density on the wall. From the continuity equation there is a

relationship between σ and j:

−iω rW
∂δΦ

∂r

∣∣∣∣
r=rW

= 2π j,

so we find that the admittance density is given by

y =
−iω
2π

Y, (2.34)
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where Y is a dimensionless plasma response that appears in the literature defined by

Y =
rW

∂δΦ

∂r
δΦ

∣∣∣∣∣
r=rW

. (2.35)

Notice that a cylinder containing no plasma is a simple capacitor, which has purely imaginary

experimental admittance. Consequently, our theoretical definition of Y for a vacant cylinder will

be purely real due to the relative factor of i in Eq. (2.34). We conclude that the imaginary part

of Y is due to the presence of plasma, so for the remainder of this chapter we will always make

comparisons of Im(Y ).

2.4 Vlasov Solution

So far the theory has neglected thermal effects responsible for Bernstein modes. In

this section we will develop a numerical approach that keeps these thermal effects. At low

temperatures the method predicts admittance functions that approach the cold-fluid theory, but at

higher temperatures Bernstein modes appear as separated peaks in the admittance.

We will develop a numerical method for solution of the linearized Vlasov equation in

cylindrical coordinates. In cylindrical coordinates the Vlasov equation for the distribution function

f (r,θ,vr,vθ, t) is:

∂ f
∂t

+ vr
∂ f
∂r

+
vθ

r

(
∂ f
∂θ
− vr

∂ f
∂vθ

+ vθ

∂ f
∂vr

)
+(−Ωvθ +Er)

∂ f
∂vr

+(Ωvr +Eθ)
∂ f
∂vθ

= 0, (2.36)

with boundary condition at r = 0 given by

∂ f
∂θ
− vr

∂ f
∂vθ

+ vθ

∂ f
∂vr

∣∣∣∣
r=0

= 0,

and f → 0 as r→ ∞ and when |v| → ∞. The condition at r = 0 keeps the third term in Eq. (2.36)
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from diverging, and physically enforces continuity in f . We will study linear perturbations away

from the thermal equilibrium discussed in section 1. First, we will change velocity coordinates

via v =
√

vr2 + vθ
2, tanψ = vθ

vr
, where v is the magnitude of the velocity, and ψ is the gyroangle,

or the angle of the velocity relative to the radial direction r̂. This gives

0 =
∂ f
∂t

+ vcosψ
∂ f
∂r

+
vsinψ

r

(
∂ f
∂θ
− ∂ f

∂ψ

)
+Ω

∂ f
∂ψ

+(Er cosψ+Eθ sinψ)
∂ f
∂v

+

(
−Er sinψ+Eθ cosψ

v

)
∂ f
∂ψ

. (2.37)

In this form, the boundary conditions simplify to

∂ f
∂θ
− ∂ f

∂ψ
= 0, r = 0;

∂ f
∂ψ

= 0, v = 0; (2.38)

f → 0, r,v→ ∞.

Next, we linearize the equation in the usual way: f = f0 + δ f , where f0 is a time-

independent solution to the non-linear equation. Since the electric potential is determined by

both the external wall potential as well as the charge density in the plasma itself, the electric

potential is also expanded as φ = Φ0 +δΦ and similarly for the electric field: E = E0 +δE. The

equilibrium plasma density is azimuthally symmetric, so we also use Eθ0 = 0. Self-consistent

magnetic effects are neglected in this treatment, so we omit the δΩ term. Here we will take f0 to
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be the thermal equilibrium solution Eq. (2.4) solved in section 1.

0 =
∂δ f
∂t

+ vcosψ
∂δ f
∂r

+
vsinψ

r

(
∂δ f
∂θ
− ∂δ f

∂ψ

)
+Ω

∂δ f
∂ψ

+Er0

(
cosψ

∂δ f
∂v
− sinψ

v
∂δ f
∂ψ

)
+(δEr cosψ+δEθ sinψ)

∂ f0

∂v
(2.39)

+

(
−δEr sinψ+δEθ cosψ

v

)
∂ f0

∂ψ
.

The last term involving a ψ derivative is cumbersome. To remove it, we transform

into the co-rotating frame with angular frequency ωr. This effects the transformation Ω→Ωv,

Er0 → Er0 +ωr(ωr−Ω)r ≡ Fr0 . In these coordinates, ∂ f0
∂ψ

= 0 (i.e. where tanψ = v̄θ/vr, with v̄θ

measured in the rotating frame), eliminating the last term in Eq. (2.39). Future appearances of vθ

will be understood to be measured in the rotating frame.

We next Fourier analyze in ψ, θ, and t, via

δ f (r,θ,vr,vθ; t) = e−iωt+i`θ
∞

∑
n=−∞

δ fn(r,v) einψ, (2.40)

δΦ(r,θ; t) = δΦ(r)e−iωt+i`θ,

where we refer to n as the gyroharmonic number. Finally, at this point we introduce a Krooks col-

lision term to introduce damping into the system, by adding a term ν δ fn, driving the plasma back

to equilibrium. This has the effect of broadening the frequency response, allowing comparison to

experiment, and making discrete Bernstein modes visible numerically. The resulting equation

becomes

0 =(−iω+ν)δ fn + L̂n,mδ fm

=(−iω+ν)δ fn + L̂0n,mδ fm + v f0

(
∂δΦ

∂r
δ1

n +δ−1
n

2
+

`δΦ

r
δ1

n−δ−1
n

2

)
, (2.41)

where the second equality gives a definition for the operator L̂n,m, and the operator L̂0m,n is defined
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as

L̂0n,mδ fm =
v
2

(
∂δ fn−1

∂r
+

∂δ fn+1

∂r

)
+

v
2r

[(`+1−n)δ fn−1− (`−1−n)δ fn+1]+ i(`ωr−nΩv)δ fn

+
Fr0

2

[
∂δ fn−1

∂v
+

∂δ fn+1

∂v
− (n−1)δ fn−1− (n+1)δ fn+1

v

]
.

(2.42)

Recalling the boundary conditions Eq. (2.38), and applying Eq. (2.40), the boundary

conditions become

δ fn(0,v) = 0, n 6= `;

δ fn(r,0) = 0, n 6= 0; (2.43)

δ fn(r,v)→ 0, r,v→ ∞.

The first and second conditions are unconstrained when n = ` and n = 0, respectively. Notice that

Eq. (3.32) does not constitute a closed system for δ f , since δΦ also appears. We close the system

by introducing Poisson’s equation (in our units), linearizing just as we did above:

∇`
2
δΦ =−δn, (2.44)

δn≡
∫

d2v δ f = 2π

∫
dv v δ fn=0, (2.45)

where the final identity comes from integrating Eq. (2.40), where all but the n = 0 term drops out.

To drive the plasma with ` 6= 0 forcing, a forcing potential on the wall δΦW (rW ,θ; t) =

δΦW e−iωt+i`θ is introduced (expressed here with full θ and t dependence), which serves as a

boundary condition for Poisson’s equation, namely that δΦ(rW ) = δΦW . (We discuss ` = 0

forcing in Sec. VIII D.) We facilitate the solution by splitting the perturbed potential into a sum:

δΦ = δΦH +δΦp, where δΦH satisfies Laplace’s (homogeneous) equation ∇2
`δΦH = 0 subject
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to δΦH(rW ) = δΦW , with solution δΦH = δΦW (r/rW )`, and the plasma potential δΦp satisfies

the (inhomogeneous) Poisson’s equation ∇2
`δΦp =−n, with Dirichlet boundary conditions. By

rewriting our equation in terms of δΦp, δΦH appears as a source term, so Eq. (3.32) becomes

[
(−iω+ν)δn,m + L̂pn,m

]
δ fm =−v f0

(
∂δΦH

∂r
δ1

n +δ−1
n

2
+

`δΦH

r
δ1

n−δ−1
n

2

)
, (2.46)

where L̂p specifies that the terms proportional to δΦ in L̂ of Eq. (3.32) are to be replaced with

δΦp (that is, they solve Poisson’s equation with Dirichlet boundary conditions). The resulting

linearized Vlasov equation, along with Poisson’s equation and the definition of δn is

[
(−iω+ν)δn,m + L̂pn,m

]
δ fm =−` r`−1v f0 δΦW δ1

n

rw`
,

2π

∫
dv v δ fn=0−δn = 0, (2.47)

∇
2
`δΦp +δn = 0.

We now regard Eq. (2.47) as a system of equations in the coordinates of the functions δ fn, δn,

δΦp, written in some basis. The equations have been expressed so that the terms linear in the

variables appear on the left-hand side, while sources appear on the right-hand side. For the

numerical work considered here, the basis chosen is obtained simply by discretizing the phase

space variables r and v. The explicit discretization used will be discussed in Section 2.4.1.

The reader may wonder why δΦp appearing in Eq. (3.32) wasn’t simply expressed in

terms of Green’s functions, which are themselves functions of δn, and therefore δ f . We originally

approached the problem this way, but when we began calculating on high-resolution grids we

found that the non-local nature of the Green’s function (in both space and velocity variables)

introduced terms connecting every n = 0 grid point to every other, making the resulting matrix

equation extremely dense. While treating δ f , δn, and δΦp may appear redundant, the sparsity

obtained by introducing a local Poisson’s equation rather than non-local Green’s function relations
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far outweighs the marginally increased size of the matrix equation.

We now show that L̂0 is anti-Hermitian with respect to the inner product

(
a,b
)
≡

∞

∑
n=−∞

〈an|bn〉, (2.48)

where

〈an|bn〉 ≡
∫

∞

0
r dr

∫
∞

0
v dv a∗n(r,v) bn(r,v). (2.49)

The anti-Hermitian property ensures that, in the absence of self-consistent effects, normal mode

frequencies are purely real. This is to be expected, since L̂0 describes a plasma of test charges

moving in a background field, which should not have modes that grow or decay indefinitely. On

the other hand, if a numerical method were employed that does not satisfy this anti-Hermitian

property, spurious growth or decay of modes could occur. This possibility will be addressed when

we discuss the discretization of the equations.

To prove the anti-Hermitian property, we rewrite L̂0 by rewriting r and v derivatives using

∂ fn

∂r
(r,v) =

1√
r

∂

∂r

[√
r fn(r,v)

]
− 1

2r
fn(r,v),

∂ fn

∂v
(r,v) =

1√
v

∂

∂v

[√
v fn(r,v)

]
− 1

2v
fn(r,v),

which gives

L̂0n,m fm =
v
2

(
1√
r

∂

∂r

[√
r (δ fn−1 +δ fn+1)

]
+

(`+1/2−n)δ fn−1− (`−1/2−n)δ fn+1

r

)
+i(`ωr−nΩv)δ fn

+
Fr0

2

(
1√
v

∂

∂v

[√
r (δ fn−1 +δ fn+1)

]
− (n−1/2)δ fn−1− (n+1/2)δ fn+1

v

)
. (2.50)

We now form the inner product
(
g, L̂0 f

)
. We then apply the following identities, proved through
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integration by parts:

〈
gm

∣∣∣∣ 1√
r

∂

∂r

[√
r fn
]〉

=−
〈

1√
r

∂

∂r

[√
r gm

]∣∣∣∣ fn

〉
(2.51)〈

gm

∣∣∣∣ 1√
v

∂

∂v

[√
v fn
]〉

=−
〈

1√
v

∂

∂v

[√
v gm

]∣∣∣∣ fn

〉
(2.52)

〈
gn

∣∣∣∣(`−n+
1
2

)
fn−1−

(
`−n− 1

2

)
fn+1

〉
=−

〈(
`−n+

1
2

)
gn−1−

(
`−n− 1

2

)
gn+1

∣∣∣∣ fn

〉
,

(2.53)

which demonstrate that all terms appearing in L̂0 are anti-Hermitian:
(
g, L̂0 f

)
=−

(
L̂0g, f

)
.

2.4.1 Numerical Grid

The next step is to put Eq. (3.32) on a grid to be solved computationally. First, we only

keep a finite number of gyroharmonics in the solution, |n|< Mψ for a given integer Mψ chosen to

be sufficiently large to yield convergent results (more on this later). For n-values beyond this range

we set δ fn = 0. We choose a uniform radial grid with ri = i∆r, i = 0,1,2, ...,Mr, and a uniform

grid in speed v with v j = j∆v, j = 0,1,2, ...,Mv, writing δ fn(ri,v j)≡ δ f n
i, j. The maximum radius

Rmax = Mr∆r is chosen to be just outside the plasma, and the maximum speed Vmax = Mv∆v is

chosen to be roughly 4 thermal speeds, i.e. in scaled units Vmax ≈ 4. We discretize the operator

using second-order-accurate centered-differences for the derivatives in r and v.

However, this introduces small, unphysical errors because the discretized operator L̂0n,m is

no longer anti-Hermitian. These errors can have the effect of destabilizing the equations, creating

instabilities that result in spurious grid-scale oscillations in the wave potential and unphysical

peaks in the admittance. This can be ameliorated by carefully choosing a discretization scheme

that preserves the anti-Hermitian property as much as possible. One such method rewrites the

radial derivatives in Eq. (2.42) as ∂ f/∂r =(1/r)∂(r f )/∂r− f/r, and similarly for the v-derivatives

, then center-differences these derivatives while averaging some terms over neighboring grid-
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points in r and v, as in the Lax method.[5] With this modification the differenced Eq. (3.32)

becomes

v j

2ri

(
ri+1(δ f n+1

i+1, j +δ f n−1
i+1, j)− ri−1(δ f n+1

i−1, j +δ f n−1
i−1, j)

2∆r
− n

2
(δ f n−1

i+1, j −δ f n+1
i+1, j +δ f n−1

i−1, j −δ f n+1
i−1, j)+ `(δ f n−1

i, j −δ f n+1
i, j )

)

+
Fr0 i

2v j

(
v j+1(δ f n+1

i, j+1 +δ f n−1
i, j+1)− v j−1(δ f n+1

i, j−1 +δ f n−1
i, j−1)

2∆v
− n

2
(δ f n−1

i, j+1−δ f n+1
i, j+1 +δ f n−1

i, j−1−δ f n+1
i, j−1)

)

+
v j f0i, j

2

(
δΦi+1−δΦi−1

2∆r

(
δn,1 +δn,−1

)
+

`δΦi
ri

(
δn,1−δn,−1

))
+ i(`ωr +nΩv−ω− iν)δ f n

i, j =−
`r`−1

i v j f0i, jδΦW δ1
n

r`w
. (2.54)

In both the first and second lines, the two terms proportional to n are written as the average over

their neighboring gridpoints in r and v respectively, which is correct as the grid size approaches

zero. Using the discretized version of Eq. (2.48), where the integrals are replaced with a Simpson’s

rule Riemann sum, this discretized Vlasov equation is also anti-Hermitian in the absence of the

self consistent δΦp term, respecting the anti-Hermiticity of the continuous equation. This equation

forms a closed linear inhomogeneous system of equations when combined with discretized forms

of the density relation and Poisson’s equation shown below:

2π

Mv−1

∑
j=0

1
2
(v jδ f 0

i, j + v j+1δ f 0
i, j+1)−δni = 0, (2.55)

δΦi+1−2δΦi +δΦi−1

∆r2 +
δΦi+1−δΦi−1

2ri∆r
− `2

r2
i

δΦi +δni = 0, (2.56)

along with the boundary conditions from Eq. (2.43),

δ f n
0, j = 0,n 6= `; (2.57)

δ f `0, j = 2 f `1, j− f `2, j; (2.58)

δ f n
i,0 = 0,n 6= 0; (2.59)

δ f 0
i,0 = 2 f `i,1− f `i,2; (2.60)

δ f n
Mr, j = δ f n

i,Mv
= 0, (2.61)
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where Eq. (2.58) and Eq. (2.60) determine the free gridpoints through linear interpolation for the

special cases at the radial origin where n= `, or at the velocity origin where n= 0. Equations (2.54-

2.56) are used for internal points i= 1, ...,Mr−1, j = 1, ...,Mv−1. The boundary condition on the

discretized perturbed plasma potential δΦi is obtained by matching at i = Mr to a solution to the

Laplace equation that vanishes at the wall: δΦMr = δΦp(Rmax) =C(R`
max− (r2

W/Rmax)
`), where

the constant C is obtained by matching the derivative, δΦ′p(Rmax) =C`(R`
max+(r2

W/Rmax)
`)/Rmax.

(The left-hand side of this equation is discretized in the usual way).

2.4.2 Convergence

It is of critical importance to ensure that numerical results are properly converged; in

this problem, numerical accuracy is improved by increasing the number of grid points in r and v

(namely Mr and Mv), as well as by increasing the number of gyroharmonics (namely Mψ) kept in

the calculation. Some exploration is required to discover optimal values for each of these three

numbers, as the results obviously need to be converged in all three variables simultaneously in

order to have reliable results. When checking for convergence, Mr and Mv were independently

incremented by 30 at a time, and Mψ was incremented by two at a time. In this chapter we report

on three ` values, `= 0,2, and 4. Convergence issues varied in each case.

We found that, in general, Mr and Mv must be increased as the damping ν decreases.

This is because we are approximating the frequency response of our mathematical plasma with a

sufficiently large, discrete matrix equation whose eigenfrequencies (magnetized van Kampen[13]

modes) must do a decent job of covering the frequency range of interest. As ν decreases, the

resonance width of these discrete (numerical) modes will eventually become smaller than their

spacing, at which point the results become unphysical. In order to probe finer frequency resolution,

the number of eigenvalues must be increased, which is conveniently done by increasing Mr and Mv.

This type of numerical issue typically manifests itself as an admittance function with extremely

sharp peaks that do not persist as resolution is increased, or move around unpredictably as the grid
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is adjusted slightly. The problem is resolved either by increasing ν (if less frequency resolution is

tolerable), or else by increasing Mr and Mv.

For the finite damping rates used in the chapter, convergence in the admittance results was

obtained with a relatively small Mψ value compared to the number of r and v grid points required:

Mψ∼ 10 was usually sufficient. For `= 4, the values of Mr and Mv required for convergence were

Mr ∼Mv ∼ 100. This resolution was sufficient to resolve the first four to eight admittance peaks,

counting from the right (see FIG. 2.4); lower frequency peaks beyond this range correspond to

potentials that oscillate more rapidly in r, requiring higher resolution. Somewhat higher resolution

was also typically required at larger magnetic fields.

For `= 2, larger values of Mr and Mv had to be used to resolve just the first few admittance

peaks, up to Mr = Mv = 240 and Mψ = 10, the maximum values we could run on the available

computers (limited by memory requirements in the numerical solution of the sparse matrix

equation).

We should also mention that there were convergence issues in the distribution function

near r = 0 for ` = 2; namely, rapid unphysical variation in δ fn versus r and v, for r within a

thermal cyclotron radius or so of r = 0. The origin of this rapid variation is unknown, but is

clearly an artifact of the discretization of the linear operator. For `= 4 the wave potential is small

enough near the origin so that this effect was suppressed, since δ f is quite small near the origin.

However, in all ` values studied this unphysical variation did not seem to affect the density or

potential, which was well-converged and varied smoothly with radius near r = 0.

In test cases we studied, where the solution for δ f (r,θ,v,ψ) near r = 0 is known an-

alytically for a given perturbed potential (as a power series expansion in r), the discretized

Vlasov equation was able to reproduce the analytic solution for the perturbed density and plasma

potential response, even though the numerical distribution function was noisy near the origin.

As a second check, for l = 2 we added 4th derivative “superdiffision” terms in r and v to the

discretized Vlasov equation in order to suppress this grid-scale noise in the distribution function
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near r = 0, and found that for a scaled superdiffusion coefficient of 10−6 the solution reproduced

the admittance curves without superdiffusion, with far less noise in δ fn near r = 0. These checks

gave us some confidence that the admittance, density, and potential results were sensible even

when the underlying distribution function was noisy near the origin.

For `= 0, and for the ”hot” rp = 4.76 plasma discussed in relation to FIGs. 2 and 3, it

was fairly easy to obtain converged admittance results for moderate values of the grid parameters

and moderately strong damping rates, similar to those used in the ` = 4 data. No noise issues

near the radial origin were observed. For a colder plasma we studied, with rp = 43, more radial

grid points had to be used in order to resolve the plasma edge, as one would expect.

Finally, we encountered a puzzling anomaly that caused numerical instability for v >

vthresh, where vthresh depended on the radial grid spacing ∆r, Mψ. When this instability was

present, the perturbed distribution function in phase space would look normal for small velocities,

but for v > vthresh would appear random. It was discovered that this instability could be avoided

by increasing the quantity ∆rMψ/Vmax, where Vmax is the highest velocity on the grid, thereby

forcing vthresh higher than the highest velocity kept on the grid. Therefore, we only increase Mr

(i.e. decrease ∆r) as much as is needed to resolve the radial variation in the mode, but no more,

unless we are willing to increase Mψ.

2.4.3 Results

In FIG. 2.4 we display a characteristic solution taken from the converged results of the

numerical Vlasov code (i.e. the solutions of (2.54-2.56)) for the imaginary part of the admittance

function versus scaled frequency λ (see Eq. (2.27)). The plasma is assumed to have the same

parameters as in FIGs. 2.2 and 2.3, except that in those figures ν = 0, whereas here we take

ν = 0.00283. (As previously mentioned, a finite value of ν is necessary to obtain converged

results in the Vlasov solution.) One can see that the admittance has separated into a series of

peaks whose magnitudes follow the corresponding cold fluid theory, and whose spacing varies,
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Figure 2.4: Imaginary part of the admittance versus scaled frequency λ for ` = 2 and Ω = 5
in a plasma with Rp = 4.76, rW = 10, and collision frequency ν = 0.00283. (i.e. the same
parameters as in FIGs. 2.2 and 2.3, but with finite ν rather than ν = 0). Solid line: Vlasov
solution. Dashed line: cold fluid theory.

becoming more closely-spaced as frequency λ decreases. Each peak corresponds to a Bernstein

mode.

Incidentally, the cold fluid theory admittance plotted in FIG. 2.3 differs slightly from the

theory presented in Sec. 2.3 in that we took ν 6= 0 for FIG. 2.4, just as in the Vlasov theory. For

finite ν, the radial dependence of cold fluid theory potential differs only slightly from that shown

in FIG. 2.2; the sharp singularity at the upper hybrid cutoff radius rUH0 becomes slightly rounded.

In FIG. 2.5 the radial dependence of the Vlasov-theory perturbed potential is plotted

for λ values at three of the peaks. Inside the cutoff the potential oscillates with radius. These

oscillations are the Bernstein normal modes. For radii larger than the upper hybrid cutoff rUH0

(shown by the arrow in each figure) the potential decays in a fashion similar to the cold fluid

theory shown in FIG. 2.2: here the Bernstein modes are evanescent. As scaled frequency λ

decreases, the wavelength of the modes decreases as well.

2.5 New WKB Treatment

In order to understand the results of the Vlasov code we turn to WKB theory descriptions

of the electrostatic Bernstein modes. We first review the modes in a uniform plasma, and then

discuss a new WKB theory for the modes in a plasma column with nonuniform density versus
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Figure 2.5: Radial dependence of the Vlasov solution for the real and imaginary part of the
plasma wave potential δΦp, for λ values at three peaks in the previous admittance figure: the
first, third and fifth peaks counting from right to left. This potential does not include the driving
potential δΦH, and therefore vanishes at the wall radius rW = 10.
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radius. This WKB theory further develops a previous theory,[6] providing an improved description

of the mode frequencies.

2.5.1 Dispersion Relation

In a uniform plasma, that rotates uniformly with frequency ω f , the dispersion relation for

electrostatic waves traveling perpendicular to the magnetic field is given by[3]

0 = 1−ω
2
p

∞

∑
n=−∞

n2e−ΛIn(Λ)

Λ(ω̂2−n2Ω2
v)
, with Λ≡ k2r2

c . (2.62)

Here k is the wavenumber, ω̂ is the Doppler-shifted driving frequency (including Krook collisions)

seen in the frame rotating with the plasma, defined by ω̂=ω−`ω f + iν, rc is the thermal cyclotron

radius given by rc = 1/Ωv in scaled units, and In(x) is a modified Bessel function. To study

these modes near the cyclotron frequency, we ignore all but the dominant terms in which the

denominator is small with n =±1. With this simplification, the dispersion function becomes

D(ω,k) = 1−2ω
2
p

e−ΛI1(Λ)

Λ(ω̂2−Ω2
v)
. (2.63)

This expression can be related to the fluid theory dispersion relation involving the function X(ω)

as follows (noting that X simplifies for a uniform system):

D(ω,k) = 1−2X(ω)
e−ΛI1(Λ)

Λ
. (2.64)

Note that the function 2e−ΛI1(Λ)/Λ is monotonically decreasing in Λ with a maximum

of unity at Λ = 0. Thus, a solution to D = 0 requires that X(ω) > 1, or equivalently ε11 < 0.

Thus, propagating Bernstein waves can exist in the plasma only for frequencies for which ε11 < 0.

However, if ε11 > 0 there are still solutions to D = 0, but these solutions require imaginary values

of k (i.e. negative Λ). These are evanescent (non-propagating) solutions.
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Figure 2.6: Dispersion relation plotted as ω̂2−Ωv
2

ωp2 versus r2
c k2. At low krc, ω̂ limits to the

upper-hybrid frequency, while for high krc, it limits to the vortex frequency.

The frequency versus (real) wavenumber following from D = 0 is plotted in FIG. 2.6. The

dispersion curve demonstrates that zero wavenumber corresponds to waves at the upper-hybrid

frequency ω̂ =
√

Ω2
v +ω2

p, whereas for larger wavenumber, cyclotron orbits tend to “average out”

the effect of the perturbed electric field, lowering the mode frequency toward the bare cyclotron

frequency in the rotating frame, ω̂ = Ωv.

In geometrical optics, the k→ 0 limit corresponds to a classical turning point for a ray

trajectory. Figure 2.6 shows that this limit occurs at the upper hybrid frequency, where ε11 = 0 .

Therefore, in an inhomogeneous plasma the locations where the mode frequency matches the

upper hybrid frequency are classical turning points. These locations are marked by the arrows in

FIG. 2.5, and explain qualitatively why the Bernstein waves change behavior from propagating

modes with ε11 < 0 to evanescent decay with ε11 > 0. The reflection of the wave at the upper

hybrid radius is what sets up a radial normal mode of oscillation within the plasma column. In

the next section, a more detailed WKB analysis verifies this picture, and also shows how the

Bernstein waves mode-couple to surface cyclotron waves at the upper hybrid radius.

Before we do so, however, it is useful to briefly consider the general form of the Bernstein

differential equation in a uniform, isotropic rotating plasma by appealing to symmetry arguments.

(For example the dispersion relation in Eq. (2.62) for a uniform plasma could be derived from

a differential equation of this form). This will allow us to obtain expressions for the spatial
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dependence of the Bernstein wave potential in such a system.

In the plasma center where the system is spatially uniform and rotationally invariant, the

differential operator D must respect these symmetries. Consider expanding D in a series of

increasing differential order, with tensor T (n) as the expansion coefficients:

D = ∑
n

T (n)
··· ∂·∂· · · ·∂·︸ ︷︷ ︸

n index contractions

. (2.65)

If D is to be isotropic, then each of the T (n) must be invariant under rotations. Necessary and

sufficient conditions for tensor isotropy have been determined to be linear combinations of

products of Kronecker Delta tensors and possibly a single Levi Cevita tensor ε.[12, 21] Therefore,

D can be expressed schematically as

D = ∑
n
{δ··δ·· · · ·δ··ε··}∂·∂· · · ·∂·︸ ︷︷ ︸

n index contractions

, (2.66)

where the {} denote a linear combination of expressions of the form of its contents. Notice that any

case where a given δ involves a self-contraction can be ignored, since this only introduces a factor

of the dimension, here 2. Similarly, any self-contraction within ε vanishes due to antisymmetry.

Further, any contractions pairing a δ with either another δ or with ε can also be ignored, since

either such contraction amounts to renaming a dummy index. Consequently, all indices must

contract with a derivative. This immediately implies that every term in D has an even number

of derivatives, that is, twice the number of symbols (δ or ε) appearing in that term (only terms

with even n in the sum contribute). Using commutativity of the Kronecker Delta, Levi Cevita

and partial derivatives, this allows us to write each term in the standard form, this time giving the

indices unique labels:

D = ∑
even n

δi1i2δi3i4 · · ·
(

A(n)
δin−1 in +B(n)

εin−1 in

)
∂i1∂i2∂i3∂i4 · · ·∂in−1∂in, (2.67)
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where A(n) and B(n) are arbitrary coefficients. Finally, we can write this expression in vector form:

D =
∞

∑
i=0

(
∇

2)i
∇ ·E(i)

∇, (2.68)

where

E(i) =

 A(i) B(i)

−B(i) A(i)

 .

To match this general form of D to the fluid theory of section 2.3, we impose the additional

constraint that E(0) = ε (recall ε is the fluid theory dielectric) so that the theories match to lowest

differential order. Since Bessel Functions of the first and second kind are always eigenfunctions of

∇2 and ∇ ·E(i) ∇, we can see that CJ`(kr)+DY`(kr) satisfies this equation, and continuity at r = 0

enforces D = 0. Further, since J`(kr) is locally asymptotic to a plane wave with wavenumber k

far from the origin, k must satisfy D(ω,k) = 0. While this solution is only valid for a uniform

plasma, it also provides an approximate solution to a physical plasma for r� rp, where n(r) is

very nearly constant. This expression allows us to connect the WKB expression (valid away from

the origin) to this Bessel Function solution near the center of the plasma.

2.5.2 WKB regions

To calculate Bernstein Modes in a non-uniform cylindrical plasma, we use a WKB

approach. We assume a single-species plasma for which there is a range of frequencies near the

cyclotron frequency with a single solution to Eq. (2.18), i.e. a single upper hybrid radius. In other

words, ε11 increases monotonically with radius from a negative value inside the plasma, through

zero at the upper hybrid radius, and increasing toward unity outside the plasma. In this case there

will be a propagating Bernstein wave for radii less than rUH0, becoming evanescent for r > rUH0,

as in the numerical results shown in FIG. 2.5.

In the WKB analysis of these waves we find that the perturbed potential can be expressed
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as a combination of a fluid theory solution and a radially-oscillating Bernstein wave:

δΦ = δΦ+ δ̃Φ, (2.69)

where δ̃Φ is the radially-oscillating Bernstein wave emerging from finite temperature effects

and δΦ is the non-oscillatory fluid theory. For radii far from the upper hybrid cutoff, the fluid

theory solution is slowly-varying in r and thermal corrections are neglible. We can therefore use

cold-fluid theory to describe this solution, numerically integrating Eq. (2.11) to obtain δΦ away

from the upper hybrid cutoff. For the Bernstein solution, on the other hand, we employ the WKB

eikonal approach, matching inner and outer forms for the eikonals across the upper hybrid radius.

A schematic of the full solution is shown in FIG. 2.7. We break the solution into 3

overlapping regions, treated with different methods, and match the solution across the regions. In

the central region close to r = 0, the plasma is nearly uniform and we use the Bessel function

solution for the Bernstein wave, derived in section 2.5.1. For intermediate radii between r ' 0

and the upper hybrid cutoff at r / rUH, WKB theory is used. In this region the Bernstein solution

is oscillatory. As we pass through the upper hybrid cutoff, the Bernstein solution transitions from

oscillatory to evanescent. Within this transition region near the cutoff, we solve an approximate

form of the Bernstein differential operator to match solutions across the cutoff. Here we find

that the Bernstein solution mode-couples to the fluid solution, mixing the two in this transition

region. A jump condition on the fluid solution across the transition region is obtained, describing

the effect of this mode coupling on the fluid solution. A similar jump condition was obtained in

Ref. [6], the difference here being that the fluid solution is treated exactly (via numerical solution)

rather than using an approximate analytic form valid only for large magnetic field as in Ref. [6].
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Figure 2.7: A plot of a typical δΦ showing the three main regions of the plasma: δΦCENT,
δΦWKB, δΦ← and δΦ→ referred to in the WKB theory. The region far outside the plasma is not
given a name because it trivially satisfies Laplace’s equation and has no Bernstein waves.
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2.5.3 Central Solution

We begin with the solution valid near the center of the plasma, where the density n(r)

is nearly constant for a thermal equilibrium plasma. As we derived previously, the oscillatory

Bernstein solution for a uniform plasma takes the form of a Bessel function:

δ̃Φ(r) = ACENT J`(k0r), (2.70)

where, for given ω, k0 is the solution for k of the Bernstein dispersion relation, Eq. (2.64), at the

center of the plasma. In order for this solution to match onto the Eikonal solution described in the

next section, we use the large argument expansion for J`(z), giving

δ̃ΦCENT ∼ ACENT

√
2

πk0r
cos
(

k0r− `π

2
− π

4

)
. (2.71)

2.5.4 Eikonal Form

Since a thermal equilibrium plasma does not have a uniform density profile n(r), the

Bessel function solution introduced in the previous section is not satisfactory to describe the entire

interior of the plasma. While the asymptotic central result in Eq. (2.71) is a constant wavenumber

solution, we now require k to change as a function of r as the dispersion relation changes due

to the nonuniform plasma density. This motivates a WKB approach accurate in the limit where

k� |k′(r)/k|. To lowest order in WKB theory, the form of k(r) is found for given ω by solving

Eq. (2.64), with X and Ωv the functions of r appropriate for given n(r). This approximation is

only valid away from the cutoff where k→ 0. This solution is used in the Eikonal in the region

that is both far to the left of the cutoff, and also far from r = 0:

δ̃ΦWKB = A(r)cos
(∫ r

rUH

k(r̄) dr̄+χ

)
, (2.72)
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where A(r) is a slowly-varying amplitude, the local wavenumber k(r) is found from the Bernstein

dispersion relation Eq. (2.64) (for given frequency ω), and χ is a phase factor to be determined

momentarily. The radial form of the amplitude factor is not needed in what follows, but was

discussed in Ref. [6].

Matching the central Eq. (2.71) and WKB Eq. (2.72) solutions gives the connection

formula that determines the phase factor χ:

χ =
∫ rUH

0
k dr− `π

2
− π

4
. (2.73)

2.5.5 Upper-Hybrid Cutoff

Near the cutoff, where ωUH− ω̂→ 0, the wavenumber of the WKB solutions also ap-

proaches zero (see FIG. 2.6), so we can consider adding finite cyclotron radius effects perturba-

tively into Eq. (2.6):

0 = ∇ · ε∇δΦ− rc
2
∇

2 ((1− ε11)∇
2
δΦ
)
. (2.74)

This approximate expression can be checked by replacing ∇ with ik and comparing the result

with Eq. (2.64), expanding this dispersion relation to fourth order in k. However, it should be

noted that this check only verifies the factor 1− ε11, but does not justify its algebraic location

between the two Laplacians. Dubin[6] shows, by using integration over unperturbed orbits in the

large magnetic field limit, why this factor appears in the location it does here. Equation (2.74)

generalizes the warm fluid theory mode equation of Ref. [6] by not taking the large magnetic field

limit. This generalizion is important in helping to explain a discrepancy between the numerical

Vlasov solution and the large magnetic field WKB analysis of Ref. [6].

We should emphasize that while Eq. (2.74) is consistent with the uniform plasma dis-

persion relation in the small wavenumber limit, many other forms of the equations could also

be consistent. In fact, Dubin showed that many other terms appear at O(r2
c) in the warm fluid
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theory equation in the large magnetic field limit; but he also showed that the other terms were

subdominant in the WKB approximation. We have no way of knowing what the form of such

terms are when the large magnetic field limit is not taken, so we cannot prove that such terms

are also subdominant to those kept in Eq. (2.74). This equation should therefore be regarded

skeptically, as an educated guess.

We use Eq. (2.74) only near the upper hybrid radius, and so we will now approximate its

form in this region. Writing out Eq. (2.74) in cylindrical coordinates, and multiplying by rc
2 to

make each term dimensionless, we examine the resulting terms and drop those terms containing

one or more factor of rc
r , since the upper-hybrid radius is assumed to be many cyclotron radii

from the origin. The result leaves the following:

−r4
c(1− ε11)δΦ

(4)+2r4
cε
′
11δΦ

(3)+ r2
c(ε11 + r2

cε
′′
11)δΦ

′′+ r2
cε
′
11δΦ

′ = 0.

By repeated use of the product rule, this can be partially integrated to obtain

rc
2 ∂

∂x

[
(1− ε11)δΦ

′′]− ε11δΦ
′ =C, (2.75)

with C a constant of integration (prime represents derivative with respect to x). To connect

with the Eikonal Eq. (2.72), which assumes ε′11/k� 1, we take the dominant balance of terms,

neglecting the term proportional to ε′11 in the first term of Eq. (2.75). Further, we use a linear

expansion ε11 ∼ (r− rUH)/L near the upper-hybrid cutoff radius, defining the plasma scale length

L ≡ 1/
∂ε11

∂r
, (2.76)

and write

rc
2(1− ε11)δΦ

′′′− r− rUH

L
δΦ
′ =C. (2.77)
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For r near rUH, the appearance of 1− ε11 in the first term can be replaced with 1, since ε11 is

small compared to 1, and is assumed to change gradually anyways. After making this change,

the expression can be manipulated into an inhomogeneous Airy equation by the substitution

r = rUH +(L rc
2)1/3 s:

δΦ
′′′− s δΦ

′ =C′. (2.78)

The solution to the corresponding homogeneous equation for δΦ′ is solved by Airy Functions.

We can solve the inhomogeneous problem by using variation of parameters to obtain

δΦ
′(s) = D1Ai(s)+D2Bi(s)+D3Ci(s), (2.79)

where

Ci(s)≡ πAi(s)
∫ s

−∞

Bi(s̄) ds̄+πBi(s)
∫

∞

s
Ai(s̄) ds̄. (2.80)

The coefficients Di in Eq. (2.79) are determined by matching asymptotic forms for the Airy

functions to the corresponding asymptotic forms for the potential to the left and right of the cutoff.

The asymptotic expansions of the Airy Functions are as follows:

Ai(s)∼


sin( 2

3 (−s)3/2+ π

4 )√
π(−s)1/4 , s→−∞

exp(− 2
3 (s)

3/2)

2
√

π(s)1/4 , s→ ∞

Bi(s)∼


cos( 2

3 (−s)3/2+ π

4 )√
π(−s)1/4 , s→−∞

exp( 2
3 (s)

3/2)√
π(s)1/4 , s→ ∞

Ci(s)∼


1
s +

√
πcos( 2

3 (−s)3/2+ π

4 )

(−s)1/4 , s→−∞

1
s , s→ ∞

(2.81)

From these approximations, we can obtain the solution for δΦ by integrating the left-side

asymptotic expansion of Eq. (2.79) once. While the integral is not an elementary function,

it can nonetheless be carried out in the asymptotic limit. We can also immediately drop the

49



term containing Bi(s), since the exponential growth outside the plasma is unphysical. Then the

asymptotic result in the interior of the plasma is

δΦ
←(s) = D1

(
−sin(2

3(−s)3/2− π

4 )√
π(−s)3/4

)
+D3

(
−
√

πcos(2
3(−s)3/2− π

4 )

(−s)3/4 + log(−s)

)
+D4,

(2.82)

where the notation δΦ← refers to a solution to the left of the upper hybrid radius, as in FIG. 2.6.

We can read off the fluid and Bernstein solutions by separating oscillatory dependence from the

logarithmic divergence. By comparing this expression to Eq. (2.25), one can see that the fluid

component on the left side of the upper hybrid radius is

δΦ
←
(s) = D3 log(−s)+D4. (2.83)

To the right of the upper hybrid radius, the asymptotic form requires that the Airy solution in

Eq. (2.79) be integrated with the same constant of integration as was obtained in Eq. (2.82). To

ensure this is the case, use is made of the identities
∫

∞

−∞
Ai(s) ds = 1 and limN→∞

∫ N
−N Ci(s) ds = 0.

Once the evanescent Bernstein solution dies away, we are left with the outer fluid solution which

now takes the form

δΦ
→
(s) = D1 +D4 +D3 log(s). (2.84)

Note that in Eq. (2.83), and Eq. (2.84), s can be replaced by r− rUH since the multiplicative factor

relating r− rUH and s implies that log(±s) equals log(±(r− rUH)) plus an additive constant that

can be absorbed into D4:

δΦ
←
(r) = D3 log(rUH− r)+D4. (2.85)

δΦ
→
(r) = D1 +D4 +D3 log(r− rUH). (2.86)

These results agree in form with with the fluid theory near rUH from Eq. (2.25) and Eq. (2.28).

However the additive constant D1 appears as an amplitude in the oscillatory Bernstein solution.
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The Bernstein wave couples to the fluid solution, modifying it at the radius rUH, and introducing

a jump in the form of the fluid solution across the transition region, due to the Bernstein wave

coupling.

2.5.6 Matching solutions across rUH

Evaluating Eq. (2.85) and Eq. (2.86) at rUH0 , and recalling from Eq. (2.24) the definition

i∆r ≡ rUH− rUH0 , we have

δΦ
←
(rUH0) = D3 log(i∆r)+D4, δΦ

←′
(rUH0) =−D3/i∆r

δΦ
→
(rUH0) = D3 log(−i∆r)+D1 +D4, δΦ

→′
(rUH0) =−D3/i∆r, (2.87)

Note that ∆r < 0 according to Eq. (2.23) because, for the case of interest here, ε11 is a monotoni-

cally increasing function of radius (see the discussion following Eq. (2.64)).

We can match the oscillatory part of δΦ← to δ̃ΦWKB by comparing Eq. (2.72) to Eq. (2.82).

To do this, keep in mind that k is linked with the dielectric through Eq. (2.64), which as we

approach r = rUH (where ε11 is evaluated close enough to the upper-hybrid radius that it varies

linearly in r), becomes

k =
√

rUH− r
r2

cL
. (2.88)

Now use this to determine the integral in Eq. (2.72):

∫ r

rUH

k(r̄) dr̄ =
−2

3rC

√
L
(rUH− r)3/2 =−2

3
(−s)3/2. (2.89)

This result can be used to replace the argument of the cosine and sine functions in Eq. (2.82) with

integrals over k(r), allowing us to match this result to the WKB eikonal form of Eq. (2.72). Using
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Eq. (2.73), the matching requires that

tan
(

χ− π

4

)
=

D1

πD3
. (2.90)

We can then use this expression to solve for D1 and apply this in Eq. (2.87) to obtain jump

conditions matching the inner and outer fluid solutions across transition region.

x

-x = x ei H-ΠL

Dr ReHxL

ImHxL

Figure 2.8: Complex plot of x = r− rUH. The real r axis is the red line (noting that ∆r is
negative). The dashed green contour relates x to−x while avoiding the branch cut (blue zig-zag).

As shown in FIG. 2.8, we can express log(−x) = log(x)− iπ, for all x on the left half of

the red line when ∆r is negative. Then we can use Eq. (2.87) to relate δΦ← and δΦ→ via the

jump conditions:

δΦ
→′
(rUH0) = δΦ

←′
(rUH0)

δΦ
→
(rUH0) = δΦ

←
(rUH0)− i∆r π δΦ

←′
(rUH0)

(
tan
(

χ− π

4

)
+ i
)
.

(2.91)

For clarity, it should be noted that the choice of rUH0 in Eqs. (2.91) is merely a convenience.

Eqs. (2.91) could also be evaluated at any other point r within the transition region near rUH,

with the substitution i∆r = rUH− r. This relies on the fact that the functional forms of the fluid

solutions, Eqs. (2.85) and (2.86), are both valid solutions of the fluid theory ODE Eq. (2.25) in

the transition region, each matching on to the numerical fluid solutions on their respective side of
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the upper hybrid radius.

In a similar vein, it is informative to consider what is going on with the jump conditions

Eq. (2.91) as ν→ 0. It appears that the last term in the second condition vanishes as ν→ 0,

because ∆r is proportional to ν (see Eq. (2.23)). However, Eqs. (2.87) imply that ∆rδΦ
←′
(rUH0)

is independent of ∆r as ∆r→ 0, so the last term in the jump condition remains finite as ν→ 0.

These jump conditions provide results for the potential that are correct to O((∆r/L)0),

neglecting corrections that are proportional to higher powers of ∆r/L . This is because the

conditions rely on low-order asymptotic forms for the fluid potential in the transition region,

Eqs. (2.85) and (2.86), which are correct only up to and including order (r− rUH)
0. As a

consequence, the conditions are only useful provided that ∆r/L � 1.

We can now integrate the fluid theory Eq. (2.6) numerically from r = 0 to rw, using the

jump conditions Eq. (2.91) to continue integration across the upper-hybrid cutoff. Here χ is

evaluated using Eq. (2.73). This result gives the fluid theory solution everywhere. Recalling how

the perturbed potential can be expressed as a sum of a fluid theory solution and a Bernstein wave

solution via Eq. (2.69), and also noting that the Bernstein wave solution is evanescent outside

the upper hybrid radius, we can calculate the admittance Y (ω) by using Eq. (2.35), replacing

δΦ→ δΦ. That is,

Y =
rW

∂δΦ

∂r

δΦ

∣∣∣∣∣
r=rW

. (2.92)

The value of χ in Eq. (2.91) is obtained using Eq. (2.73) by integrating over k(r) numerically from

r = 0 up to r = r0UH, assuming that ν is small so that the difference ∆r between rUH and r0UH

can be neglected. For given ω the function k(r) is obtained by solving the dispersion relation,

Eq. (2.64).

As another check of the jump conditions, in the cold plasma limit (i.e. as rc→ 0) the

argument of the tan function in Eq. (2.91) picks up a large negative imaginary part due to the

influence of collisions on k(r), and so tan(χ−π/4)+ i→ 0 . Then there is no-longer a jump in
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the fluid theory solution across the upper hybrid radius; in other words, the fluid theory ODE can

be integrated without change from the plasma interior to the wall, resulting in the same cold fluid

admittance function Y (ω) as obtained previously.

As a final check, we compare the Bernstein mode frequencies obtained from Eqs. (2.91)

in the large magnetic field limit to a result in Ref. [6]. In the large-field limit, the fluid potential

for r < rUH0 is given by Eq. (2.12) with B chosen so that the solution is finite at r = 0:

δΦ
←

= Ar−`
∫ r

0
dr′

r′(2`−1)

D(r′)
, (2.93)

where A is an undetermined coefficient. Similarly, using Eq. (2.12) to match the outer potential to

the potential at the wall yields

δΦ
→

= δΦW (rW/r)`+Cr−`
∫ rW

r
dr′

r′(2`−1)

D(r′)
, (2.94)

where C is a different undetermined coefficient. Applying these forms to the jump conditions

allows us to determine the coefficients A and C. The solutions are simplified by keeping only

terms of order ∆r0 and noting that D(rUH0)≈−i∆r/L . We find that the first condition implies

that A =−C+O(∆r), and using this in the second condition yields

C
(∫ rW

0
dr′

r′(2`−1)

D(r′)
+πLr2`−1

UH0 (tan[χ−π/4]+ i)
)
=−δΦW r`W . (2.95)

Bernstein modes occur at frequencies for which the coefficient of C vanishes. This condition can

be rewritten as

χ =
π

4
+nπ+ arctan

r1−2`
UH0
πL

(
−

∫ rW

0
dr′

r′(2`−1)

D(r′)
− iπLr2`−1

UH0

)
, (2.96)

where n is any integer and the main branch of the arctan function is taken. Using Eq. (2.73) and
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noting that, for small ∆r/L , the Plemelj formula can be applied to integrate past the pole in the

integral over 1/D(r′), we obtain

∫ rUH0

0
kdr =

(`+1)π
2

+nπ− arctan
(

r1−2`
UH0
πL

P
∫ rW

0
dr̄

r̄(2`−1)

D(r̄)

)
, (2.97)

where P indicates that the principal part of the integral is taken. This expression for the Bernstein

mode dispersion relation in the large field limit agrees with Eq. (152) in Ref. [6] (with a

redefinition of the integer n to n−1).

2.6 Vlasov vs. New WKB and Old WKB Theories

We now present the results of the new WKB theory for various magnetic fields, values of

`, and density profiles, comparing the theory to numerical solutions of the Vlasov equation and to

the prior large magnetic field WKB theory.[6]

We first study a ` = 4 perturbation in a plasma with rp = 4.76,rW = 10,Ω = 5, and

ν = 1/300. These parameters are similar to a case studied by Dubin. In FIG. 2.9 we compare

the new WKB solution for the admittance to the Vlasov numerical method and to the prior WKB

theory[6].

2.2 2.4 2.6 2.8 3.0
Λ

0.05

0.10

0.15

ImHY L

Vlasov

Old WKB

New WKB

Figure 2.9: Comparison of Vlasov and WKB approximations, for Ω = 5, rp = 4.76, rW = 10,
`= 4, and ν = 1/300. Vlasov code uses Mψ=8, Mr = Mv = 120.
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The new WKB theory produces a mode frequency prediction that is closer to the Vlasov

solution than the old WKB theory. Again, the shift in the frequency between the old and new

theories arises from the large magnetic field approximation for the cold-fluid dielectric that was

used in the old theory. Also, both WKB theories have a slight, but consistent overestimation of

the admittance. This is probably related to finite temperature corrections to the cold fluid theory

that are neglected in the WKB approach used here.

In the next figures we vary the magnetic field strength. In FIG. 2.10 we vary Ω from 4 to

10 for an `= 4 perturbation, and in FIG. 2.11 we do the same for an `= 2 perturbation. For a

Ω =

Figure 2.10: A family of Admittance plots (solid: Vlasov Theory; dashed: New WKB theory).
rp = 4.76, rW = 10, and ` = 4. 1/ν = 2000 · 2 Ω−10

2 (traces shifted vertically in steps of 1/20,
with Ω = 10 trace unshifted).

given peak (corresponding to the number of radial nodes in the wave), the relative error in the

scaled mode frequency λ tends to decrease as magnetic field increases from Ω = 4 to Ω = 10.

(This is easiest to see in the second and third peaks, counting from the right). This is because the

criterion for WKB theory to be valid is k′(r)/k� k, and k increases as magnetic field increases.

This WKB criterion can also be written as kL � 1 since k/k′ ≈ L .

Interestingly, for a given magnetic field strength the figures show that the WKB method

tends to produce more accurate results toward the right side of the plots, for larger frequencies and

therefore smaller k (although the WKB theory tends to predict a weak extra peak at the largest
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Ω =

Figure 2.11: A family of Admittance plots (solid: Vlasov Theory; dashed: New WKB theory).
rp = 4.76, rW = 10, and `= 2. 1/ν = 2000 ·2 Ω−10

2 (traces shifted vertically in steps of 1, with
Ω = 10 trace unshifted).

frequencies and for smaller magnetic fields). This can be understood because k′/k also varies as

the frequency varies. As the frequency drops, k′/k becomes larger because the upper hybrid radius

shifts to a larger radius where the density profile is steeper. A second reason for the increase in

k′/k at lower frequencies is the appearance of wave-particle resonances. These resonances occur

at radii rwpr where the dielectric constant ε11 diverges. According to Eq. (2.7), the divergences

occurs where ω̂2−Ωv(Ωv−rω′f ) = 0. Around such locations there is a strong resonant interaction

between the wave electric field and particle cyclotron motion, which causes Landau damping of

the wave. WKB theory breaks down here because as ε11 diverges k′ also diverges. In FIG. 2.12

we plot the WKB criterion k0Lmin versus frequency, where Lmin = min[Re(ε11/ε′11(r))] is the

minimum gradient scale length across the radial profile, and k0 = Re[k(r = 0)] is the real part of

the central wavenumber. The WKB convergence parameter k0Lmin approaches zero at the first

appearance of a wave-particle resonance in the plasma, which occurs at frequencies on the left

side of the plots for `= 2 and `= 4. The WKB parameter also decreases at higher frequencies,

to the right side of the plots where the wavenumber of the modes is smaller. Consequently,

the WKB method should work best at intermediate values of the frequency (and, of course, at

larger magnetic fields). This expected behavior roughly corresponds to the results shown in
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FIGs. 2.9-2.11.
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Figure 2.12: The WKB parameter k0Lmin plotted versus scaled frequency λ for a range of
magnetic fields and for both ` = 2 (left) and ` = 4 (right), for the waves and magnetic fields
considered in FIGs. 2.10 and 2.11. WKB theory works best when k0Lmin� 1.

2.7 Limiting form for the Mode Frequencies

It would be useful to have an analytic expression to approximate the Bernstein Mode

frequencies without having to numerically solve the fluid theory solution and impose a jump

condition at rUH. In this regard, the analytic large magnetic field dispersion relation used in the

old WKB theory, Eq. (2.97), is useful. A significant simplification can be made in the limit where

the wall radius is large, rw/rp→ ∞. In this case the argument of the arctan function in Eq. (2.97)

approaches infinity. For instance, in the former limit, the Cauchy Principal integral is dominated

by the vacuum region where D→ 1, and the integrand grows without bound as a simple power

law. Consequently, the argument of the arctan term approaches π/2. Making this approximation,

Eq. (2.97) can be simplified to read

∫ rUH

0
kdr = (

`

2
+n)π. (2.98)
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Although this result was obtained from the large magnetic field limit of the theory, it no-longer

depends on the large-field fluid solution and so we might hope that it is more generally correct.

We will test this hypothesis below. First, however, to standardize the integer n so that n indexes

the modes starting from 1, we impose the constraint that the integral in Eq. (2.98) must be strictly

positive, since k > 0 for 0 < r < rUH. The issue is that `/2 term can be larger than 1, meaning that

subtracting 1 from n = 1 (the lowest solution, by definition) would still produce a strictly positive

right-hand side solution, which is not what we want. To solve this, we redefine n to absorb the

largest integer that is still strictly less than `/2. The effect is that the right-hand side reads nπ

when ` is even, and (n−1/2)π when ` is odd:

∫ rUH

0
kdr = (n+mod(`,2)/2)π. (2.99)

Λ

Figure 2.13: Determination of mode frequencies from Eq. (2.99). Orange curve:
∫ rUH

0 k dr,
horizontal lines: (n+mod(`,2)/2)π, vertical lines: intersection of orange curve with horizontal
blue lines, red peaks: ImY from the new WKB theory multiplied by (rW/rp)

2` (scaled vertically
to fit). Ω = 10, Rp = 20, `= 2,rw/rp = ∞.

Again, Eq. (2.99) assumes rw/rp is large. The functions k(r) and rUH must be calculated

exactly using Eq. (2.63) as a function of the driving frequency. This result is similar to a result in
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Ref. [6], where instead the limit L/rUH� 1 was assumed; i.e. a nearly square density profile.

While we tried assuming a square profile with upper hybrid radius equal to the plasma radius

by writing
∫ rUH

0 kdr ≈ k(0)rp, this completely misrepresents the lowest-order modes because rUH

actually increases from zero quite rapidly for the first few modes due to the non-rectangular profile.

Unfortunately, correct determination of Bernstein mode frequencies is strongly dependent on the

assumed plasma profile. To understand this strong dependence, we can think of the right-hand

side of Eq. (2.99) (divided by π) as counting the number of half-wavelengths within a radius rUH.

For the low-order modes, rUH is very sensitive to profile shape in the nearly uniform region of the

plasma (since even a small variation in the falloff of k(r) corresponds to a large variation of rUH

due to the small gradient of k(r)). Consequently, even if k(r) were known precisely, the number

of half-wavelengths within this variable rUH is also variable. On the other hand, for higher order

modes, while rUH is less sensitive to profile shape (since rUH falls somewhere in the relatively

thin plasma edge), k(r) is larger, so even a small variation in rUH admits a larger variation in the

number of allowable half-wavelengths. In FIG. 2.13, the New WKB theory peaks are plotted

against the prediction of the mode frequencies for infinite wall radius via Eq. (2.99). As can be

seen, the mode frequencies are very well predicted by Eq. (2.99) for infinite wall radius, even for

a warm plasma that doesn’t satisfy rUH� L .

2.8 Extension to Multiple Species

The analysis of previous sections can be extended to a multi-species plasma in a straight-

forward way. We make the assumption that the plasma is warm enough to not be centrifugally

separated, which is done both as a simplifying assumption for the theory as well as to compare to

experiments that operate in this regime, where Bernstein modes are more easily observed.

60



2.8.1 Resonant Species Approximation with no Species Separation

If the plasma species are not centrifugally separated, the densities of each species are

related according to

nα(r) = δαntot(r), α = 1,2, · · ·n,

where δα = nα(0)/ntot(0) is the central species concentration of species α. Consequently, knowl-

edge of ntot, along with the species fractions is sufficient to determine the equilibrium for each

species individually. To calculate this equilibrium, we note that under the approximation that

the species are not centrifugally separated, the total unperturbed density ntot behaves as a single

species, so the equilibrium Eq. (2.2) still holds, where all quantities are normalized to the central

parameters associated with the total plasma.

Then the multi-species generalization of the local WKB dispersion function Eq. (2.64) is

D(ω,k,r) = 1−2∑
α

Xα(ω,r)
e−ΛαI1(Λα)

Λα

, (2.100)

where Λα = k2r2
cα and Xα can be written as

Xα(ω,r) =
ωpα

2

ω̂2−Ωvα(Ωvα− rω′f )
. (2.101)

Here, Ωvα = Ωα−2ω f , and Ωα, ωpα, and rcα are the cyclotron frequency, plasma frequency and

cyclotron radius of species α respectively. As in Eq. (2.64), we have dropped resonant terms

at multiples of the cyclotron frequency for each species, since we are interested in the main

resonance at the fundamental cyclotron frequency. There will then be a solution of the dispersion

relation D = 0 for each species; i.e. each species has a cyclotron wave associated with it.

In order to make further progress we will simplify this result assuming that the magnetic

field is large. In this case we know that the plasma response is peaked in a narrow frequency

range around the cyclotron frequency for each species, with ω−Ωα ≈ ω2
pα/Ωα. We assume that
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the magnetic field is large enough so that this range is small compared to the difference between

any two cyclotron frequencies: Ωα−Ωβ� ω2
p/Ω. In this case, for cyclotron waves associated

with a given species β with ω≈Ωβ, only the resonant term with α = β need be kept in the sum

in Eq. (2.100) because Xα� Xβ, and the equation simplifies to

D(ω,k) = 1−2Xβ(ω)
e−ΛβI1(Λβ)

Λβ

. (2.102)

In other words, in this approximation we ignore the response of all non-resonant species.

In this case the WKB theory carries through just as for a single species (the resonant species).

Also, this approximation can easily be applied to the numerical Vlasov solution. Here, all species

contribute to the equilibrium electric field appearing in Eq. (2.39), but δ f is evaluated only for

the resonant species.

2.8.2 Necessary conditions for Bernstein Modes

An important question to consider is “Under what conditions are Bernstein modes possible

in a multi-species thermal equilibrium plasma?”. As previously discussed for a single-species

plasma, Bernstein waves can only propagate when Re(ε11)< 0. For a multi-species plasma in

the resonant species approximation, this corresponds to Xβ > 1 for resonant species β. There is a

range of frequencies near Ωβ where this inequality is satisfied. To find this range, we utilize the

high magnetic field limiting form of Xβ:

Xβ =
δβ ·n

λ+(2− `)〈n〉+ r〈n〉′
2

=
δβ ·n

λ+(1− `)〈n〉+n
, (2.103)

where n is the total density scaled to the total density at r = 0, λ≡ ω−Ωβ

ωE
, ωE = 2πecn(r = 0)/B

is the central ExB rotation rate, 〈n〉 is the average total density within a radius r, and δβ is the

fraction of the mode resonant species β. The final expression follows by carrying out the radial
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derivative of 〈n〉. The expression in Eq. (2.103) is useful because it allows insight into where

both the cutoffs and wave-particle resonances occur:

λ = (`−1)〈n〉r− (1−δβ) n(r) (cutoff) (2.104)

λ = (`−1)〈n〉r− n(r). (resonance) (2.105)

At the cutoff, Re[Xβ] = 1 (Re[ε11] = 0) while at the wave-particle-resonance, Xβ→ ∞. A cutoff is

typically required in order for propagating solutions to exist because ε11 = 1 outside the plasma

but Re[ε11]< 0 is necessary for wave propagation. Another way for ε11 to change sign is to go

through infinity, at a wave-particle-resonance (WPR). However, a wave-particle resonance in

the plasma strongly Landau-damps the Bernstein waves, so we look for conditions where the

plasma has a cutoff but no resonance. For ` = 0 or ` = 1 Eqs. (2.104) and (2.105) imply that

a cutoff is always accompanied by a resonance at a somewhat larger radius, so the Bernstein

response is heavily-damped. However, for ` > 1 one can find a frequency range with a cutoff

but no resonance. The right-hand sides of Eqs. (2.104) and (2.105) are functions of r, and have

maximum values as a function of r. Note that the maximum value for the wave particle resonance

condition is clearly less than that for the cutoff condition.

Thus, for Bernstein modes to occur, λ must be less than the maximum value given by

Eq. (2.104) but greater than the maximum given by Eq. (2.105): λwpr < λ < λcut where

λcut = max
(
(`−1)〈n〉r− (1−δβ) n(r)

)
(2.106)

λwpr = max((`−1)〈n〉r− n(r)) , (2.107)

and where max() is the global maximum operator as r varies. Notice that the wave-particle
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resonance does not depend on δβ because δβ does not appear in the denominator of Xβ. In fact,

λwpr = λcut|δβ→0 . (2.108)

Consequently, plasmas with a small fraction δβ of the resonant species exhibit Bernstein modes

only over a narrow range of frequencies, so future experiments on Bernstein modes should strive

to make the resonant species fraction as large as possible.

The next task is to understand the dependence of λcut and λwpr on the remaining parameters

of the plasma, δβ, rp, and `. In FIG. 2.14, it is clear that the Bernstein range in λ satisfies

`− 2 < λ < `− 1, with warmer (i.e. smaller rp) plasmas extending through that entire range,

except for ` = 2, which first acquires a wave-particle resonance at a higher frequency than

λ = `− 2 = 0. It is also interesting to note that in the case of ` = 4, the bottom limit of

ωwpr becomes constant at sufficiently small rp due to the appearance of a second wave-particle

resonance that first appears at the very center of the plasma, at a higher frequency than the

wave-particle resonance appearing at non-zero r. The kinks in the curves for λcut at various δβ

show whether the region in which there are Bernstein wave solutions is a disk-shaped region or

an annular region. That is, for sufficiently large rp, the plasma has two upper hybrid radii. These

annular solutions only occur for δβ < 1.

To understand the fluid theory in a concrete situation, we now study a particular plasma

with parameters chosen to match some typical experimental conditions. Figure 2.15 shows several

traces of ε11(r) = 1−Xβ for a range of driving frequencies. The red (dotted) curve shows the

lowest frequency for which some part of the plasma has ε11 < 0 for ν = 0, due to the dip in ε11

at roughly r = 11.5. This frequency is how we defined λcut, as shown by the dashed lines in

FIG. 2.14. In this case ε11 < 0 only in a small region away from the origin, that is, this plasma

exhibits Bernstein modes in an annular region, with evanescence both near the plasma center, and

at the very edge of the plasma. As the driving frequency is lowered further, the dip in ε11 becomes
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Figure 2.14: Predicted ranges of λ over which Bernstein modes occur in WKB theory for a multi-
species plasma without species separation: λwpr < λ< λcut , as a function of scaled plasma radius
for `= 2 through `= 4, with resonant species fraction δβ ∈ {100%,80%,60%,40%,20%}.

increasingly deep until at some frequency λwpr the denominator appearing in ε11 vanishes and

two wave-particle resonances are produced that damp out the Bernstein waves, as indicated by

the thick black lines in FIG. 2.14.

Figure 2.15: ε11(r) in a plasma with ` = 2, Ω = 10.45, rp = 10.5, δβ = 56.3%, rw = 83.54,
with driving frequencies starting from λ = 0.711 (red, dotted), down to λ = 0.568 (blue, solid).
Locations where ε11(r) = ε′11(r) = 0 labeled.
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2.8.3 Multi-species Results

In FIG. 2.16 we compare the multi-species results of the WKB theory for `= 2 modes

in an Ω = 10, rp = 4.76 plasma, with two values of the resonant species purities δβ, using the

resonant-species approximation discussed previously. First, we take δβ = 80%. Notice that the

∆=0.6∆=0.6

Λcut
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∆=0.8

Λwpr
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Λ0
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ImHYL

Figure 2.16: Imaginary part of the admittance for a multi-species plasma, using the WKB
theory, for two resonant species fractions, δβ = 60% and 80%. Ω = 10, rp = 4.76, rW = 10,
`= 2 and 1/ν = 4000. Compare the fall-off of the response to the predictions for λwpr and λcut
provided by FIG. 2.14 (arrows).

right side of FIG. 2.16 is at λ = 0.8, in agreement with the prediction by FIG. 2.14, since no

Bernstein peaks appear at frequencies higher than this according to WKB theory. There appears

to be a significant reduction in peak spacing compared to the pure plasma case (FIG. 2.11).

Next we consider an identical plasma except with δβ = 60%. Again, the plot starts on the

left at λ = 0.6, as expected from the appearance there of an `= 2 wave-particle resonance in this

profile shown in FIG. 2.14. We also observe that the Bernstein peaks are more difficult to observe

in a δβ = 60% plasma, especially for frequencies approaching λcut than it was for the δβ = 80%

plasma. This is because the peak spacing is even closer together in the δβ = 60% plasma.
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2.8.4 `= 0 Bernstein modes

We now briefly consider excitation and measurement of the `= 0 plasma response to an

external perturbation near the cyclotron frequency, and compare these results to simulations by

Hart and Spencer of `= 0 cyclotron waves[10]. There are two ways in which the `= 0 plasma

response differs from the ` 6= 0 response discussed previously.

First, for `= 0 a wave-particle resonance occurs that strongly damps Bernstein modes.

Although previously we argued that Bernstein waves are completely absorbed at a wave-particle

resonance, we will see that sometimes a weak Bernstein mode can still be set up. When the

resonant radius occurs in the region of the plasma edge, and if this edge density falls rapidly to

zero, a new effect occurs: Bernstein waves are partially reflected at the sharp plasma boundary

rather than being completely absorbed, creating a damped standing wave inside the plasma. This

is an effect beyond WKB theory. We therefore rely on numerical Vlasov solutions, comparing

them to the predictions of cold fluid theory (which does not include the Bernstein response at all),

and to the particle simulations of Hart and Spencer.

Second, we cannot drive an ` = 0 plasma wave using an external wall potential, since

a cylindrically-symmetric z−independent wall potential does not create a radial electric field

for r < rW . Also, ` = 0 plasma oscillations cannot be detected at the wall, by Gauss’s law

in two-dimensions. (Experimentally, there can be z-dependence in the driver, and the plasma

is finite-length, but such effects are beyond the two-dimensional theory presented here). We

therefore must drive the plasma in a different manner than for ` 6= 0, and we must diagnose the

modes using a new definition of plasma admittance.

We will drive the plasma with an oscillatory θ-independent potential of the form δΦext(r)e−iωt ,

where δΦext(r) does not satisfy the 2-D Laplace equation; instead we simply take δΦext(r) = Ar2.

One can think of this as some approximation to the effective 2-D (z-averaged) driving one would

obtain in a finite-length plasma from a z-dependent wall voltage.

Next, we require a new form for the admittance function. Hart and Spencer define their
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measure of the ` = 0 plasma response as the amplitude of the radial component of the fluid

velocity, δVr, at a fixed location on the interior of the plasma, rmeas. We will use a related

dimensionless quantity we call Ya, the “acceleration admittance”, defined as the (negative of)

the radial acceleration of a fluid element at a given location rmeas, divided by the acceleration

produced by the external potential only:

Ya ≡−
iωδVr

∂δΦext/∂r

∣∣
r=rmeas

(2.109)

Like the admittance Y , the quantity Ya is independent of the amplitude A of the external driving

potential; its imaginary part depends only on the plasma response; and it is sharply-peaked at the

frequencies of weakly-damped normal modes.

There are (at least!) two ways to determine this admittance function from the Vlasov

solution. In one method, one can integrate the numerically-determined distribution function δ f

over velocities to determine δVr, and use this result in Eq. (2.109). Another, simpler, method uses

a relation between δVr and the perturbed plasma potential, δΦp. To derive this relation, begin

with the linearized continuity equation

−iωδn+∇ ·
(
nδV+δnV f

)
= 0, (2.110)

where V f (r) =ω f (r)rθ̂ is the equilibrium cold-fluid rotational velocity and n(r) is the equilibrium

density (see Eqs. (2.1) and (2.9) ). Integrating this equation over a disk of radius r centered with

the plasma, and using the divergence theorem, we obtain

∮
nδV · n̂ds+

∮
δnV f · n̂ds =

∫
iωδnd2r. (2.111)

The second term on the left vanishes due to the purely azimuthal equilibrium flow. Using the
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Poisson equation

∇
2
δΦp =−δn. (2.112)

another application of the divergence theorem, and cylindrical symmetry for ` = 0, the right

side of Eq. (2.111) can be expressed in terms of the radial plasma electric field, which gives the

following expression for the perturbed radial velocity for an `= 0 plasma:

δVr(r) =−
iω

n(r)
∂δΦp

∂r
. (2.113)

We will use this result in Eq. (2.109) to determine the plasma response to an external

potential oscillation for ` = 0 using the Vlasov code. We will also compare these numerical

Vlasov code results to the predictions of cold fluid theory. However, since the driving potential

does not satisfy the Laplace equation, the cold fluid theory of Eq. (2.6) must be modified. The

linearized cold fluid equations from which it is derived are the continuity and Poisson equations

Eq. (3.1) and Eq. (2.112), as well as the linearized momentum equation,

−iωδV+V f ·∇δV+δV ·∇V f =−∇δΦp−∇δΦext−ΩδV× ẑ. (2.114)

These three equations can be combined to yield

∇ · ε ·∇δΦp = ∇ · (1− ε) ·∇δΦext , (2.115)

where ε is the cold-fluid dielectric tensor given by Eq. (2.7). This is a generalization of Eq. (2.6)

to forcing potentials that do not satisfy the 2-d Laplace equation. If δΦext did satisfy the Laplace

equation, it could be combined with the plasma potential δΦp as δΦ = δΦp + δΦext and δΦ

would satisfy Eq. (2.6).

For `= 0 Eq. (2.115) can be solved analytically. Writing out the gradients in cylindrical
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geometry yields
1
r

∂

∂r

(
rε11

∂δΦp

∂r

)
=

1
r

∂

∂r

(
r(1− ε11)

∂δΦext

∂r

)
(2.116)

This equation can be integrated once. The constant of integration must be dropped to keep the

potential finite at the origin, and therefore we have

∂δΦp

∂r
=

1− ε11

ε11

∂δΦext

∂r
(2.117)

Applying this expression to Eq. (2.113) and using this result in Eq. (2.109) yields the following

expression for the acceleration admittance in cold fluid theory:

Ya =
ω2(ε11−1)

n(r)ε11

∣∣∣∣
r=rmeas

. (2.118)

In FIG. 2.17 we compare the cold-fluid prediction for Im[Ya] from Eq. (2.118) to the

numerically-determined values from the Vlasov code for the standard plasma profile with rp =

4.76 , rW = 10. There are several differences in these results compared to previous ` 6= 0 results.

First, for `= 0 there are no secondary Bernstein peaks within the primary admittance peak. Also,

the frequency at which the single peak occurs depends on which radius it is measured at. (For

global normal modes this would not be the case.)

The cold fluid predictions give primary peaks at the same frequency locations as does

the code. From Eq. (2.118), the peaks occur where Re[ε1,1(r,λ)] = 0, which explains why the

frequency λ of the peak varies with radius r: in fluid theory these peaks are local upper-hybrid

oscillations excited by the forcing at the location where the upper hybrid frequency is equal to

the forcing frequency. However, the code results are not as sharply-peaked as the fluid theory

predicts, indicating there is some extra damping mechanism at work.

This damping mechanism becomes apparent when the perturbed density predicted by the

Vlasov code is plotted versus radius. This is done in FIG. 2.18 for frequency λ =−1. Between the
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cutoff radius rcut and a wave -particle resonance at rwpr > rcut a Bernstein wave causes the density

to oscillate in r, with increasing wavenumber as the wave-particle resonance is approached.

This is qualitiatively similar to what one would expect in WKB theory, since X → ∞ at the

wave-particle resonance, implying that k→ ∞ through Eq. (2.64). However, WKB theory would

also predict that the wave becomes evanscent for r > rwpr as Re[ε11] changes sign, but this is

not what the Vlasov code shows. On the other hand, the WKB equations do not apply near the

resonance, so it is perhaps unsurprising that there is a discrepancy. To our knowledge, there is

currently no detailed theoretical model for the behavior of the perturbed density in a Bernstein

wave near a wave-particle resonance. This problem differs from, and is more difficult than, the

standard “magnetic beach”[19] absorption of cyclotron waves with nonzero wavenumber kz along

the magnetic field. For kz = 0 the wave-particle resonance mechanism involves drifting cyclotron

orbits in a radially-nonuniform equilibrium electric field, and is consequently considerably more

complex.
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Figure 2.17: Imaginary part of the acceleration admittance, measured at two radii, plotted
versus scaled frequency λ for `= 0, for a plasma with rp = 4.76, rW = 10, and Ω = 5. Dashed
lines are the fluid theory prediction, Eq. (2.118), and solid lines are the results of the Vlasov
code with Mr = 180,Mv = 90,Mψ = 18.

However, we can qualitatively understand the mode broadening and increased damping

caused by this Bernstein wave. One can see in FIG. 2.18 that the real and imaginary parts of the
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Figure 2.18: Real (thick line) and imaginary (thin line) parts of the perturbed density δn
versus radius, from the Vlasov code solution, for frequency λ =−1, for the same conditions
as the previous figure. The small rapid oscillations on the right-hand side of the figure are not
fully-converged, but the oscillations near and to the left of rwpr are well-converged.

oscillatory density perturbation are roughly 90o out of phase, indicating a travelling wave rather

than a standing wave. The oscillating source δΦext is launching a Bernstein wave perturbation

that is absorbed at the wave particle resonance, sapping energy from the plasma response. This

Bernstein wave does not set up a normal mode because of the absorbing “boundary condition” for

the wave at the location of the wave-particle resonance. The damping caused by wave absorption

at the resonance is not included in the cold fluid analysis (because this analysis entirely neglects

Bernstein waves), and this is why the admittance peaks are sharper in cold fluid theory.

Similar enhanced damping caused by Bernstein wave absorption at a resonance was

predicted via WKB analysis for ` 6= 0 Bernstein waves, in Ref [6], Sec. IXC.3. One complication

in any similar WKB analysis for the `= 0 response is that the waves are now launched by a source

δΦext that is nonzero within the plasma. This requires a solution to the inhomogeneous wave

equation, involving a WKB expression for the Green’s function associated with the Bernstein

mode operator; this Green’s function solution was not required in Ref. [6] because there the

source was a potential oscillation on the wall, outside the plasma. The WKB Green’s function

would produce both a fluid and a Bernstein wave response to forcing, but its functional form has
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not yet been derived.

We now describe the ` = 0 plasma response for a second case, a plasma at lower tem-

perature and weaker magnetic field than in the previous example: Ω = 1.633, rp = 43.67, and

rW = 2rp. This is the case studied by Hart and Spencer. This is a plasma with a nearly uniform

density and a relatively sharp edge. Figure 2.19 shows the result of our numerical Vlasov method

for an `= 0 perturbation. There is a large peak in the admittance at λ≈−1.2. This admittance

peak is fairly well described by the cold fluid theory (the dashed line). This is an upper hybrid

mode (the cold fluid admittance is peaked at the upper hybrid frequency where Re[ε11] = 0; see

Eq. (2.118)). However, there are also two other weaker peaks in the admittance that are not in

the cold fluid theory. These peak locations in the plasma response were also observed in the

simulations by Hart and Spencer (the arrows). These peaks are fairly strongly-damped Bernstein

modes.
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Cold Fluid
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Figure 2.19: Comparison of the Vlasov code, cold fluid theory, and the PIC simulation by Hart
and Spencer. Ω = 1.633, rp = 43.67, rmeas = 27.5, ` = 0, and ν = 1/500. Vlasov code uses
Mψ=20, Mr = 240,Mv = 90. Arrows show the locations of modes found in the simulations of
Ref. [10].

In FIG. 2.20 we display the real and imaginary parts of the perturbed density from the

Vlasov code for λ values at the three peaks. The big “cold fluid” peak is a simple “breathing

mode” where the density change throughout the plasma is nearly uniform, as the plasma radially

expands and compresses. There is nearly no Bernstein wave activity, which explains why cold
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Figure 2.20: Real (thick line) and imaginary (thin line) parts of the perturbed density response
for `= 0 in a cold weakly-magnetized plasma, at three frequencies corresponding to the peaks
of the admittance in FIG. 2.19. (a) λ =−1.11 (b) λ =−1.17 (c) λ =−1.24.

fluid theory is a good fit to the admittance peak. The next two peaks show true Bernstein mode

responses. The plasma density oscillates in space and the real and imaginary oscillations are not

90o out of phase; these are (damped) standing waves, not travelling waves. There is no cutoff for

these modes; the Bernstein waves propagate from r = 0 out to a wave-particle resonance in the

plasma edge (shown by the arrows). Because the wave particle resonance occurs in the plasma

edge, and this edge is sharp, Bernstein waves can apparently partially reflect from the edge before

they are fully absorbed at the wave-particle resonance, setting up damped normal modes.

The large variation of δn in the plasma edge exhibited in these figures is due to the “surface

charge” associated with wave motion of the sharp plasma edge. One might hope that one could

model this problem using an appropriate warm fluid theory for a uniform plasma with a sharp

edge, but we currently have no theoretical model for the correct wave boundary condition at

this edge, since the edge both reflects and absorbs the wave due to the wave-particle resonance.

Some progress has been made on this problem by treating the plasma as an elastic fluid with

an anisotropic pressure tensor,[10] but this approach neglects the wave damping effect of the

wave-particle resonance.
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2.9 Conclusions

Two electrostatic cyclotron modes propagate in a nonneutral plasma column: surface

cyclotron and Bernstein waves. In this chapter we have considered the z-independent (kz = 0)

versions of these waves. We focussed on these z-independent waves because for kz 6= 0 there

can be strong Landau-damping on the parallel velocity distribution via the “magnetic beach”

mechanism[19] when (ω̂−Ωv)/kz is of order the thermal speed vt . Since ω̂−Ωv is of order the

plasma rotation frequency ωr, the condition for negligible Landau damping of kz 6= 0 cyclotron

modes can be written as ωr � kzvt . This regime requires cold plasmas, where the Bernstein

response of chief interest in this chapter would be difficult to observe.

The surface wave propagates only along θ, and causes density perturbations confined to

the surface of the plasma. The theory of these modes is adequately described by the cold fluid

theory described in Section 2.3. These surface modes can be driven and detected from the wall by

applying or measuring voltage on wall electrode sectors. In experiments these modes provide

diagnostics for plasma density, species concentration, and charge to mass ratio.

On the other hand, the Bernstein wave is a finite temperature effect coming from the

non-zero Larmor radius of the particle orbits, introducing radial variation extending from the

plasma center to the upper-hybrid radius rUH, where the waves become evanescent and eventually

match onto the vacuum potential outside the plasma. This is possible because the upper-hybrid

radius acts as a classical turning point, where the Bernstein waves are reflected, which enables

a standing wave on the interior of the plasma. In general, a plasma can have more than one

upper-hybrid radius, which causes annular regions where Bernstein modes are present, where the

plasma dielectric ε11 < 0. We also found that for appropriate frequencies, it is possible for the

plasma to have a local wave-particle resonance where the vortex frequency Ωv matches the mode

frequency as seen in the rotating frame. At radii where a resonance is present, or nearly present,

the Bernstein wave energy is absorbed, making the measured wall signal significantly smaller.
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Our theory began from a z-independent global thermal equilibrium density profile, and

determined the linear modes and mode frequencies in two different ways. First, we described and

presented results from a numerical solution to the Vlasov equation; and second, we derived a new

WKB theory which corrects a frequency shift in the predicted mode frequencies (predicted in the

existing literature[6]) for moderately-sized bare cyclotron frequency Ω. Mode frequencies were

obtained and compared by picking out peaks in the admittance function Y (ω), where the mode is

resonant.

The numerical solution to the Vlasov equation described in section 2.4 is valuable because

it doesn’t carry out the mathematical approximations used in the WKB theory, and therefore

the results obtained from the code are “exact” (provided the numerics have converged). These

numerical results showed both the surface cyclotron mode response, broadened in frequency by

the variation of the E×B rotation rate across the plasma radius, as well as showing a number

of individual Bernstein modes coupled to the surface cyclotron mode. We showed a number of

results at various temperatures and magnetic fields, for single-species plasmas at various θ-mode

numbers `, and then described WKB theory and presented results for plasmas with multiple

species. Finally, we compared to an existing azimuthally symmetric PIC simulation, and found

good agreement with our Vlasov solution.

The semi-analytic WKB approach makes some simplifying assumptions, so these results

were validated with the Vlasov method. In the WKB theory, the plasma was separated into four

partially-overlapping regions where different approximations were made. For the center of the

plasma, where the plasma density is uniform, we made use of the derivation in section 2.5.1 giving

the general form for a differential wave equation operator in a uniform, isotropic plasma. Away

from the origin where the plasma density changes gradually, the Bernstein dispersion relation

was used to determine the local wavenumber as a function of radius, where Bernstein waves are

present. Using a 4th order wave equation valid near rUH, we found that the presence of an internal

Bernstein mode only couples to the surface mode through the matching conditions on the cold
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fluid perturbed potential δΦ at rUH. This matching condition is modulated by the local phase χ of

the Bernstein wave, which is responsible for shifting the vacuum potential outside the plasma

and ultimately changing the (normalized) electric field measured at the wall Y , which we used

as a proxy for the plasma response. This new WKB theory has very good agreement with the

Vlasov solution for Ω≥ 4ωp, which was not the case for the existing WKB theory which assumed

Ω� ωp. We also found an approximate dispersion relation valid for strong magnetic fields and

small plasma to wall radius ratio, which shows that the mode frequencies occur whenever the

Bernstein wave phase χ changes by a multiple of π. We also provided a plot (FIG. 2.14) that

predicts the frequency range in which Bernstein modes are allowed, as a function of the plasma

radius scaled to the Debye length, `, and the species concentration δβ.

There are still some aspects of this problem that need to be extended or otherwise further

studied. The results in this chapter were focused on Bernstein modes near the cyclotron frequency

Ω, but there are also modes at multiples of Ω. Both of the main methods described in this chapter

can be extended to consider such higher harmonic modes without trouble. Also, as we already

noted, the theory described here is a 2D analysis; it assumes the axial mode number kz = 0, and

also that the plasma length is very long. Many experiments do not operate in this regime, so the

theory may need to be extended to include finite length effects. Finally, our analysis brings up

an interesting puzzle regarding the physics occurring near a wave-particle resonant radius. In

this chapter, we found many circumstances under which such a resonant radius absorbs waves,

attenuating Bernstein modes, and leading to smaller measured Bernstein mode wall signals. On

the other hand, we also reviewed an example originally considered by Hart and Spencer[10]

in which the plasma edge (containing the resonant radius) instead acts as a reflector, allowing

damped standing waves to be generated on the interior of the plasma. The mechanism of this

reflection and absorption is not fully understood, so this question should be pursued in future

work.
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Chapter 3

Finite-Length Diocotron Modes and

Temperature Effects

3.1 Background

There has been extensive work done in trying to understand diocotron modes in non-

neutral plasmas. These modes arise due to ~E×~B drift dynamics, in which the guiding center

of a charged particle undergoes a drift motion perpendicular to both the electric and magnetic

fields. The mechanistic origin of this drift becomes obvious when considering that as the particle

executes cyclotron motion due to the magnetic field, the particle velocity is greater on the portion

of the orbit at lower electric potential energy, and conversely is lower on the portion with higher

electric potential energy (by conservation of energy). This asymmetry implies that during each

cyclotron orbit, the particle has moved farther on one side of the orbit than the other, leading to

an average drift velocity along constant electric potential. The modes we consider here emerge

when considering a plasma with a density of, say, 107cm−3, where both the self-consistent effects

of plasma motion, and the particle-dynamics come into play. The 2-dimensional version of

this problem, applicable to a plasma column of infinite length, is theoretically well-understood
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for modes with azimuthal mode number `. For instance, the infinite length theory for the

frequency of the azimuthal mode number ` has a simple, closed-form expression for an (infinite)

cylindrical plasma with uniform density. Another notable theoretical success due to Levy[14] is

the understanding that the infinite-length `= 1 mode frequency is independent of the radial density

profile, and is simply comprised of a translation to the equilibrium plasma. This `= 1 mode is

driven entirely by the field produced by the image charges in the enclosing conductive cylindrical

wall. On the other hand, the finite-length theory of diocotron modes is less developed, with a

few notable exceptions: a `= 1 finite-length diocotron mode theory was developed by Fine and

Driscoll [7] which calculated the diocotron mode frequency using the fact that the mode frequency

is directly proportional to the net force on the plasma column exerted per column displacement

(taking advantage of Levy’s result). Another theory paper due to Hilsabeck and O’Neil [11]

considers the same problem (focusing primarily on `= 1), but including bounce-averaging over

the axial bounce motion, accounting for plasma end shape. In this paper, we demonstrate a

relationship between these two theories– the first, an analytic theory only suitable for the `= 1

mode; and the second, the bounce-averaged kinetic numerics that can handle `≥ 1. In finding the

connection between these approaches, we show how to develop a finite-length theory that takes

the positive aspects of both theories: the new theory is a closed-form mathematical expression

(like the Fine result), yet is also applicable to `≥ 1 (like the Hilsabeck result). We also show that

this new theory recovers Fine’s result for the special case `= 1.

3.2 Infinite Length Fluid Theory

We start by reviewing the infinite length drift theory: a plasma of infinite length confined

within a conducting, cylindrical wall. We use the guiding-center ~E×~B drift model in cylindrical

geometry, assuming flute perturbations, as a 2D problem. The dynamics are governed by the
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continuity equation for incompressible drift flow, which is a simple advection equation:

∂n
∂t

+∇ · (~vn) =
∂n
∂t

+~v ·∇n = 0, (3.1)

and the drift velocity equation

v =
c
B
~E× ẑ. (3.2)

In cylindrical geometry, after substituting (3.3) into (3.1), we obtain

{
∂

∂t
+

c
Br

(
∂φ

∂r
∂

∂θ
− ∂φ

∂θ

∂

∂r

)}
n(r,θ; t) = 0. (3.3)

Next, we linearize (3.3), assuming density and potential of the forms

n(r,θ; t) = n0(r)+δn(r)e−iωt+i`θ (3.4)

φ(r,θ; t) = φ0(r)+δφ(r)e−iωt+i`θ, (3.5)

where of course Poisson’s equation must be satisfied for both the perturbed and unperturbed

potentials and densities, respectively. This results in the linearized eigenvalue equation

(ω− `ωr(r))δn =− c`
Br

∂n0

∂r
δφ, (3.6)

along with Poisson’s equation

∇
2
`δφ =−4πq δn(r). (3.7)

where ωr(r) ≡ c
Br

∂φ0
∂r is the equilibrium drift rotation frequency. In the next section, we study

analytically tractable solutions to Eqs. (3.6) and (3.7).
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3.3 Piecewise Constant Density Fluid Theory

One case that can be analytically studied using fluid theory is a piecewise constant, θ-

symmetric density plasma, which can be used to approximate an experimental plasma. Such

a plasma has an equilibrium profile comprised of uniform density “steps”. Here we develop a

general, and convenient formalism to compactly determine the diocotron mode frequencies for

such a plasma using matrix algebra. Rather than expressing the functional form of the perturbed

potential δφ as a function of space, instead we will encode δφ using a two-component vector that

is sufficient to specify the two constant coefficients required in each region of constant density.

Using the solution to Eq. (3.6) for a uniform region, the solution for the ith uniform region from

the center of the plasma is

δφi = Bir`+Cir`. (3.8)

To record a dimensionless “state” of the potential in the ith region, we will define the vector ψi as

follows

ψi =

δφi(bi)

bi
`

δφ′i(bi)

`bi
`−1

 , (3.9)

Where bi is the radius of the ith density transition counting from i = 0 at the plasma center. Since

in the absence of a central charge the potential remains finite at r = 0, Ci = 0 in the innermost

region i = 0, so

ψ0 =

1

1

 . (3.10)

Here we define the multiplicative constant B1 = 1 since we are solving a homogeneous problem

with vanishing boundary condition at the wall, so any multiple of the solution will still be a

solution. Next, we work towards a “propagator” matrix that takes ψi → ψi+1 via left matrix

multiplication. First, we determine the linear relationship taking us from the coefficients Bi and

Ci to the potentials evaluated on the inner edge of the ith region, which is expressed in Eq. (3.8),
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which becomes δψi(r)

δψ′i(r)

=

 r` r−`

`r`−1 −`r−`−1


Bi

Ci

 . (3.11)

This expression is good for any r inside plasma region i. This linear relationship, along with its

inverse, shows us how to relate perturbed potentials and their derivatives on the leftmost side of a

plasma region to those on the rightmost side of the same region (just inside where the transition

occurs). Next, we need a relationship connecting the potentials (and their derivatives) from just

inside and just outside the outer radius of the ith region, that is, the jump condition in crossing

from the outermost edge of the ith region to the innermost edge of the i+1th region. By studying

the differential equation for a step profile, the appropriate relationship is found to be

δφi
+

δφi
′+

=

 1 0
−`δωp

2

biΩ(ω−`ωE)
1


δφi

−

δφi
′−

 , (3.12)

where the + and − symbols indicate which side of the transition the potentials and derivatives

are measured. Putting all this together, and converting from the vector with ψ and its derivative to

our convenient state variable ψ, we obtain the relationship

ψi+1 = Piψi, (3.13)

with

Pi ≡
1
2

 1+βi 1−βi

(1−βi)+(1+βi)Wi (1+βi)+(1−βi)Wi

 , (3.14)

where β =
(

bi+1
bi

)2`
,W = −2∆ωD

ω−`ωE
, and ωD = −2πn0qc

B , and ∆ signifies the change in the quantity

from the ith to the i+1th region. Thus, the statement that the potential vanishes at the conducting
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wall can be compactly written as

0 =

(
1 0

)(imax

∏
i=1

Pi

)1

1

 . (3.15)

In Eq. (3.15), the order of the matrix product is defined to multiply matrices from right to left.

The simplest non-trivial case of this expression that will serve as a starting point for this chapter

is an (infinite length) plasma cylinder consisting of two regions, the plasma interior with uniform

non-zero density, and the vacuum region outside, surrounded by a conducting wall at radius r = a.

That is, consider a rectangular electron plasma profile of the form

n0(r) =

 n0, r ≤ Rp

0, r ≥ Rp

, (3.16)

where the symbol n0 is used both for the name of the function and the central plasma density.

In the innermost plasma region, the inner radius is zero, so β = 0, and W is determined by the

change in the density between the interior and vacuum region. In the vacuum plasma region, the

value of W2 is irrelevant, since the entries in P2 containing W2 only appear in the bottom row

which is annihilated by the row vector on the left in Eq. (3.15). The result is

(
Rp

Rw

)2`

=
1

2W
=⇒ ω =

−2πn0qc
B

(
`−1+

(
Rp

Rw

)2`
)
. (3.17)

The resulting mode frequency for this profile is

ω =
−2πqn0c

B

(
`−1+

(
Rp

Rw

)2`
)
, (3.18)
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Incidentally, in the case `= 1, only the final term in parentheses survives, and the plasma radius

cancels entirely when written in terms of the line density Λ:

ω`=1 =
−2qΛc

BR2
w

. (3.19)

In fact, the linear `= 1 mode frequency has no dependence on the radial profile shape at all (even

for a non-square profile), thanks to the eigenfunction representing a simple circular translation of

the plasma mode. The plasma density perturbation takes the form

δn(r) =
η

Rp
δ(r−Rp), (3.20)

while the corresponding potential perturbation can be concisely written

δφ(r) =
−2eπη

`

r`<
(

r`>−R2`
w r−`>

)
R2`

w

 , (3.21)

where r> ≡max(r,Rp), and r< ≡min(r,Rp).

3.4 Vlasov Interpretation

~E×~B dynamics generates incompressible flow, so the r-θ plane can be viewed as a plane

of phase space. This perspective will become useful when we discuss thermal effects in Diocotron

modes. In the drift approximation, the kinematic momentum perpendicular to the magnetic field

vanishes, so the only contribution to the Hamiltonian is the axial kinetic energy and the electric

potential energy:

H =
pz

2m
+qΦ(r,θ,z). (3.22)
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The dynamics of this equation are governed by the Vlasov Equation using the Poisson bracket:

∂ f
∂t

+{ f ,H}= 0, (3.23)

Where f is the distribution function. In this geometry the conjugate variables are (z, pz) and

(θ, pθ), where pθ =
qBr2

2c . Writing (3.23) explicitly in terms of polar coordinate variables gives

[
∂

∂t
+

c
Br

(
∂φ

∂r
∂

∂θ
− ∂φ

∂θ

∂

∂r

)
+

pz

m
∂

∂z
−q

∂φ

∂z
∂

∂pz

]
f (r,θ,z, pz; t) = 0. (3.24)

The last two terms in the bracket disappear in the z-symmetric problem, leaving us with an

expression nearly identical to (3.3), except with the distribution function rather than the density.

The physical interpretation is that each slice at constant pz of the z-independent Vlasov description

of this problem is identical to the z-independent fluid theory. This will not be the case where the

potential and distribution function are also functions of z.

3.5 Description in Action-Angle Variables

We can make further progress by making a canonical transformation of (3.23) to Action-

Angle variables (pθ, θ̄,ψ,J) in favor of the old coordinates, and also linearize. First write the

equation in linear form, where the zeroth order distribution f0 is an equilibrium of H0:

0 =
∂ f0 +δ f

∂t
+{ f0 +δ f ,H0 +δH} linearize−−−−→ 0 =

∂δ f
∂t

+{δ f ,H0}+{ f0,δH}. (3.25)

The perturbation δH comes entirely from the perturbed electric potential δφ (there is no kinetic

perturbation). Therefore we can take δH = qδφ. Next, we write out this equation explicitly in
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terms of the action-angle variables mentioned above:

0 =
∂δ f
∂t

+
∂δ f
∂ψ

∂H0

∂J
≡〈ωB〉

− ∂δ f
∂J

∂H0

∂ψ
+

∂δ f
∂θ̄

∂H0

∂pθ

≡〈ωE〉

− ∂δ f
∂pθ

∂H0

∂θ̄

+q
(

∂ f0

∂ψ

∂δφ

∂J
− ∂ f0

∂J
∂δφ

∂ψ
+

∂ f0

∂θ̄

∂δφ

∂pθ

− ∂ f0

∂pθ

∂δφ

∂θ̄

)
. (3.26)

We define ∂H0
∂J = 〈ωE〉, and ∂H0

∂J = 〈ωB〉, but the bracket notation used here should be justified,

since it suggests that an average is taking place, which needs justification. In fact, the bracket

turns out to simply be an average over one full period of the z orbit. To see this, note that the

z-period τz =
∮ dz
|vz(pθ,z,pz)| (full period) is constant in time since the z-velocity vz can be expressed

in terms of the conserved total energy, and the z-integral occurs over a full period. This enables

us to define ψ so that z(ψ) is periodic with period 2π. Consequently, the bounce period for z and

ψ are equal, and it immediately follows that their average bounce frequencies are also equal. A

parallel argument follows similarly for 〈ωE〉. This enables the identification used above. Next,

we have chosen J and pθ to be constants of the motion, θ̄ and ψ are cyclic coordinates in the

Hamiltonian, so the two terms involving them drop out. Further, since we assume an equilibrium

profile for f0, its derivatives with respect to the generalized positions ψ and θ̄ vanish. This leaves

the following more manageable equation:

0 =
∂δ f
∂t

+ 〈ωB〉
∂δ f
∂ψ

+ 〈ωE〉
∂δ f
∂θ̄
−q
(

∂ f0

∂J
∂δφ

∂ψ
+

∂ f0

∂pθ

∂δφ

∂θ̄

)
. (3.27)

Because some experiments satisfy ωB� ωE , we can simplify considerably by not following the

dynamics along ψ, but rather keep only the average δ f along orbits. This effectively detaches

the ψ-dependence from our problem so that we can focus on the dynamics we are interested in.

Also, we are interested in studying perturbations with the standard θ̄ wave dependence going like

ei`θ̄−iωt . To pull out the average component along the bounce trajectories of δ f , and also take
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into account the azimuthal dependence, we express δ f (and δφ) as follows:

δ f =
∞

∑
n=−∞

δ̃ f n(r)e
i`θ̄+inψ−iωt , δφ =

∞

∑
n=−∞

δ̃φn(r)e
i`θ̄+inψ−iωt . (3.28)

This way, the “bounce-averaged” contribution to a quantity is simply its zeroth Fourier harmonic

(n = 0). We now write down the Fourier version of (3.27):

0 = (−iω+ in〈ωB〉+ i`〈ωE〉) δ̃ f n−q
(

in
∂ f0

∂J
+ i`

∂ f0

∂pθ

)
δ̃φn. (3.29)

Then the Vlasov equation is easily solved, given δ̃φn:

δ̃ f n =
q
(

in∂ f0
∂J + i` ∂ f0

∂pθ

)
δ̃φn

−iω+ in〈ωB〉+ i`〈ωE〉
. (3.30)

We concern ourselves in this paper where this bounce-averaged term dominates all other terms in

the Fourier expansion (δ f0� δ fn for n 6= 0). To this end, we assume that δ f = δ̃ f 0, which we

refer to as the bounce-average assumption, which gives

δ f = q
i` ∂ f0

∂pθ
δ̃φ0

−iω+ i`〈ωE〉
. (3.31)

This equation can only be solved when either δφ is known, or when we have another equation

relating δ f to δφ. Here we are interested in potential perturbations arising from the electrostatic

potential due to the plasma itself. By integrating (3.31) over pz, we can obtain the perturbed den-

sity, which is related to δφ through Poisson’s equation. Here we will make another simplification

that θ̄ = θ, which physically says that the θ position of the bouncing particle is the same as if it

were uniformly drifting at its average angular speed. In actuality, the particle drifts change as

they enter the varying end potential, which allows the particle to sample the potential at slightly

different θ positions. However, long plasmas (L� λD) ensure particles spend relatively little time
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in the end potential compared to in the uniform region of the plasma, and for that reason do not

appreciably drift away from the “expected” uniform drift position. With the θ̄ = θ approximation,

we obtain the equation

∇
2
`δφ = 4πq2

∫
∞

−∞

` ∂ f0
∂pθ
〈δφ〉

ω− `〈ωE〉
d pz. (3.32)

Let us take a moment to interpret the form of (3.32). We have eliminated the distribution

function perturbation in favor of the electric potential perturbation. This equation can be viewed

as a generalization of (the θ transformed) Poisson’s equation in r and z, with the modification

that the inhomogeneous part is now a non-local operator acting on φ. The non-locality enters due

to 〈δφ〉, which is a function of (p′
θ
,z′, p′z), representing the average value of φ taken along the

entire trajectory of a test particle with initial conditions (p′
θ
,z′, p′z). This couples the potential at

every point to every other point with equal pθ (since pθ is a constant of the motion). While this

non-local generalization certainly sets it apart from the local form of Poisson’s equation, it will

be useful to keep this analogy in mind as we solve this equation.

3.6 Solving the Bounce-Averaged Diocotron Problem

The non-locality present in the Bounce-Averaging makes the form of our equation not

analytically tractable. In this section, we turn to discretize the problem on a grid in r and z, and

work out some difficulties with performing a discrete version of the bounce-average operation. In

order to do this, we must unpack the bounce-average operator by expressing it as an integral over

space.

The bounce-average operator is a ψ-average, or equivalently, an average through time:

〈a〉 ≡ 1
τ

∮
a dt ′ =

2
τ

∫ zmax

zmin

a∣∣v′z∣∣ dz′, (3.33)
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where the bounce period τ is simply given by

τ≡
∮

dt ′ = 2
∫ zmax

zmin

dz′,∣∣v′z∣∣ . (3.34)

In the second identity in the definition of the bounce average and of τ, a change-of-variables

from t ′ to z′ is performed, and the factor of 2 appears to count the identical contribution from

the particle’s return trip. A source of concern is the appearance of the particle velocity v′ in the

denominator of the integrand, which diverges at the turning points of the particle. However, while

the integrand diverges, the integral remains finite, as we expect from an average. However, upon

discretizing this integral operator, care must be taken near the turning points where the integrand

varies very rapidly and a simple Riemann sum will converge slowly. The solution is to assume the

potential φ0 varies linearly between grid points, which immediately implies that Ez, and therefore

the z-acceleration, are constant (az =
qEz
m )between two adjacent grid points. Then the time ∆t j′

spent between two adjacent grid points z j′ and z j′+1 is given by simple kinematics:

∆t j′ =
m∆v j′

qEz j′
, (3.35)

where ∆v j′ is the change in velocity of the particle between z j′ and z j′+1 and Ez j′ is the (assumed

uniform) electric field between z j′ and z j′+1. When the particle reaches a turning point, it does

not pass through both adjacent grid points. In this case, exactly one of the final or initial velocities

will be zero, where the particle stops and reverses direction. The velocity changes are calculated

using conservation of energy:

v′(H,r,z′) =

√
2
m
(H−qφ(r,z′)), (3.36)

where H is the total energy, and the pθ dependence has been re-expressed in terms of r, through

pθ = qB
2c r2. To compute bounce averages of a quantity a, we use ∆t j′ in (3.35) as weights for
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the quantity being bounce averaged, as in (3.33). Since the quantities being averaged (ωE and

δφ) do not diverge, we assign values to each step in z to be the average of the values of a on the

end-points of the grid step. First we express the orbit time in this way, taking advantage of the

symmetry of the problem around the center of the trap at z=0, which implies that the time τ is

simply four times the time to travel from z = 0 to the turning point:

τ = 4
j′max

∑
j′=0

∆t j′. (3.37)

Here j′max is the index of the grid point with the largest value of z that lies within the particle

trajectory, that is, j′max is the largest integer j′ solving

v′(H,r,z j′)> 0. (3.38)

Next, unpack the definition of ∆t j′ , being careful to correctly take care of the contribution at the

turning point:

τ = 4
j′max−1

∑
j′=0

m(v j′+1− v j′)

qEz j′
+4

m(0− v j′max
)

qEz j′max

, (3.39)

Where v j′ is given by (3.36) evaluated at grid point j′. Now, to compute bounce-averaged

quantities 〈S〉, we simply perform a weighted average of S j′ , using the ∆t j′ that appear across the

sum in (3.39) as weights. Since these weights are times spent between grid points, each S j′ should

be interpolated to the regions between the grid. Here we interpolate by taking S j′ interp =
S j′+1+S j′

2 .

This gives the following expression for the bounce average operator:

〈S〉= 1
τ

(
4

j′max−1

∑
j′=0

(
S j′+1 +S j′

2

)
m(v j′+1− v j′)

qEz j′
−4
(

S j′max+1 +S j′max

2

)
mv j′max

qEz j′max

)
. (3.40)

S is some function on r and z. When we calculate its bounce average, we are doing an average of

S over the z-dimension, where the weights are determined by the initial radius and energy of the
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test particle. Next, we need to discretize the rest of the equation, which can be expressed as a

linear operator acting on the perturbed potential:

∇
2i′ j′

i j +4πq2
(∫

dv
)k

 `
(

∂ f0
∂pθ

)
i j

−ω+ `〈ωE〉i j
Bi′ j′

i j


k

 δ̃φi′ j′ = 0 (3.41)

This is a non-standard eigenvalue equation for ω, where the eigenvalue appears in the denominator

of the integrand. To solve this equation, we replace the zero on the right-hand side with λδ̃φi′ j′ ,

which turns it into a regular eigenvalue equation when omega is held fixed. Then we adjust ω

until an eigenvalue λ passes through zero, which indicates that (3.41) is satisfied. Numerically, we

make an initial guess for ω, then find the smallest norm eigenvalue λmin(ω), and use a root-finding

algorithm to approach the correct value of ω.

One numerical difficulty with this algorithm that considerably slows down progress is that

the matrix appearing in Eq. (3.41) is itself a function of ω, and therefore cannot be computed

once-and-for-all at the beginning of the calculation. Using our iterative numerical method, new

guess values of ω are generated, which requires that the matrix be reevaluated each time with a

new value of ω. The evaluation of this matrix can take considerable time. If we had expressed

the eigenvalue problem by using δ f as our independent variables to be solved for, the system

becomes a standard eigenvalue problem for the mode frequency ω, but the price one pays is that

the matrix equation grows substantially, since δ f is a function of the z momentum pz as well

as the spatial coordinates r and z. As we learned in Chapter 2, using numerical linear algebra

routines to solve the Vlasov equation in 3D is painfully slow, and has its own set of difficulties.

So for this problem we choose to proceed by performing smaller matrix eigenvalue problems,

multiple times, to converge to the correct mode frequency.

92



3.6.1 Numerics and Convergence

When the theory developed in section 3.5 is solved numerically, one needs to have

confidence that a high enough grid resolution was used to obtain convergence. First, even axial

parity of the solution was exploited by solving the problem on the half domain, in order to reduce

the linear algebra problem size. Second, the rapid falling off factor in the integrand coming

from the finite radial extent of the plasma in Eq. (3.41) causes all solution points in this vacuum

region to reduce simply to Laplace’s equation, as would be physically expected. We can take

advantage of this by replacing the form of Eq. (3.41) in these regions with Laplace’s equation,

meaning that the bounce-averaged quantities and velocity integral can be skipped for these grid

points. This considerably speeds up the matrix construction time, and solve time, since there are

fewer off-diagonal terms (coming from the non-local bounce-average of δφ along the particle

trajectories).

When we solve non-uniform temperature profiles, it also becomes necessary to be more

nuanced about the numerical velocity integration. Hot portions of the plasma obviously have

broader axial velocity distributions than colder portions, so the grid used to evaluate velocity

integrals is chosen to be “stretched” across a larger velocity range. The scheme to determine the

maximum kept velocity on this grid is to keep some number of thermal velocities, which will be

a function of r in the cases with non-uniform radial profile. We choose to keep the number of

velocity grid points per field line fixed, so that the grid spacing is reduced for hotter grid points.

There are two levels of convergence for this numerical solution method. Equation (3.41)

is first solved with a guess value for ω, and as described earlier, the smallest eigenvalue λsmall

of the system is determined. A physical solution to the problem requires λsmall be exactly zero,

that is, be a root of λsmall(ω). A root-finding algorithm is employed for this purpose, which

converges on the correct value of ω. In practice, it was found that λsmall(ω) is nearly linear

between any reasonable initial guess (say the infinite-length diocotron mode frequency) and the

actual solution. This was fortunate, since using a simple secant method for root-finding converges
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rapidly. The second level of convergence is checking that the numerical grid is fine enough

that the solution to the discretized equations is an accurate representation of the continuous

solution to the physical problem. To determine this, the dimensions of the equilibrium plasma are

considered, with attention to the scale lengths associated with the plasma ends and radial edge.

Both of these lengths should span many grid points, since these are the finest scale lengths in the

problem. Typically 50−100 radial grid points, and 150−200 axial grid points were sufficient for

convergence. A good starting guess for the number of velocity grid points is the number of grid

points needed to correctly estimate the integral of a Maxwellian distribution with the temperature

of the plasma to within the error desired in the solution to the physical problem. In practice,

this number of grid points was found to be much lower than the number needed for the spatial

dimensions (even 10 velocity grid points was found to be enough to obtain converged results).

The reason for this appears to be that the velocity dependence of the quantities in the integrand of

Eq. (3.41) change gradually, and are therefore well-approximated by even seemingly few grid

points. This is in contrast to the problem studied in Chapter 2 where the number of velocity grid

points had an unexpected effect on the stability of the problem. For this problem, very small

fractional changes on the order of 10−3eV−1 are studied, and these small changes required an

appropriately high resolution to obtain accurate results. A side effect of this is that a very high

accuracy in the absolute frequency is corresponds to an accuracy in the relative frequency change

reduced by a factor of 1000. In order to compare this theory to experiment and a second theory

to be described in a later section, it is decided that only 5% accuracy in the fractional changes,

(or 5× 10−3 in the absolute frequencies) is required, so the grid resolution is increased until

these conditions are met. This was done by calculating the fractional frequency shift, using five

different plasma temperature solutions and computing the best fit, and repeating this process for

increasing resolutions until convergence is reached.
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3.6.2 Results of Bounce Averaged Vlasov Theory

In this section, we study temperature dependence predictions of the bounce averaged

Vlasov theory, and for `= 1, compare to the existing finite-length theory. To make comparison to

experimental regimes at UCSD, we use plasma parameters similar to those used in the experiments.

Here we study a plasma in axial thermal equilibrium with N = 1.62× 109, Rp = 1 cm, Rw =

3.5 cm, and confinement potential Vc = 100V , with distance between confinement cylinders

dconf = 38.5 cm. The external magnetic field used for Fig. 3.4 is B = 10000 Gauss.
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Figure 3.1: A contour plot showing n0(r,z), with horizontal axis z and vertical axis r, near the
right end of the column on a linear scale. For z < 12cm, the density loses z-dependence, so
can be inferred from the values on the plot at z = 12 The central density (darkest blue) is about
ncent = 1.5×107cm−3.
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Figure 3.2: A contour plot showing the perturbed plasma density, with horizontal axis z and
vertical axis r, on a linear scale, calculated from the bounce-average theory.
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Figure 3.3: A contour plot showing the radial derivative of the equilibrium density, with
horizontal axis z and vertical axis r, shown in Fig. 3.1, which is the density eigenmode for an
infinite plasma column. Comparing with Fig. 3.2, the two agree better than expected; there
appears to be little, or no discernible difference between the solution and radial derivative guess.
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Figure 3.4: Comparison of our Bounce-Average theory to the analytic theory from Fine and
Driscoll [7], which we will generalize later a new way later in the paper. Additive shift between
data can be attributed to the ambiguity in definition of the “length” of a real plasma with rounded
ends.

In Fig. 3.4, The temperature-dependent, computational bounce-averaged problem for

`= 1 is solved using the method described in Section 3.6, and compared to the existing analytic

result valid for ` = 1. The vertical axis of the plot is labeled in “experimentalist frequency”

f = 2πω, and it is seen that the predictions of the temperature dependence of the mode frequency

is correctly predicted to within about four percent. It is important to keep in mind that when

comparing the bounce-averaged theory (which solves the Poisson-Vlasov equations for the

complete thermal equilibrium density profile) and the existing finite-length analytic theory, the

analytic theory uses a somewhat arbitrary choice of “plasma length”. We would like to confirm
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that the additive “shift” in Fig. 3.4 can be quantitatively attributed to this arbitrariness in plasma

length. To zeroth order in b/L, the analytic result simply takes the form of an infinite-length

plasma, as in Eq. (3.19), where the line density is replaced via Λ = N/L:

ω`=1 =
−2qNc
BLR2

w
. (3.42)

Since Eq. (3.42) is inversely proportional to L, a small fractional change f in the plasma length

corresponds to an opposite fractional change − f in the predicted mode frequency. There is

necessarily a somewhat arbitrary choice made when a physical plasma with rounded ends is to be

assigned a single, characteristic length to be compared to a uniform cylinder of the same length.

There is not an optimal “unique” way to define a single plasma length of a plasma with rounded

ends like this; to give a few examples, one could define it as the full length at half maximum of the

density on the axis r = 0, or as a density-weighted average of the lengths across all radii, or even

simply the ratio of the number of particles to the line density of the plasma at z = 0. In this paper,

we will use the latter as our working definition of plasma length, but we need to recognize that

this simplification needs to be taken with a grain of salt. That being said, the absolute frequency

predicted by the existing analytic theory should be expected to be accurate to the same fractional

error as the fractional ambiguity in the plasma length, which could be about 5%. Being that

Eq. (3.42) shows a 3% frequency shift between the bounce-average theory and the Fine and

Driscoll theory, we can conclude that the small disagreement in the absolute frequency of the

mode can be resolved by making the plasma length L 3% larger, which is completely reasonable.

For this reason, this chapter is less interested in computing the absolute frequency prediction to

a higher degree of accuracy, but it instead concerns itself with accurate prediction of the mode

frequency as a function of temperature (i.e. the slope of the lines appearing in Fig. 3.4), which

is considerably harder to measure, as in the regime of interest these frequency changes are on

the order of one part in one thousand (fractional change) per eV of temperature increase. In the
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present example, we find good agreement between the fractional frequency shifts per electron

volt for ` = 1. The next question is to examine the frequency dependence for the ` = 2 mode,

shown in Fig. 3.5, where this time we focus on the temperature dependence by comparing relative

changes in diocotron mode frequency between T = 0 and various temperatures ranging up to

3eV. Anticipating the results, the reader might expect qualitative similarity between the `= 1

and `= 2 results: likely the temperature dependence factor α will vary somewhat in magnitude

between the two azimuthal mode numbers, but nonetheless show a similar increasing trend as

temperature increases. Surprisingly, this intuitive guess is completely wrong. In Fig. 3.5, the

0.5 1.0 1.5 2.0 2.5 3.0
THeVL

-0.01

0.01

0.02

0.03

Df

f0

Α º
Df

f0 DT
= 11.9´10-3 eV-1

{=1

Α = -4.46´10-3 eV-1 {=2

Figure 3.5: The fractional frequency shift away from the zero-temperature result predicted by
the Bounce-Average theory for `= 1 and `= 2. A spatial Landau resonance appears for `≥ 3,
which introduces numerical difficulty in integrating the discrete equations. Question: “Why are
the frequency shifts for `= 1 and `= 2 in opposite directions as temperature is increased?”

data show that while the `= 1 mode frequency is linearly increasing with temperature, the `= 2

mode frequency actually decreases linearly with temperature! Evidently there is some physical

mechanism not yet understood here that is responsible for this frequency shift reversal. Also, we

need an analytic expression analogous to the existing `= 1 result in order to provide an additional

check of the bounce-averaged theory. It is the purpose of section 3.10 to explain what physical

principle is at work here. But first, we first must develop some formalism and analytic results to

reach that point, which will be discussed in the next sections.
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3.7 z-integrated Vlasov Theory

To develop a simplified finite-length theory for Diocotron modes, we will begin from the

bounce-averaged drift-kinetic theory covered in Section 3.4, integrating out pz (and as we will

see, also z), at fixed pθ and θ, in order to obtain an effective fluid theory. Starting from (3.31)

written without a division, and already imposing the bounce-average assumption (δ f = δ̃ f 0), we

have

−iωδ f + i`〈ωE〉δ f = i`q
∂ f0

∂pθ

〈δφ〉 . (3.43)

〈·〉 signifies the bounce average, or equivalently the Fourier term with n = 0. We will call this the

“Bounce-Average assumption”. As stated, we integrate in pz in order to make a fluid theory, and

also integrate in z for reasons that will become clear later. This gives

0 =−iω
∫

dz δn+ i`
∫

dz d pz δ f 〈ωE〉− i`q
∫

dz d pz
∂ f0

∂pθ

〈δφ〉 . (3.44)

the perturbed density does not appear in (3.44) in the second and third terms, so we would

like to cast it into a form that resembles a “z-integrated fluid theory”, where δ f is entirely

absent. To do this, we will transform the integrals in the second and third terms into action-

angle coordinates. In general, such a change of coordinates requires a Jacobian determinant.

When integration is over all phase space coordinates, we can take advantage of the symplectic

structure of canonical transformations; phase space areas are conserved, and the following integral

operators are equivalent:

∫
dθ d pθ dz d pz←→

∫
dθ d pθ dJ

∮
dψ. (3.45)

This is sometimes referred to as Liouville’s Theorem: the Jacobian determinant of a

canonical transformation is unity. In the problem at hand, we are only integrating over z and pz, so

there is no immediate guarantee that we can use a similar trick to integrate over this sub-surface
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of phase-space alone. Instead, we will have to calculate this partial ψ,J Jacobian determinant

explicitly to carry out the change of variables:

Jψ,J =

∂ψ

∂z
∂ψ

∂pz

∂J
∂z

∂J
∂pz

 . (3.46)

On the other hand, the Jacobian determinant for the entire canonical transformation equals

unity by Liouville’s Theorem, but can also be calculated in terms of Jψ,J:

1 = |J |=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂θ̄

∂θ

∂θ̄

∂pθ

∂θ̄

∂z
∂θ̄

∂pz

∂pθ

∂θ

∂pθ

∂pθ

∂pθ

∂z
∂pθ

∂pz

∂ψ

∂θ

∂ψ

∂pθ

∂ψ

∂z
∂ψ

∂pz

∂J
∂θ

∂J
∂pθ

∂J
∂z

∂J
∂pz

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ∂θ̄

∂pθ

∂θ̄

∂z
∂θ̄

∂pz

0 1 0 0

0 ∂ψ

∂pθ

∂ψ

∂z
∂ψ

∂pz

0 ∂J
∂pθ

∂J
∂z

∂J
∂pz

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.47)

The first column follows from the θ-symmetry of the unperturbed Hamiltonian allows that the

new canonical coordinates do not depend on θ, except for θ̄ = θ+δθ(pθ,z, pz). The second row

follows from the fact that pθ appears in both the old and new coordinates, so pθ is independent

from all of the old variables except pθ itself.

By performing the determinant by expansion by minors along the first column, we can

reduce this expression simply to the determinant of the lower right 3×3 matrix. Then, expanding

this 3×3 matrix around its first row, we can further reduce this expression to the determinant of

the bottom right 2×2 matrix, which is simply
∣∣Jψ,J

∣∣. Then we have

∣∣Jψ,J
∣∣= |J |= 1. (3.48)

The conclusion is the following operators are equal:

∫
dz d pz =

∫
dJ

∮
dψ, (3.49)
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that is, we can perform the same sort of integral manipulation as we did for the full phase space

in (3.45) (this time with only z, pz), provided we are making the assumption that θ = θ̄. We can

now return to (3.44) and make further progress.

0 =−iω
∫

dz δn+ i`
∫

dJ
∮

dψ δ f 〈ωE〉− i`q
∫

dJ
∮

dψ
∂ f0

∂pθ

〈δφ〉 . (3.50)

Next, notice that the quantity multiplying the bounce-averages in both of the second two

terms has no ψ-dependence (from the Bounce-Average Assumption and the fact that f0 is an

equilibrium). Then the bounce average brackets can be extended to include these ψ-independent

terms, which then makes the bounce average redundant since we immediately integrate in ψ

afterwards. Thus the bounce-averages can be removed, at which point we can use (3.49) again in

reverse to restore the original integration measure involving z and pz variables. Now that we have

eliminated all bounce-averages from the equation, the only pz-dependent quantities are f0 and

δ f , allowing us to perform the pz integrals, changing these distribution functions into densities.

Converting to radius from pθ, the result is

ω

∫
δn(r,z) dz =

c`
Br

(∫
∂φ0(r,z)

∂r
δn dz−

∫
∂n0(r,z)

∂r
δφ dz

)
. (3.51)

We have now succeeded in obtaining an effective fluid-theory from the bounce-averaged kinetic

theory. It is useful to note that (3.51) is identical to the infinite-length fluid theory in (3.6), with

the only distinctions being that (3.51) integrates over z, and allows z-dependence in the densities

and potentials. This simplification reduces the dimension of phase space by one; (r,z, pz)→ (r,z),

making analysis significantly more tractable. The caveat is that we have integrated out z from

(3.51), so this fluid theory cannot predict the z-dependence of the perturbation on its own. Luckily,

it is often true (for all cases studied in this paper) that the z-dependence of the mode is quite

predictable, with the perturbed density remaining z-independent on the plasma interior and falling

off within a few Debye lengths at the end. This can be verified by solving the full bounce-averaged
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Vlasov theory, (3.32), numerically, and verifying the spatial dependence of the perturbed density.

In light of this, the mode can be estimated by an ansatz: for instance, take the perturbed density

of the plasma to match infinite-length theory inside the z-range of the plasma, and zero outside.

Another example is to assume the plasma is always in thermal equilibrium along each magnetic

field line as the mode evolves in time. As it happens, taking even the cruder of these two

approximations does a good job of predicting results in experiments at UCSD.

3.8 Net Force Analysis and Generalizations

Before solving Eq. (3.51), we discuss its connection to an alternative approach to the

`= 1 diocotron mode by relating the mode frequency of the plasma to the net electrostatic force

exerted on the column[7]. We will call this approach the “Net Force Analysis”. Afterwards, we

will see how Eq. (3.51) is an equivalent description for linear `= 1 modes. Equation (3.51) is

equivalent to the z-integrated, linearized fluid theory, so the non-perturbative form of Eq. (3.51)

is the same as integrating Eq. (3.1) over all z. To make connection to the Net Force Analysis, we

will integrate Eq. (3.1) over the entire volume within the trap walls with a moment r`e−i`θ.

∫
r`e−i`θ ∂n

∂t
dV +

∫
r`e−i`θ

∇ · (n~v) dV = 0. (3.52)

For small amplitude waves, the full density in the first term is composed of the equilibrium

density (which integrates to zero with the complex exponential term in the theta integral), plus

the perturbed density, which we will still assume is small enough to have ei`θ−iωt dependence, so

we can still use the replacement ∂n
∂t →−iωn. In the second term, we integrate by parts, allowing

the spatial derivative to act on the r`e−i`θ factor:

−iω
∫

nr`e−i`θ dV =
∫

n~v ·∇
(

r`e−i`θ
)

dV. (3.53)
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Table 3.1: ~s(x,y) and p(x,y) for various `.

~s(x,y) p(x,y)
`= 1 ~x 1
`= 2 2(~x−~y) x2− y2

`= 3 3(x2− y2)x̂−6xyŷ x3−3xy2

Using the fact that i∇
(
r`e−i`θ)= ẑ×∇

(
r`e−i`θ), we can write

ω

∫
nr`e−i`θ dV +

∫
n(~v× ẑ) ·∇

(
r`e−i`θ

)
dV, (3.54)

where the vector operators have been modified using a scalar triple product identity. Finally, using

the definition of the drift velocity from Eq. (3.3), we can write the mode frequency as

ω =
−c
B
∫

n~E ·∇
(
r`e−i`θ) dV∫

nr`e−i`θ dV
(3.55)

A similar equation follows for a real-valued perturbation (cosine perturbation) when ω is real,

when we can simply take the real part of the numerator and denominator of Eq. (3.55), giving

ω =
− c

B
∫

n~E ·~s(x,y) dV∫
np(x,y) dV

, (3.56)

where p(x,y) = r` cos`θ, and~s(x,y) = ∇(p(x,y)), with examples for various ` shown in 3.1.

There are two advantages to this formulation. First, it is computationally convenient

because neither the perturbed nor the unperturbed densities and electric fields are needed to

calculate the mode frequency; only the total quantities n and ~E are required. Secondly, using Eq.

(3.56) in the case of `= 1 provides the intuitive Net Force Result as expected:

ω`=1 =
− c

B
∫

nEx dV∫
nx dV

, (3.57)

which simply states that the mode frequency obtained by applying the net force on the column
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via the ~F×~B drift expression to a rod at a position of the x-center-of-mass is consistent with Eq.

(3.51).

3.9 Solving the Effective Fluid Theory

To obtain an analytic formula for the diocotron mode frequency as a function of the

parameters of our plasma, we will consider a radius b, length L, uniform-density equilibrium

plasma excited with the following arbitrary ` diocotron surface mode:

n0(r,z) = n0Θ(Rp− r)Θ
(

L
2
−|z|

)
, (3.58)

δn(r,z) =
η

Rp
δ(r−Rp)Θ

(
L
2
−|z|

)
. (3.59)

This is a cylindrical plasma with flat ends and top-hat profile, with a surface perturbation existing

only on the radial edge. Substituting into (3.51) and simplifying shows that every term is

proportional to δ(r−b), which can be factored out of the entire equation. Solving for ω gives

ω =
c`
BL

(
1
b

∫ L/2

−L/2

∂φ0

∂r

∣∣∣∣
r=b

dz+n0

∫ L/2

−L/2

δφ

η

∣∣∣∣
r=b

dz
)
. (3.60)

Now all that remains is determining the equilibrium and perturbed potential from Poisson’s

equation. The potentials are then resolved into separate contributions: an infinite-length portion,

minus the left and right semi-infinite ends that are not present in a finite-length plasma. The

equilibrium potential also has a contribution from the confinement potential used to trap the

plasma:

∂φ0

∂r
=

∂φ0
∞

∂r
− ∂φ0

←

∂r
− ∂φ0

→

∂r
+

∂φ0
C

∂r
, (3.61)

δφ = δφ
∞−δφ

←−δφ
→. (3.62)
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The infinite-length electric quantities are found by using Gauss’s law for φ∞
0 , and the 2D Green’s

function for δφ∞:
∂φ0

∞

∂r

∣∣∣∣
r=Rp

=−2πqn0Rp, (3.63)

and

δφ
∞|r=Rp

=
4πηq

2`

(
1−
(

Rp

Rw

)2`
)
. (3.64)

When these expressions are substituted into (3.60), the left and right portions of the equilibrium

and perturbed contributions (δφ
←→ and φ0

←→) are equal by symmetry. Also, since the missing

potentials drop off quickly at the ends, integral limits involving these quantities can be extended

to infinity when L� a, and z can be redefined so z = −L/2 becomes z = 0 for mathematical

convenience (that is, shifting the origin to the left end of the plasma). φ←0 (r,z) and δφ←(r,z) will

be understood to accept this new shifted z from this point forward. The result is

ω =ω∞ + `ω̃∞
2

Rp

L


1

πR2
p

∫
∞

0

1
n0q

∂φ←0
∂r

∣∣∣∣
r=Rp

dz

A

+
1

πRp

∫
∞

0

δφ←

ηq

∣∣∣∣
r=Rp

dz

B

+
−1
πR2

p

∫ L/2

0

∂φC
0

∂r

∣∣∣∣
r=Rp

dz′

C

 , (3.65)

Where ω′∞ = −2πqn0c
B is the infinite-length `= 2 mode frequency in the absence of a conducting

wall (a� b), and z′ is the original z-coordinate with z = 0 at the plasma center. Eq. (3.65)

determines the finite length diocotron frequency in terms of three frequency shifts away from

the infinite-length theory, namely A , B , C . The first two come from the finite length of the

plasma providing weaker total fields near the plasma end compared to the infinite plasma, while
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the last shift is due to the external confinement potentials that were not present for an infinite

plasma.

We will evaluate these three bracketed integrals in Eq. (3.65) individually to aid in

organization. First, we will calculate the final confinement term C , and afterwards we will

calculate the first and second integrals appearing in (3.65) by writing out the Green’s functions in

our cylindrical geometry and integrating over the appropriate charge distribution.

3.9.1 Confinement Term

The confinement term C depends strongly on the location of the end of the plasma,

since the radial electric confinement field EC
r = −∂φC

0
∂r (to lowest order) grows exponentially.

However, in previous work[7] for ` = 1, a shortcut was used to determine the force along the

direction of the diocotron offset (call it x) due to the confinement potential that circumvents

the need for the plasma length. In brief summary, the `= 1 argument in the existing literature

shows that the net confinement x-force on the plasma is directly related to the net confinement

z-force on the right half of the equilibrium plasma. Since this confinement force must balance the

thermal and electrostatic forces being exerted between the left and right halves, the conclusion is

that the confinement x-force can be determined without knowing the plasma length, but instead

knowing the plasma temperature. We will show that there is a generalization of this shortcut that

works for arbitrary `, where we instead consider a integral involving the radial component of the

confinement electric field.

The confinement term C appearing in (3.65) can be rewritten in the following way:

C =
−1
πR2

p

∫ L/2

0

∫ Rw

0
r dr

∂φC
0

∂r
δ(r−Rp)dz′, (3.66)

where a integral over r with a delta function has been introduced to produce the evaluation at

r = Rp, and divided by Rp at the expense of multiplying by r. By integrating this expression by
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parts over r, and then again multiplying and dividing by 2πr to restore the 2πr dr measure, the

integral can be written to resemble the radial term appearing in Laplace’s equation, giving

C =
1

2π2R3
pn0q

∫ L/2

0

∫ Rw

0
2πr dr

1
r

∂

∂r

[
r

∂φC
0

∂r

]
qn0Θ(Rp− r)dz′. (3.67)

Notice that n0(r,z) = n0Θ(Rp− r) inside the z-integration. Using Laplace’s equation, which is

satisfied by the confinement potential, we can replace the radial portion of the Laplacian with

∂

∂zEC. Finally, using the fact that the electric field grows exponentially at the ends, with

Ez
C ≈ Ae

j01
Rw , (3.68)

∂Ez
C

∂z
≈ j01

Rw
Ez

C (3.69)

on the right half of the plasma, we can write the entire expression in terms of a volume integral

involving the z-electric field:

C =
−j01

2π2R3
pn02q2Rw

∫
dV qE(r,z)n0(r,z) =

−j01

2π2R3
pn02q2Rw

FzC, (3.70)

where FzC is the confinement force on the right half of the plasma. Now we are in a position to

make use of the fact that clearly there is no net force on the right half of the equilibrium plasma

column, or equilvalently, that the forces exerted from the left half of the plasma on the right half

must cancel FzC. This force acting between the two plasma halves is the sum of the electrostatic

repulsion force, and the thermal pressure force acting across the cross-section of the plasma at

z = 0. That is,

Felectric from left +Fthermal =−FzC. (3.71)

The lefthand side of this equation has already been evaluated in the paper studying finite `= 1

107



diocotron modes[7] in the case of a top-hat cylindrical plasma; the result is

C =
j01Rp

2Rw

(
T

πR2
pn0q2 +

1
4
+ log

Rw

Rp

)
. (3.72)

This shows that Eq. (3.72) predicts a thermal correction to the mode frequency.

3.9.2 Green’s Function Terms

The Green’s function we will use here is

G(~x,~x′) =
2
π

∫
∞

0
dk cosk(z− z′)

×

[
∞

∑
m=−∞

Im(kr<)Km(kr>)−
Km(kRw)

Im(kRw)
Im(kr<)Im(kr>)

]
e−im(θ−θ′). (3.73)

During integration of the Green’s function, orthogonality picks out only the appropriate m term

(m = ` for the perturbed potential, and m = 0 for the unperturbed potential). Then it is convenient

to define a reduced Green’s function Gm(r,r′;z− z′) for a density perturbation with an implied

eimθ dependence that satisfies ∇m
2Gm(r,r′;z− z′) =−4π

r′ δ(r− r′), with eimθ dependence implied

on both sides:

Gm(r,r′;z− z′) = 4
∫

∞

0
dk cosk(z− z′)×

[
Im(kr<)Km(kr>)−

Km(kRw)

Im(kRw)
Im(kr<)Im(kr>)

]
.

(3.74)

The potentials are found by evaluating

φm(r,z) =
∫

r′dr′dz′nm(r,z)Gm(r,r′;z− z′). (3.75)

Equation (3.75) will be used to compute both the perturbed and unperturbed potential.

We will begin with the perturbed potential evaluated at r = b, to work towards the
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evaluation of B . We obtain

δφ
←|r=Rp

= 4ηq
∫

∞

0
dk
[∫ 0

−∞

cosk(z− z′)dz′
]
×
[

I`(kRp)K`(kRp)−
K`(kRw)

I`(kRw)
I`(kRp)

2
]
.

(3.76)

Notice that the integral in square brackets can be written as
∫ 0
−∞

cosk(z− z′)dz′ = πδ(k)− sinkz
k ,

allowing the answer to be separated into a z-independent and z-dependent part (See Appendix

C). After making suitable variable substitutions, and performing the integral over z as a limiting

process as Z→ ∞, we find

B =
1

πRp

∫
∞

0

δφ←

ηq
dz =

−Z
Rp`

(
1−
(

Rp

Rw

)2`
)
− 4

πRp

∫
∞

0
dk

1− cos(kZ)
k2

×
[

I`
(
kRp
)

K`

(
kRp
)
− K`(kRw)

I`(kRw)
I`
(
kRp
)2
]
. (3.77)

A similar process happens for the integral involving the equilibrium potential. The potential is

again evaluated at r = b, but since now we have an integral over r′ with r′ ≤ b, we can safely take

r< = r′ and r> = Rp. After computing this integral, taking the derivative in r, and integrating in z

from 0 to ∞, we get

1
πR2

p

∫
∞

0

φ←0
n0q

dz =
−Z
Rp
− 4

πRp

∫
∞

0
dk

1− cos(kZ)
k2 ×

[
−I1

(
kRp
)

K1
(
kRp
)
− K0(kRw)

I0(kRw)
I1
(
kRp
)2
]
.

(3.78)

Notice that since we are calculating the unperturbed integral, this expression now involves Bessel

functions of index 0 and 1, rather than index `. Also, notice the minus sign in the first Bessel

function in Eq. (3.78), which was not present in Eq. (3.77). Next we will perform two variable

substitutions: v = kRp for the first terms, which we call “non-image” terms due to their origin in

the Green’s function; and u = kRw for the second terms, which we similarly call “image” terms,

in order to enable an expansion to lowest order in Rp/Rw for the sum A + B , which appears
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in Eq. (3.65). At this point, we arrive at a fork in the road depending on whether `= 1 or ` > 1.

For ` > 1, the image terms in (3.77) and (3.78) are subdominant in Rp/Rw, so the first terms

dominate. However, when `= 1, these first two terms precisely cancel between A and B , so

that the lowest order contribution instead comes from the second terms in each expression. This

cancelation for `= 1 is an algebraic validation that the plasma exerts no net force on itself, as

was argued on physical grounds in Fine and Driscoll’s paper[7]. Consequently, the process to

solve for the mode frequency for `= 1 differs from that of ` > 1, so we will now consider these

two cases separately in the following sections.

3.9.3 Case for `= 1

Substituting Eqs. (3.77), (3.78) into Eq. (3.65) for `= 1, we see that the two terms arising

from the non-image potentials precisely cancel (the first Starting from Eqs. (3.78) and (3.77), we

calculate A + B to first order in Rp/Rw. We find

A + B =

(
Rp

Rw

)(
1
π

∫
∞

0

K0(u)
I0(u)

+
(
1− cos(Z′′u)

)K1(u)
I1(u)

du+−Z′′
)
, (3.79)

where Z′′ is another limiting variable with Z′′→ ∞. In the limit, both Z′′ and the order 1 Bessel

function integral both diverge, but their divergences cancel with each other in the process. The

limit as Z′′→ ∞ is a bit cumbersome, so it is useful to remove it by converting it into another

similar divergent integral with the same value:

Z′′ =
−2
π

∫
∞

0

1− cos(Z′′u)
u2 , (3.80)

Allowing us to combine all terms into a single proper integral:

−M1
b
a
≡

Rp

Rw

1
π

∫
∞

0

−2
u2 +

K1(u)
I1(u)

+
K0(u)
I0(u)

≈−0.671479
Rp

Rw
. (3.81)
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The reader may recognize the numerical value M1 from Eq. (3.81) as the same number appearing

in reference [7]. The existing derivation for `= 1 started from a finite, zero radius line charge

of plasma displaced a small distance from the origin, so the displacement is greater than the

plasma radius, and consequently this is not a linear density perturbation. Here we have shown

here that the same result holds to leading order for a plasma of finite radius shifted off-axis by

linear perturbation theory. Of course, if desired the finite radius corrections can be included by

using the original form of A and B in Eq. (3.77) without expanding in Rp/Rw. Gathering the

contributions from A , B , C , and inserting into Eq. (3.65), we obtain an equivalent result

from reference [7]:

ω

ω∞

= 1+
[

j01

2

(
1
4
+ log

Rw

Rp
+

T
Λq2

)
−M1

]
Rw

L
, (3.82)

M1 ≡
1
π

∫
∞

0

−2
u2 +

K1(u)
I1(u)

+
K0(u)
I0(u)

= 0.671479 . . . (3.83)

In this expression, Λ = n0πR2
p is the line density of the plasma.

3.9.4 Case for ` > 1

The important terms for ` > 1 are opposite to the result found in section 3.9.3. This time,

the dominant terms in (3.77) and (3.78) are the ones that previously canceled entirely for `= 1:

the non-image terms. The image field contribution now enters at higher order in b/a than the

bulk field contribution, and will be ignored for simplicity in this analysis. Again, finite-radius

corrections can be included by using the full forms of A and B in Eqs. (3.78) and (3.77) rather

than expanding in Rp/Rw. The calculation for A is a bit more involved as discussed earlier

because there is no radial delta function in the equilibrium density. This time, we instead perform

the substitution v = kb, keeping only the non-image term. The result is

B =
2
`π

(
Z′−

∫
dv

1− cos(Z′v)
v2 [2`I`(v)K`(v)]

)
. (3.84)
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Again, Z′ can be transformed into an integral using a similar expression to Eq. (3.80). The final

result, for all ` > 1, is fortunately integrable in terms of elementary functions:

B =
2
`π

∫
∞

0

1−2`I`(v)K`(v)
v2 =

8
π(4`2−1)

. (3.85)

A is almost identical the result in Eq. (3.85), except negated, and with `→ 1.

B =− 2
`π

∫
∞

0

1−2(1)I1(v)K1(v)
v2 =

−8
3π

. (3.86)

Then the sum A + B is given by

N` ≡ A + B =
32
3π

`2−1
4`2−1

. (3.87)

Now we can write the equation for the mode frequency for ` > 1 by again combining A , B ,

C :

ω

ω∞

= 1+
`

`−1

[
j01

2
Rp

Rw

(
1
4
+ log

Rw

Rp
+

T
Λq2

)
−N`

]
Rp

L
, (3.88)

N` ≡
32
3π

`2−1
4`2−1

. (3.89)

There are some changes between Eq. (3.88) and Eq. (3.82). First, the numerical quantity has

changed from M1 to N`. Second, there is a factor of `
`−1 in front of all of the correction terms.

Third, the first term in square brackets now has a new factor of Rp/Rw, and finally, the correction

for ` > 1 is of order Rp/L, not Rw/L as for `= 1. This final fact is a consequence of the correction

for `= 1 coming from the image field, while for higher `, the non-image field dominates.
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Figure 3.6: Graphical depiction of N` =
32
3π

`2−1
4`2−1 (M1 shown with a cross) for various values of

`. For large values of `, N`→ 8
3π

(shown by the red, dashed line). The dashed blue line extends
the curve to ` = 1 to illustrate the vanishing of net non-image forces of the ` = 1 plasma on
itself.

3.10 Temperature effect on Frequency

In this section, we discuss the details of the predictions given by Eqs. (3.82) and (3.88).

In discussing the equations, a subtlety emerges that must be addressed carefully in order to obtain

the correct answer. The diocotron problem we are discussing has several physical parameters

that define the plasma, and they are not all independent quantities. For instance, the line density,

is defined as Λ = N/L, so the three quantities Λ, N, and L cannot be chosen independently.

Consequently, we first need to clearly define what quantities are being held fixed as the temperature

is varied. For the present analysis, we study the case that is carried out in the experiments, in

which a plasma is injected into the trap with some known number of particles N, which remains

constant throughout the experiment (assuming particle loss is negligible). Due to the guiding

center drift approximation, pθ, or equivalently r, is a constant of the motion of the unperturbed

Hamiltonian, so the z-integrated equilibrium density σ(r) is also effectively constant over the

experiment time. In actuality, the plasma does expand gradually over time, but this evolution

occurs on a much longer time scale than the diocotron period, so it is not of interest here.
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We can now precisely define which quantities should be held fixed as T changes. That is,

we wish to calculate the frequency shift of the plasma brought about by a uniform temperature

change while holding σ(r)–or equivalently, plasma radius and N for a top-hat profile–fixed. As the

temperature of the plasma increases, its length also increases, due to the increased thermal velocity

driving particles deeper into the confinement potentials on either end of the trap. Consequently,

the relationship Λ = N/L implies that Λ (and similarly, n0) must decrease as plasma temperature

increases. Since both of these quantities appear in Eqs. (3.82) and (3.88), it is not sufficient to

simply vary T , since the equilibrium is a function of T , and therefore so is L and Λ. While the

thermal equilibrium density is not analytically tractable, as with the bounce-averaged theory it

can be solved numerically by solving the Poisson-Boltzmann equations. However, it would be

advantageous to obtain frequency dependence on temperature results without having to solve

for a new equilibrium at each temperature. To do this, we can linearize Λ(T ) for small T by

introducing a length coefficient λ:

Λ(T ) = Λ(0)(1−λT ), (3.90)

Or equivalently in terms of length defined as L = N/Λ (for small T):

L(T ) = L(0)(1+λT ). (3.91)

λ can be determined experimentally, with numerics, or analytically as we will soon see. Notice

that λ, being a quantity that describes the equilibrium plasma, has no dependence on `. To reduce

Eqs. (3.82) and (3.88) into a single “algebraic blueprint” that describes both, write the following:

ω(T ) = ω∞(T )(1+hε(T )+µT ), (3.92)

where ε(T ) ≡ Rw/L(T ) is a small quantity that depends on T through L(T ), and h and µ are
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coefficients determined from Eqs. (3.82) and (3.88). Throughout this chapter, we will often refer

to the frequency correction coming entirely from µ as the magnetron shift, since this effect is due

to the azimuthal “kick” given to the particles as they approach the confinement rings. We will

refer to λ as the lengthening shift, since this factor arises simply because a longer plasma in the

absence of a magnetron shift (with equal particle number) has a lower mode frequency since the

central density is reduced in the lengthening process. Since ω∞(T ), the infinite-length diocotron

frequency for a plasma with the same line density, changes as a function of T , it is useful to

replace ω∞(T ) to make its temperature dependence manifest. The infinite-length frequency in Eq.

(3.18) is directly proportional to n0, which is itself proportional to Λ. Using this fact along with

Eq. (3.90), we can obtain an analogous expression for the infinite-length temperature dependence:

ω∞(T ) = ω∞(0)(1−λT ). (3.93)

Combining Eqs. (3.93) and (3.92), we obtain an expression for the temperature dependence of

the diocotron mode frequency in terms of the infinite-length, zero temperature frequency:

ω(T ) = ω∞(0)(1−λT )(1+hε(T )+µT ). (3.94)

Eq. (3.94) will prove to be a useful result in the next paragraph to understand how T affects the

mode frequency.

Now we are in a position to expand Eq. (3.94) to determine an expression for the fractional

frequency change as a function of temperature by defining the frequency dependence in terms of

a thermal coefficient α:

α≡ ∂ω

∂T

∣∣∣∣
T=0

/ω(0). (3.95)

The quantity α is what we will use to make comparisons of the frequency dependence on plasma
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temperature throughout the remainder of this chapter. Evaluating Eq. (3.95) gives the result

α =
µ−λ−2hελ

1+hε
≈ (µ−λ)−hε(µ+λ). (3.96)

We organize Eq. (3.96) as a term involving the difference of µ and λ, and another term of order ε

involving their sum. We keep the order ε term because in the case where µ and λ are approximately

equal, the difference term can be much smaller than the sum term, even for small ε. For `= 1, we

read off the parameters appearing in Eq. (3.92) from Eq. (3.82):

h1 =
j01

2

(
1
4
+ log

Rw

Rp

)
−M1, (3.97)

and

µ1 =
j01Rw

2q2N
. (3.98)

We will see how to compute the remaining quantity λ shortly. For ` > 1, we have

h`>1 =
`

`−1
j01

2
R2

p

R2
w

(
1
4
+ log

Rw

Rp

)
−

Rp

Rw
N`>1, (3.99)

and

µ`>1 =
`

`−1
R2

p

R2
w

µ1. (3.100)

The remaining quantity, λ, will be computed in the next paragraph.

To obtain a closed theory to predict the frequency dependence, we need a way to predict λ

from theory, rather than using a number determined experimentally. Since the equilibrium plasma

internal pressure balances the confinement force on the ends, λ can be evaluated by considering a

small change in T , with the constraint that the pressure and confinement forces remain in balance

[7], that is,

Fpress = ΛT +Λ
2q2(

1
4
+ log

Rw

Rp
) = FzC. (3.101)
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This expression arises from an equilibrium consideration, and consequently holds for all `. The

first term on the right-hand side of Eq. (3.101) is the thermal pressure, and the second term is the

electrostatic pressure, which comes from integrating the Maxwell Stress Tensor over the surface

of the semi-infinite cylinder, extending to the wall, enclosing one half of an infinitely long plasma.

Assuming a plasma with flat ends, the confinement force on the half of the plasma with z > 0 can

be computed with a simple integral over the linear force density:

FzC =
∫ L/2

0
Cn0 exp

(
j01z
Rw

)
=−Cn0Rw

j01

(
1− exp

(
j01L
2Rw

))
, (3.102)

Where the unity term is negligible compared to the exponential term, for a moderately long

plasma. As the plasma lengthens, its density is transformed via

−∆Λ

Λ
=
−∆n

n
=

∆L
L

= λ∆T, (3.103)

due to the relationship Λ = N/L, with N held constant. The linearized form for the confinement

force is then

∆FzC = FzC

(
j01L
2a
−1
)

∆L
L
. (3.104)

The first term comes from the extra electrostatic energy required to produce a longer column with

the same density, and the second term adds the correction that the density has actually reduced

slightly as the plasma has lengthened. Similarly, the linear expansion of Eq. (3.104) around

T = 0:

∆Fpress = Λ∆T +2q2
Λ ∆Λ

(
1
4
+ log

a
b

)
. (3.105)

Setting Eqs. (3.105) and (3.105) equal gives a theoretical prediction for λ:

λ =
2ΛRw

(j01L+2Ra)Λ2q2
(

1
4 + log Rw

Rp

) . (3.106)
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This expression for λ now allows us to calculate the frequency change coefficient α directly from

analytic theory.

Some time should be spent discussing the previous results in order to acquire a physical

understanding of the equations. Notice that Eq. (3.106) does not depend on `, unlike Eq. (3.100),

where µ does depend on `. Also notice that the form of µ`>1 is considerably different from µ1.

One change is the factor of `/(`− 1), which introduces a new factor of 2 between the ` = 1

result and the `= 2 result. The second change is that we see that µ is suppressed from the `= 1

result by a factor of R2
p/R2

w. This result is less surprising when considering that the ` = 1 and

`= 2 infinite-length mode frequencies to lowest order in Rp/Rw, given in Eq. (3.18) differ by a

factor b2/a2. This means that an equal absolute magnetron shift for `= 1 and `= 2 produces a

fractional change in mode frequency (as characterized by µ) that is much larger for `= 1 than

for `= 2, since the `= 1 mode frequency is so much lower than the `= 2 mode frequency. On

the other hand, the lengthening shift correction affects the mode frequency multiplicatively (as

can be seen by Eq. (3.93)), and thus shifts the mode frequencies for all ` by the same fractional

factor. Consequently, for ` > 2, µ is typically much smaller than λ, so the frequency shift is often

well approximated merely by accounting for the shift predicted by infinite-length theory due to

changes in the central density from lengthening alone. This phenomenon is particularly apparent

when the wall radius is much smaller than the wall radius, although this effect is even noticeable

(but less pronounced) for plasmas with Rp/Rw ≈ 3, as are typically seen in the experiments in the

experimental portion of our group at UCSD.

3.11 Comparisons to Experiment

Now that we have developed a simple theory for arbitrary ` diocotron modes, we can

compare to experiment. In the lab, a single plasma is excited with modes `= 1,2,3 at very low

temperature. After the mode frequencies are measured, the plasma temperature is increased by

118



Table 3.2: Comparison of α(×10−3eV−1) between the z-integrated (cylindrical plasma) theory
and the Bounce-Averaged Vlasov Theory, using the plasma from Fig. 3.5.

`= 1 `= 2
Bounce-Average 11.9 -4.46

z-integrated 7.30 -5.30

Table 3.3: Comparison of Diocotron Mode thermal frequency coefficient α(×10−3eV−1) to a
specific experiment with Rp = 1.2cm, Rp = 3.5cm, N = 2×109, L = 34cm.

`= 1 `= 2 `= 3
Experiment 4.05 -3.80 -4.29

z-integrated theory 5.52 -3.52 -4.36

1eV, and the mode frequencies are recorded. The following shows a plot of the experimental

results for `= 1 and `= 2.

2 4 6 8 10
t HsecL
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Figure 3.7: Experimental results of Andrey Kabantsev show mode frequency of `= 1 and `= 2
have opposite temperature trends. In light blue the ` = 2 plot has been inverted to compare
magnitude directly with `= 1.

There is good agreement between the z-averaged Vlasov theory and the experiment, as

detailed in Tab. 3.3, especially for ` = 2 and ` = 3. Comparing to Fig. 3.5, we see the same

behavior where the `= 1 mode increases, while the `= 2 mode decreases as temperature increases.

The magnitude of the results are different between these two cases because the parameters of

the plasma are a bit different, most notably where N is larger by 25%, which has the effect of

reducing the mode frequencies for all `, since both λ and µ are inversely proportional to N. This

is the reason the plots in Fig. 3.5 have greater temperature dependence; the total number of
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particles is different for these two cases. Using the theory to compare directly to Fig. 3.5 thus

also gives good agreement: Notice that Tab. 3.2 shows that the z-integrated theory overestimates

the Bounce-Average result both for `= 1 and `= 2. This appears to be due to the approximations

in solving for λ analytically. We obtained λ in Eq. (3.106) using a force balance by assuming that

the plasma is an ideal cylinder with N held constant with a variable length. In fact, the equilibrium

shape of the plasma is quite complex; the ends of the plasma both change shape and axial density

profile as a function of temperature.

Comparing the theoretical λ with a value numerically computed using a Poisson-Boltzmann

solver, it turns out that the analytically-predicted λ can overestimate the numerical value. This

appears to be due to the fact that when T increases, the plasma length increases, but the Debye

fall-off at the plasma ends becomes broader, which has the effect of decreasing the density

just inside the nominal plasma end, and increasing just outside this end. The effect is that the

confinement restoring force is larger than the cylindrical model predicts, which is consistent with

the result that the results produce smaller results than the cylindrical theory for λ, since the same

plasma temperature change, which generates a pressure change, is more readily counteracted by

the confinement potentials with a smaller requisite plasma length change. The z-integrated theory

uses λ calculated from a cylindrical plasma assumption. Consequently, these z-integrated theories

for ` = 1 and ` = 2 would overestimate λ, resulting in an underestimate in α ≈ µ−λ for both

values of `, consistent with Tab. 3.2.

3.12 Radial Temperature Dependence

So far we have considered the diocotron mode dependence on the uniformly applied

temperature. How is the answer affected when the temperature is non-uniform? As we saw

in previous sections, thermal effects in the diocotron mode can come from two sources: first,

from a change to the infinite-length mode frequency (a bulk effect, e.g. the plasma density
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changing as the plasma expands); and second, from finite-length effects (an end-effect). First, let

us consider how radial temperature profile affects the infinite length diocotron mode frequency,

restricting our analysis to `= 1 for simplicity. Since the infinite-length `= 1 mode frequency

depends only on the line density Λ, it suffices to study how Λ (at z = 0) is affected by the radial

temperature profile. Λ is an equilibrium quantity, so the following analysis is conducted using a

Poisson-Boltzmann solver to study the radial temperature dependence. For a given z-integrated

profile σ(r) =
∫

n0(r,z)dz (considered as pre-determined), the line density is a functional Λ [T (r)]

mapping the temperature profile T (r) to the resulting line density Λ. Since there is an infinite

set of possible “test” temperature profiles T (r), it is not practically possible to enumerate all

of them. Instead, we can linearize the functional Λ [T (r)] around a uniform, low-temperature

profile (which we will take to be T0(r) = 0 as was implicitly done in the previous section) with

the functional derivative:
d
dε

Λ [εT (r)]
∣∣∣∣
ε=0

=
∫ a

0

δΛ

δT
T dr, (3.107)

where T (r) = ∆T (r) is the absolute temperature, and also the change in temperature, since we

chose to expand around T0(r) = 0. By writing T (r) =
∫

T (s)δ(r− s) ds, and interchanging the

order of integration, we have

d
dε

Λ [εT (r)]
∣∣∣∣
ε=0

=
∫ a

0

(∫ a

0

δΛ

δT
δ(r− s) dr

)
T (s) ds. (3.108)

The portion of the integrand in parentheses is simply the total derivative where the delta function

δ(r− s) is used as the test function. So we can write the previous equation as

∆Λ[T (r)]≈ d
dε

Λ [εT (r)]
∣∣∣∣
ε=0

=
∫ a

0

d
dε

Λ [εδ(r− s)]
∣∣∣∣
ε=0

T (s) ds. (3.109)

The advantage of Eq. (3.109) is that it is an expression for ∆Λ[T (r)] = Λ[T (r)]−Λ[T0(r)], with

any T (r), where using Dirac Delta temperature profiles, since they formally serve as a basis for
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the space of small temperature profile functions around T (r) = 0 (or whatever temperature profile

was used as the base of the expansion). Knowing only the derivative term which multiplies T (s)

is sufficient to evaluate an arbitrary Λ[T (r)]. This derivative is a useful quantity, so we will give it

a special notation:
δΛ [T (r)]

δT (s)

∣∣∣∣
(T (r)=0)

=
d
dε

Λ [εδ(r− s)]
∣∣∣∣
ε=0

. (3.110)

We will refer to this equation as “the (functional) partial derivative of Λ at r = s. Physically, this

quantity encodes how sensitive the line density Λ is to changes at temperature at radius r = s,

holding all temperatures elsewhere fixed (this motivates the term “partial”). The explicitly notated

evaluation of T (r) = 0 will usually be dropped, since evaluations always occur at T0(r) = 0. It

is important to briefly consider the units of the functional derivative in Eq. (3.110). Since the

product of εδ(r− s) must have units of temperature, epsilon has units of eVcm. Consequently,

the derivative has units of [Λ] · eV−1cm−1, which has a factor of cm−1 that the reader may deem

unexpected based on treating it like a regular (non-functional) derivative. The left-hand side of Eq.

(3.109) is simply the O(ε∆T (r)) term in a Taylor expansion of Λ [T (r)]. Then the line density for

any temperature profile near T0(r) (with the same σ(r)) is computed by

Λ [T (r)] = Λ [T0(r)]+
∫ a

0

δΛ [T (r)]
δT (s)

(T (s)−T0(s)) ds, (3.111)

Where we have reinserted an arbitrary T0(r), for generality. Eq. (3.111) takes a generally non-

linear functional Λ[T (r)], and linearizes it about a particular temperature profile T0(r) (often

chosen to be identically zero, as previously stated).

Numerically, instead of using true delta functions in Eq. (3.109), we will use their numeric

approximations: rectangular pulse functions, then approximate the partial derivative of Λ at r = s

in Eq. (3.109) by evaluating the finite difference

d
dε

Λ [T0(r)+ εδ(r− s)]
∣∣∣∣
ε=0

= lim
ε→0

Λ
[
T0 + εδ̄(r− s)

]
−Λ [T0]

ε
. (3.112)
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To put it simply, the right-hand side is evaluated simply as the difference in the line-density

with and without a nascent delta function “bump” (denoted δ̄) at r = s. Then to determine the

line density for a given T (r), one uses Eq. (3.111) along with the numerically determined form

of the partial derivative. As a numerical aside, T0(r) = 1eV, (rather than T0(r) = 0eV) since

evaluating equilibria for zero temperature plasmas makes the Debye length vanish, thus making

the ends of the plasma harder to resolve numerically on a grid. This will not make any difference

to our results provided that T0(r) = 1eV remains within the region where linear approximation

around T0(r) = 0 is justified. Eqs. (3.111) and (3.110) are very useful, as they can also be used to

calculate functionals other than Λ [T (r)], for example, µ [T (r)], or ω [T (r)]. As before, the partial

functional derivative implicitly depends on the plasma profiles σ(r), so The behavior of Fig. 3.8
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Figure 3.8: The (logarithmic) partial functional derivative of the line density functional Λ [T (r)]
with respect to the temperature profile. Here a plasma with line density Λ = 4.91×107eV−14,
with a very gradual density profile of the form n(r)∼ exp

(
−r4/(1cm)4

)
.

can be understood as follows: the line density functional is roughly a function of only the total

thermal energy. At both large and small radius, there are few particles to heat; at large radius

at the edge of the plasma, the density drops off, and at small radius, geometry dictates that the

number of particles near that radius is also small, which mirrors the result shown in Fig. 3.8. We

could equivalently express this same data by plotting the functional derivative with respect to

the radial energy density, which may be more convenient for some purposes. For our purposes
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now, we wish to study the effect of the change in Λ while a deposition of heat spreads outward

via radial thermal conduction. To simplify analysis, suppose that the temperature profile remains

rectangular, with total thermal energy held fixed (as is approximately true in the experiments,

neglecting cyclotron cooling). That is, consider the rectangular thermal profile with radius R:

∆T (r) = 1eV
∫ b

0 2πr′n(r′) dr′∫ R
0 2πr′n(r′) dr′

Θ(R− r) , (3.113)

where Θ is the Heaviside step function. The normalization factor is chosen to make the thermal

energy in the plasma equal to the thermal energy in a uniform 1eV plasma with the same density

profile, which ensures that if the plasma were to thermally equilibrate radially, it would be a

uniform 1eV plasma. Now we can use Eq. (3.109), along with Eq. (3.113) to study how the line

density varies as thermal energy diffuses radially. In Fig. 3.9, we plot the change in line density

as the thermal skirt grows, while keeping the thermal energy constant. Clearly, Λ(R) is rather
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Figure 3.9: This figure shows the fractional change in Λ, for a rectangular thermal profile of
radius R, holding the total thermal energy fixed. The right side of the plot asymptotes to a
uniform temperature plasma of 1eV.

flat where the plasma is uniform, and decreases once the plasma density begins to fall off. This

example was calculated for a density profile n(r)∼ exp
(
−r4/(1cm)4), which is a broad profile

compared to those observed in experiments. Consequently, a more rectangular profile, with a
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broader uniform region and a narrower edge would be even more uniform in the central region,

and reduce by a lesser amount in the edge. This analysis shows that the infinite-length mode

frequency used in Eqs. (3.88) and (3.82) is reduced by 0.1% when heat is redistributed from near

the center to uniformly distributed throughout, while the overall quantity (compared to before any

heat was added at all) is reduced by 0.35%. This demonstrates that the infinite-length correction

(coming from plasma lengthening with temperature) is only a third of the correction from adding

the temperature uniformly. This analysis contributes a small decrease in mode frequency as

thermal energy spreads radially.

To introduce radial temperature dependence into our theory, we make relevant changes

to Secs. 3.9 and 3.10 to allow radial dependence. For this analysis, we will restrict ourselves to

the simpler case where ` = 1, and we will drop the corrections involving M1, since we found

that these terms drop out to lowest order in the frequency change. Then the generalization of the

theory of Eq. (3.96) is obtained simply by replacing appearances of λT and µT in Eq. (3.96) with

linear functionals λ [T (r)] and µ [T (r)]. Then the frequency change parameter α, which is now

itself a functional, takes the form (to zeroth order in hε)

α[T (r)] =−λ[T (r)]+µ[T (r)]. (3.114)

To restore the mode frequency from this calculation, we simply use the definition of α[T (r)] to

calculate ω [T0(r)]:

ω [T ] = ω [0] (1+α[T (r)]) . (3.115)

where, T (r)δr is the again, T0 is usually taken to be a constant initial temperature profile, often

chosen to be identically zero. In fact, we have already calculated λ [T (r)] numerically; it is the

negative of the function plotted in Fig. 3.8, using the delta function as the test function (this can
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be seen by carrying out the functional version of Eq. (3.90)). Thus, we use the definition

λ [T0(r)] =
−1

Λ [T (r) = 0]

∫ a

0

δΛ

δT (s)

∣∣∣∣
T=0

T (s) ds. (3.116)

Our previous treatment of (the scalar quantity) λ is a special case of this equation, where T (r)→ T

(a constant function). In that case, ∆T can be pulled outside the integral, and λ [T ] = λT (the

functional dependence becomes a simple product). The resulting compatibility requirement from

Eq. (3.116) for λ and µ, to ensure consistency between the radial-dependent theory and the

non-radial dependent theory is simply

λ [T ] = λT, (3.117)

µ [T ] = µT. (3.118)

The units in these equations may still seem strange, since Eqs. (3.117) appear to indicate that

λ and µ, compared to their barred, functional counterparts, have different units. This actually

depends on the interpretation of Eqs. (3.117). If the units are associated with the evaluation of

the functionals (by substituting a particular T (r)), then it is true that they are unitless while λ and

µ had units eV−1. If the units are instead associated with the functionals before evaluation (i.e.

as an operator not yet acting on T(r)), then there is perfect agreement between the barred and

unbarred variants. It is the latter of these two interpretations that will be used in this chapter.

Next, we want to study µ [T (r)]. With this change, we need to revise the analysis of

Sec. 3.9, because introducing a piecewise constant thermal profile spoils our assumption that

the equilibrium density is constant (since the plasma will expand and contract non-uniformly in

r). Luckily, the analysis is readily revised to allow for a non-uniform plasma density. Studying

Eq. (3.51), we can see that the evaluation of the radial electric field at the plasma radius comes

from δn being a delta function centered at r = b. This came from assuming that the mode was a

simple surface shift to the plasma column. We will make the same assumption here for `= 1, and
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assume δn(r) =−η
∂n0
∂r . The trick to handle this situation is to integrate both sides of r times Eq.

(3.82) over the cross-sectional area. Then, as before, we can integrate by parts as in Sec. 3.9.1

and observe that the result can again be written in terms of the total confinement z-force on the

right half of the column, and takes the same form as before. As before, this force is balanced by

the electrostatic and thermal forces originating from the axial center of the plasma. However,

these forces will not be the same as those calculated with a uniform temperature profile, because

a temperature gradient introduced into a uniform radial density profile will introduce radial

dependence into the density. In order to properly account for the radial temperature dependence,

this calculation has to be carried out in more detail, which we will do next.

First, we will see how the thermal pressure term changes. The total thermal force between

the two halves of the cylinder is simply the integrated pressure:

Ftherm =
∫

n(r)T (r) dA, (3.119)

which is proportional to the total thermal energy in the plasma. We wish to compare to the

experiments which introduce thermal energy into the center of the plasma, and allow it to

gradually conduct to the outside of the plasma (or vice versa) while keeping the total thermal

energy fixed. Then the thermal force in Eq. (3.119) remains constant during this process, and

therefore has no contribution to the mode frequency. The second way to have radial temperature

dependence on the axial pressure is through the total electrostatic force between the two halves of

the cylinder. As before, this is found by integrating the Stress Tensor:

Felec =
1

8π

∫
E2 dA, (3.120)

where E = 2qΛenc
r via Gauss’s Law, for example. For simplicity, and in order to estimate whether

this effect is significant, we use the piecewise constant model where n(r) = n0 when r < r0,

and n(r) = n1 when r0 ≤ r < r1, and zero otherwise. This non-uniform profile is a result of the
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non-uniform radial temperature profile having the effect of perturbing the density. We define

∆n ≡ n0−n1, and nf =
A0n0+A1n1

A1+A2
, where A0 and A1 are the cross-sectional areas of the central

circle of radius r0, and the annulus with inner radius r0 and outer radius r1. That is, n f is the area-

weighted average density, which we can think of as an estimate for the final thermal equilibrium

density profile, assuming that the line density remains constant during radial thermal equilibration.

After some algebra, Felec can be written

Felec = q2
Λ

2
((

1
4
+ log

Rw

Rp

)
+

A0A1

2(A0 +A1)2
∆n
nf

)
. (3.121)

Notice that the first term is identical (after dividing by q2Λ2) to h1 (see Eq. (3.97)) found for the

uniform profile. This is no surprise, since the algebraic origin of h1 comes directly from Felec. so

the remaining term offers a correction to h1 due to the non-uniform profile. With this result, we

can estimate the importance of this correction term in comparison to the experiments. The term

∆n/nf ∼O(∆L/L)≈ 10−3 for a 1eV temperature change. Assuming, for example, that the area of

the annulus and central disk are comparable, the factor involving the ratio of areas in Eq. (3.121)

is 1/8, reducing the second term down by another order of magnitude. The zeroth order term in

Eq. (3.121) is typically O(1). Then h1 changes by about 1 part in 104. Once taking into account

that the appearance of this corrected term h1 in Eq. (3.82) is multiplying a term of order a/L

(another small quantity: ≈ 1/10 in relevant experiments), it becomes clear that this correction

contributes around 1 part in 105, to the final mode frequency, while the effects we are interested

in are corrections of 1 part in 103. The preceding analysis suggests that there is no significant

µ radial dependence according to the theoretical model described here, that is, µ [T (r)] = µTeq,

where Teq is the radial thermal equilibrium temperature of the plasma. Combined with the result

for λ [T (r)], we expect a small frequency decrease as thermal energy diffuses radially outwards,

coming entirely from the λ effect. The general result is then a minor modification of Eq. (3.96),

where we explicitly keep the µ [T (r)] in functional form even though we determined that they can
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be written entirely in terms of the radial equilibrium temperature.

α [T (r)]≈ (µ [T (r)]−λ [T (r)])−hε(µ [T (r)]+λ [T (r)]), (3.122)

which is the more accurate form of Eq. (3.114). Since we found no radial dependence in µ, then λ

provides the only radially dependent frequency correction. As shown in Fig. 3.9, λ this signifies

a ( −1.5%) mode frequency shift corresponding to the radially outward flux of thermal energy.

3.12.1 Radial Temperature Effect according to the Bounce-Averaged The-

ory

To check for more subtle effects than the analytic theory from the previous section can

provide, we return to the Bounce-Averaged solution described in Sec. 3.6, where this time we

introduce a non-uniform temperature profile. To check for any nontrivial frequency functional

dependence α [T ], we consider a realistic plasma with rounded ends and non-rectangular density

profile. We then reproduce the experiments by injecting heat into only the central portion of

the plasma, and using the theory to calculate the diocotron mode frequency. Next, we do the

same thing for the plasma after it has come to thermal equilibrium along r, to compare to the

experiments. If our previous theoretical analysis is correct, we should see only a small frequency

decrease due to the λ [∆T ] as outlined in Fig. 3.9. In this numerical study, we take a rounded-

square plasma with ncent = 1.5×107cm−3 and radius Rp = 1.35cm initially at T = 1eV, and heat

the center r < 0.2cm of the plasma up to Tcent = 6eV, shown in Fig. 3.12.

The plasma is then allowed to thermally equilibrate, keeping the total thermal energy

throughout the plasma fixed. The initial and final theoretical mode frequencies are plotted in

Tab. 3.4. Interestingly, Tab. 3.4 predicts a 0.25% increase in mode frequency as heat flows

from the plasma center outward, which is opposite to the result predicted in the previous section,

and much more pronounced. While the mechanism is not presently understood, clearly one of
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Figure 3.10: The initial density as a function of z (horizontal) and r (vertical) with a 6eV central
region surrounded by a 1eV region.
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Figure 3.11: The final density as a function of z (horizontal) and r (vertical) after the plasma in
Fig. 3.10 has come to radial thermal equilibrium.

the assumptions made in the preceding analysis needs to be improved in order to capture this

effect. Inspection of the bounce-averaged eigenfunction for `= 1 shows that the perturbed density

is indistinguishable from a uniform translation to the equilibrium density n0(r,z), even for a

non-uniform temperature profile. This indicates that the discrepancy does not come from the

effective fluid theory making this assumption for the eigenmode.
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Figure 3.12: The initial thermal profile (blue), and the thermal profile once the plasma has
equilibrated (red). Results shown in Tab. 3.4.

Table 3.4: `= 1 diocotron mode frequency before and after the hot inner plasma core comes to
thermal equilibrium with the rest of the plasma, according to the Bounce-Average theory.

ω (sec−1)
Hot center 17445

Equilibrium 17490
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Chapter 4

Philosophy

4.1 Why Plasma Theory is Challenging

Plasma physics is veritably a wide and complex field of study, and consequently any

modest discussion of the general challenges of plasma physics will be incomplete. In this

introduction, I will provide an overview of the two main problems I have solved during my study

here at UCSD, both of which share the theme of kinetic effects in plasmas, and also explain why

these problems are challenging, both theoretically and computationally. Today, an active field

of study related to plasma physics is fluid dynamics. This field of physics concerns itself with

understanding the motion of a fluid by treating it as a continuum rather than a collection of a large

number of particle constituents of the fluid. As a result, fluids are characterized by a collection of

fields which describe the variation of various quantities throughout the medium–density, velocity,

temperature, pressure, et cetera. From a course-grained point of view, a physicist could argue

that fluid theory is actually quite simple in principle; one simply imagines the fluid as subdivided

into infinitesimal fluid elements throughout space, then the net forces on each of these elements

(typically either from local fluid interactions such as pressure gradients, viscosity, or external

forces like gravity) are obtained, and finally Newton’s laws are used to calculate the evolution
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of the fluid. Since these forces can be calculated from the configuration of the fluid at a given

time, it is not difficult to integrate the equations of motion forward in time from some initial

condition and determine the state of the fluid at some later time. To understand kinetic effects of

plasma physics, on the other hand, the fluid equations are upgraded to the Vlasov Equation or the

Boltzmann Equation, which can be thought of as a fluid theory existing not in space, but rather in

phase-space. The density is upgraded to the distribution function, which provides the probability

of finding a particle near that position and momentum. While kinetic plasma theory is in this

way analogous to fluid theory in the sense that it is a fluid theory in 2n dimensions, where n is

the spatial dimension of the problem, there exists a few new complications in the transition from

fluid theory to kinetic plasma theory. First, the dimensionality of the partial differential equations

being solved doubles, making the solution more difficult to obtain. Second, the equations are no

longer local in the sense that the plasma density (which is coupled to the electric and magnetic

fields, which in turn influence the plasma evolution) is an integral of the distribution function

over all momenta, so these new momentum dimensions are unlike extra spatial dimensions in

that they are non-local. Third, in charged plasmas the density of the plasma at some point affects

the evolution of the plasma at every other point through the electromagnetic field, which for our

purposes are immediately established with no retardation. In this sense, the plasma equations are

not even local in space because of the (near) instantaneous action of the electromagnetic field.

While this final observation is equally valid in the fluid theory of a charged plasma, it is absent in

the theory of uncharged and non-conducting fluids, where the only forces acting are either from

some external field (e.g. gravity), or a local interaction (e.g. gradients in the pressure or velocity

fields).

The second obstacle present across this body of work that is the subject of great attention

is in the analysis of inhomogeneity and boundary effects, that are frequently discarded or approxi-

mately handled via handwaving arguments in much existing work. Often, plasma boundaries are

argued away by imposing mathematically convenient boundary conditions (Dirichlet, Neumann,
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Periodic...), but unfortunately, unlike a physical boundary such as a conducting wall or some

similar condition, a plasma end can be “fuzzy”; the plasma density can drop off gradually, leading

to the failure of the “boundary condition” analysis. To make matters worse, for the thermal effects

ubiquitous in this paper, the particle orbits make any effective fluid theory non-local in space,

giving rise to a “kernel” of finite spatial extent, which couples regions of the plasma separated

by an appreciable distance. Consequently, any boundary condition to be imposed is far more

subtle than matching a function value and derivative on the boundary, but requires identification

of the functions to the left and right of the “boundary” within some finite interval! As a result,

Bernstein modes are better understood in an infinite, uniform plasma, but not well understood in

a realistic plasma with boundary, where there are not simply two boundary conditions to match,

but an infinite set of them (for example the set of derivatives of all order at the boundary). For

example, in chapter 2, we can get away with this by using asymptotic analysis to match finite

intervals of the perturbed potential from one region to its neighbors. While an existing work[9]

analyzed Bernstein Modes in a non-uniform plasma, the work did not capture the correct coupling

of Bernstein modes to the Cold-Fluid Theory in the plasma edge, which is the subject of chapter

2. Similar themes of non-uniformity will appear in chapter 3, where here we consider both radial

and axial plasma dependence, where the appropriate kernel is now far more non-local, coupling

regions on opposite axial ends of the plasma due to warm particles quickly bouncing from end to

end across the entire length of the plasma.

The third recurring difficulty throughout this dissertation concerns itself with computa-

tional techniques and numerics. There are several features of the research problems discussed

here that simply for computational reasons alone, increase the difficulty even more:

1. The curse of dimensionality: We discussed that distinct from fluid dynamics, kinetic plasma

physics dictates that each spatial dimension comes with its own momentum dimension. A

problem necessitating N computational grid points along each dimension in n dimensions

thus requires N2n total grid points. Needless to say, this is exponential growth, so taking
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even a meager N = 10 in n = 3 brings the problem to one million total grid-points and one

million unknowns to be determined. A full linear system of equations for such a problem

has a number of elements equal to the square of the number of unknowns and equations,

which in the example case equates to one trillion matrix elements, which is not feasible.

This is referred to as the curse of dimensionality, since increasing the dimensionality

of the problem by a small amount can turn a soluble problem into an insoluble one.

Consequently, compromises and simplifications must be made in order to make progress.

Some examples of these tricks are assuming symmetry in certain dimensions (such as

dropping z-dependence or assuming an ei`θ-dependence), using sparse matrices, and re-

writing the problem as a superposition of harmonics in a basis where the solution is expected

to have few large components, so fewer need be kept.

2. Convergence: The issue of convergence, particularly in chapter 2, was a significant source

of difficulty. Each dimension has associated with it a different adjustable convergence

parameter–typically the number of grid points along that dimension–and sometimes the

results showed slow convergence, or a degree of convergence that was non-monotonic in

the number of variables kept in a certain dimension. It appears that there is some non-trivial

interplay between the various convergence parameters of the problem, making the results

unexpectedly sensitive to the choice of these parameters, and to each other. The reason for

this behavior is still not understood, and generally the attitude taken in this work is to focus

to a lesser degree on the details of understanding the peculiarities of the numerics, to instead

focus on the physics. In other words, when convergence was not met, we simply increase

all of the convergence parameters together until we run out of computational power.

3. Memory: When describing the computational details to my coworkers, I would often receive

the suggestion to simply run the code for a longer duration in order to reach convergence.

Unfortunately, this is not always a feasible solution, since in my experience, memory, not
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CPU time, was the main bottleneck. While the amount of computational effort used to

solve a problem can be increased either by increasing the processor speed or by increasing

the time spent on the problem, computer RAM is a limited resource. Once a computer

program uses all available memory, aside from (very slowly) writing data to the hard disk,

the program cannot recover, and a great deal of resources is wasted. Many linear algebra

solver routines that operate on large matrices eat up significant memory, as they must

generate new temporary matrices (for example methods that use the LU decomposition),

which may not be as sparse as the original matrix. In hindsight, direct methods of solution

for linear algebra problems should be avoided for 3D problems where the sheer size of the

matrices has high memory impact.

4. Philosophy of Physics: Finally, there is a philosophical problem unrelated to computation

per se, but of great importance in my study of physics and which is responsible in part

for driving my research. This problem is with regards to the realization that “Numerical

computation, alone, is not physics”. It is easy to become so dependent on a problem that

one will go to great lengths just to find the answer. Numerical computation affords a

powerful way to gain answers to such complicated questions. However, after the insight

into the physics theory appears, the pen stops writing, and finally the ideas are implemented

into a computer code, all that remains is to use the code to generate results. These results

are important in comparing the theory to experiments and to other theories, but the intrinsic

value of the computation is rather shallow; the computer code simply tells you how the

physics behaves, but seldom provides an understanding of why it behaves that way. In

this way, computers often act as black boxes, and on their own are not sufficient to study

physics. For this reason, this dissertation uses numerical results only as needed to draw

comparison to analytic expressions and experiments, rather than using them to exhaustively

study the problem in all conceivable regimes.
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4.2 Kinetic Theory and the Scope of this Dissertation

In light of the difficulties described in the previous section, it is no surprise that under-

standing the kinetic effects of plasmas is currently an active area of research. Kinetic theory,

when analytically tractable, is often restricted to ideal situations–uniform plasmas that extend

to infinity, or plasmas of only one species–cases that are not obtainable experimentally, or at

least much more challenging experimentally to produce. The work in this dissertation addresses

solutions to problems that depart from these theoretically ideal scenarios.

In chapter 2, the theory of Bernstein modes is extended, examining both analytical and

computational solutions to non-uniform plasma columns, with either a single species, or multiple

species, which allow comparison to experiments that are neither uniform, infinite, nor comprised

of a single species. Since Bernstein modes are thermal effects, arising from the finite Larmor

Radius of particles in the magnetized plasma, the cold fluid theory is only valid in the T → 0

limit, where a single cyclotron resonance is observed in the plasma response to a driver, and

no additional structure is seen. As the temperature is increased, a family of new modes, called

Bernstein modes are predicted to emerge from the single cyclotron resonance. At low temperatures,

these modes are very closely spaced in frequency, and are not resolvable due to some physical

damping mechanism such as particle collisions. However, when the temperature is increased,

the mode spacing increases, and a number of Bernstein modes appear, no longer hidden by the

finite collisionality. The origin of these modes is that the non-zero Larmor radius of the plasma

particles allows them to explore a finite neighborhood around their guiding center positions as

they undergo their small circular orbits. As a result, at any time, the force felt by these particles

differs from the force that would be predicted from cold fluid theory, where every point in space

has a single unambiguous fluid velocity rather than the actual Boltzmann distribution of particle

velocities.

In chapter 3, a completely different problem is solved by extending diocotron theory to
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study non-ideal theoretical aspects regarding the theory of finite-length and thermal effects on the

diocotron mode frequency. Similar to the situation in chapter 2, while a cold diocotron mode is

well-described with cold fluid theory, a temperature increase produces a frequency shift to the

diocotron mode. We will see that there are two physical reasons for this. First, the plasma density

changes as temperature increases and the particles travel farther axially before returning. Since

even the infinite-length diocotron frequency depends on the density, this effect tends to make

the mode frequency decrease as temperature increases. Second, these warm particles also feel a

stronger radial force from the confinement cylinders which acts to increase the mode frequency.

Third, the fact that the plasma itself has a finite length means that the self-consistent plasma

fields differ from that of an infinite column, either from the image field (as in `= 1), and in the

non-image field (as in ` > 1). The net frequency shift is some combination of these effects.
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Appendix A

Structure of Cold Fluid Response

The fluid theory for a plasma with annular Bernstein wave region is also rather interesting;

there are two surface cyclotron peaks in the plasma response Im(Y ), rather than the expected,

single peak. By comparing figure 2.15 and figure A.1, It turns out that the left and right

peaks appearing in figure A.1 occur at the same frequencies as the blue (solid) and red (dotted)

curves in figure 2.15, corresponding to the frequencies at which the dielectric function satisfies

ε′11(r) = ε11(r) = 0 at some value of r. These values of r are labeled with the numbers 1 and 2,

and the corresponding frequencies are also labeled in Fig. A.1. We will take a small detour to

understand why the admittance has peaks at such locations.

To simplify the analysis, we employ the admittance function from the old cold fluid theory

valid in the large magnetic field limit[6]:

Y = `+
rw

2`∫ rw
0 r′2`−1/ε11(r′) dr′

, (A.1)

Defining I as the integral I ≡
∫ rw

0 r′2`−1/ε11(r′) dr′, we have

Im(I−1) =
−Ii

Ir
2 + Ii

2 ,
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Figure A.1: In some cases, the cold fluid theory predicts two peaks in Im(Y ), rather than
one. Here we look at a plasma with ` = 2, Ω = 10.45, Rp = 10.5, δres = 56.3%, rw = 83.54,
comparing the exact fluid theory developed in this paper, and the approximate fluid theory (using
a large Ω expansion) by Dubin[6].

where the subscripts indicate a shorthand for the real and imaginary parts of I. Now suppose, as

is true for the plasma under consideration, that rw� Rp so that there is a large vacuum region

outside the plasma. In this case, Ir is dominated by the vacuum region (for ` > 1) because

ε11(r� Rp) = 1, whereas Ii has no contribution in this region. So we assume Ir� Ii, so that

Im(I−1) =
Ii

I2
r
,

and further, we can approximate Ir ≈
∫ rw

0 r′2`−1 dr′ = rw
2`

2` . This gives the expression

Im(I−1) =
−4`2Ii

r2`
w

. (A.2)

In the limit of small ν, the Ii integral can be conveniently evaluated using contour integration. The

zeroes of ε11, which are the poles of appearing in the I integral, occur just above or just below

the real axis, depending on the sign of ε′11(rUH). Because ν tends toward zero, the argument of

Ii is effectively zero away from upper-hybrid radii, and sharply peaked near the upper-hybrid

radii. We can therefore extend the range of integration to the entire real line without modifying
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the value of the integral, and use the Plemelj formula to integrate around the poles. Notating the

upper-hybrid radii where ε11(r) = 0 as sk, the result is

ImY =
4`2

r2`
w

∑
k

sk
2`−1∣∣ε′11(sk)

∣∣ . (A.3)

This expression provides a useful way to estimate the cold fluid response of a plasma existing well

within the wall without having to evaluate an integral over the entire plasma. It also immediately

allows one to see that the peaks of ImY occur where ε′11(sk) = ε11(sk) = 0, which justifies the

observation we made in figure A.1.
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Appendix B

An alternate derivation of Bessel Functions

As an alternate, more physical derivation of the result derived in Sec. 2.5.1, we reconsider

the problem of solving for eigenmodes of an arbitrary linear wave equation. In this section, we

will consider solutions to equations with the following constraints:

1. Solution to a linear wave equation possessing plane waves as solutions,

2. Solutions with eigenfrequency ω are superpositions of plane waves with wavelength

compatible with the dispersion relation: k = |~k|= k(ω),

3. Problem is uniform and isotropic, so | ~k(ω)| is not a function of the direction of wave

propagation,

4. Posesses our desired ei`θ−iωt dependence.

With these constraints, we can write down an expression for the potential as a superposition of

plane waves:

φ(~r) =
∫

A(~k)δ
(
|~k|− k(ω)

)
ei~k·~r d~k. (B.1)

All this equation is saying is that we can write down a general linear wave equation solution as a

(continuous) superposition of plane waves with the appropriate wavenumber. Since the isotropic
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dispersion constrains |~k|= k(ω), a delta function is introduced to ensure that any non-compatible

wave vectors are destroyed. Consequently, the value of A(~k) on the circle of radius |~k(ω)| is all

that is required. We can express this in polar coordinates by parametrizing the circle by a single

parameter α (the angle measured conventionally from the x-axis), and |~k| (a fixed “wavevectorial

radius”), we can write Eq. (B.1) as follows:

φ(~r) =
∫ 2π

0

∫
∞

0
A(|~k|,α)δ(kr− k(ω))ei|k|r cos(α−θ)|~k| d|~k| dα. (B.2)

The cosine in the exponent comes from taking the dot product of the position vector~r with the

wavevector~k. Converting to the relative angle variable β = α−θ, we can write this as

φ(~r) = k(ω)
∫ 2π

0
A(β+θ)eikr cosβ dβ, (B.3)

Since we seek solutions with ei`θ−iωt dependence, and since the only remaining θ-dependence

appears in the coefficient A, we had better have that A factors as A(β+θ) = f (β)g(θ) = f (β) f (θ),

where the last equality follows by the symmetry of the argument of A upon interchange of β and

α. Further, we seek solutions with ei`θ dependence, so we learn that f (θ) ∼ ei`θ. Simplifying

gives

φ(~r) = Aei`θk(ω)
∫ 2π

0
ei(k(ωr cosβ+`β)) dβ

!!

. (B.4)

Since k(ω) and 2πi` have no radial dependence, they can simply be absorbed into the multiplica-

tive constant A. The result is that the solution with the θ-dependence we seek must be of the

form

φ(r,θ) = AJ`(k(ω)r)ei`θ. (B.5)
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Appendix C

Separating plasma integrals into two parts

In Chapter 3 we need to evaluate the integral
∫ 0
−∞

cosk(z− z′)dz′, which does not, strictly

speaking, converge. In order to do the integral anyways, we will keep the infinite limit, and later

will do a limiting process as the lower limit tends toward −∞. So we instead compute

∫ 0

−∞

cosk(z− z′)dz′ =
−sin(k(z− z′))

k

∣∣∣∣0
−∞

→ −sin(kz)
k

− lim
Z→∞

[
sin(kZ)

k

]
. (C.1)

We can understand the second term in the limit as Z → ∞ by considering its integral over all

values of k:

∫
∞

−∞

sin(kZ)
k

dk = Im
(∫

∞

−∞

eikZ

k
dk
)
, (C.2)

which can be computed by considering a D-shaped contour that avoids the pole at k = 0:

∫
∞

−∞

sin(kZ)
k

dk = πsgn(Z). (C.3)

We have Z → ∞, so sgn(Z)→ +1. Interestingly, regardless of the (positive) choice of Z, the

integral remains constant. On the other hand, the graph of the integrand becomes horizontally

scaled down as Z increases, which implies that sin(kZ)
k can be made to oscillate arbitrarily fast by
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further increasing Z, therefore making any integral not including the origin to integrate to zero.

This demonstrates that the function limZ→∞
sin(kZ)

k integrates to π when the integration range

includes the origin, and zero otherwise, and therefore it has the requisite properties of the function

πδ(k). Using this identification, we obtain the desired result:

∫ 0

−∞

cosk(z− z′)dz′ = πδ(k)− sin(kz)
k

. (C.4)
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